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Abstract

:

(1) Land surface models require inputs of temperature and moisture variables to generate predictions of gross primary production (GPP). Differences between leaf and air temperature vary temporally and spatially and may be especially pronounced under conditions of low soil moisture availability. The Sentinel-3 satellite mission offers estimates of the land surface temperature (LST), which for vegetated pixels can be adopted as the canopy temperature. Could remotely sensed estimates of LST offer a parsimonious input to models by combining information on leaf temperature and hydration? (2) Using a light use efficiency model that requires only a handful of input variables, we generated GPP simulations for comparison with eddy-covariance inferred estimates available from flux sites within the Integrated Carbon Observation System. Remotely sensed LST and greenness data were input from Sentinel-3. Gridded air temperature data were obtained from the European Centre for Medium-Range Weather Forecasts. We chose the years 2018–2019 to exploit the natural experiment of a pronounced European drought. (3) Simulated GPP showed good agreement with flux-derived estimates. During dry conditions, simulations forced with LST performed better than those with air temperature for shrubland, grassland and savanna sites. (4) This study advances the prospect for a global GPP monitoring system that will rely primarily on remotely sensed inputs.
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1. Introduction


Terrestrial gross primary production (GPP) is the largest flux in the global carbon cycle [1]. Anthropogenic disturbances to natural cycles include CO2 emission to the atmosphere, but terrestrial vegetation provides a sink for a part of the emitted CO2—driven primarily by the fact that the CO2 concentration is nonetheless rising [2]. Currently our best, in situ estimates of GPP are provided by the eddy-covariance method that measures high-frequency net carbon fluxes between the canopy and the atmosphere [3]. Those measurements of net ecosystem exchange (NEE) can be partitioned into GPP and ecosystem respiration allowing empirical evaluation of model simulations of GPP. There are now hundreds of flux-tower sites [4] and collectively they provide the foundation and benchmark for global terrestrial vegetation monitoring. The technique has its difficulties, however—including how best to partition NEE into the component fluxes [5], the need for a reasonably flat and homogenous footprint [6] and under-representation of certain biomes (notably tropical biomes). These problems, together with the desire to provide spatially continuous estimates, have encouraged the development of remote-sensing models where global fields of key drivers are provided by satellite-derived products. The overall goal of such research is to develop a global GPP monitoring system, based on a reliable model, driven by remotely sensed data and evaluated against flux-tower data.



The instantaneous controls of leaf-level photosynthesis are described by the FvCB model of C3 photosynthesis [7] in which instantaneous carbon assimilation is limited either by Rubisco activity (carboxylation) or by light (electron transport). Both rates are influenced by the leaf-internal partial pressure of CO2 (Ci). Empirical equations are commonly used to determine Ci, which depends on stomatal behaviour. Current eco-physiological theory, and most biophysical land-surface schemes for climate modelling, make use of the FvCB model.



The instantaneous photosynthetic response to light, as observed experimentally and represented in the FvCB model, is a non-linear (saturating) function. A different relationship with light emerges, however, at longer timescales [8,9]. Based on measurements of crop growth, Monteith [10,11] proposed the light-use efficiency (LUE) model (GPP = LUE × IPAR × fAPAR) where IPAR is the incident photosynthetically active radiation and fAPAR the fraction absorbed by green vegetation. There are now many LUE models in the literature [12], but no consensus on which is best. There has also been a marked tendency for these models to become more complex and to require more parameters, but without necessarily increasing in accuracy [13].



The P model [14] is a LUE model based on optimality principles that coordinate capacities for CO2 fixation, water- and electron-transport to simulate GPP consistent with the FvCB framework. The model can be applied universally to C3 plants with no need for biome-specific parameters. The P model as deployed here is the ‘BRC’ version presented by Stocker et al. [15] with a modification [16] to describe C4 photosynthesis. This version differs from the original model of Wang et al. principally by representing the temperature-dependence of the intrinsic quantum efficiency of photosynthesis, which was described by Bernacchi et al. [17], but is neglected in many current models [18]. Stocker et al. (2020) also introduced a single global calibration parameter to optimize agreement between P model simulations and flux data. In a departure from the approach of Stocker et al., we have here assigned the maximum quantum efficiency its theoretical upper bound of 0.125 (eight quanta per CO2 reduced), eliminating the need for calibration.



GPP is expected to be influenced by temperature because of the various temperature-dependent quantities that affect photosynthetic rates [17,19]. The instantaneous temperature response of leaf-level photosynthesis is unimodal with photosynthesis inhibited at low and high temperatures, reaching an optimum somewhere in between [20]. But the optimum acclimates to growth conditions [21], and it is challenging to determine whether foliage is operating above or below the current optimum. There can also be differences between the temperature of the leaf and that of the ambient air [22]; those differences (or deltas) are influenced by radiation, transpiration and boundary-layer conductance [23,24]. It would be desirable to replace measures of air temperature with remotely sensed land surface temperature (LST): theoretically, because LST is expected to be closer to the actual temperature of leaf tissue relevant for physiological processes; and practically, because remotely sensed LST is retrieved at a high spatial resolution relative to weather-station or meteorological analysis data.



Stomata are the conduits both for CO2 into the leaf, and for the loss of water vapour via transpiration. Stomata respond to an increase in vapour pressure deficit (VPD) by progressively closing to limit transpiration and this entrains a reduction in photosynthesis [25,26]. Drought events, such as those experienced in central Europe in 2018 [27], can have further profound effects on vegetation and its productivity by causing earlier stomatal closure in response to VPD. Ciais et al. [28] estimated that the 2003 heatwave instigated a 30% reduction in GPP across Europe, upsetting the continental carbon balance and, in the short-term, converting the region from a sink to a source of CO2. This effect of drought can interact with elevated temperatures to create a positive feedback loop—soil water depletion reducing evaporative cooling. In common with many LUE models, the P model does not take account of soil moisture effects, except as manifested through changes in fAPAR. Existing remotely sensed measures of soil moisture [29] are unable to give information about the moisture content of deeper soil layers that can be essential for plant function.



The incremental predictive power of soil moisture estimates for GPP, when VPD values are available, is open to question [30]. Indeed, in the field and on relatively moist soils, soil moisture content has little or no effect on LUE. Analysis of flux-based GPP measurements at the sites considered by Wang et al. [14], including a number of sites with pronounced dry seasons, confirmed that there is no universal decline of LUE with decreasing soil moisture, the implication being that any drought-induced reduction of GPP is already largely accounted for through the response of fAPAR. Changes in vegetation function, however, may not always be accompanied by changes in the state or extent of the foliage. A number of studies have reported the inability of remote sensing products to accurately capture drought effects on productivity. Vicca et al. [31] compared the performance of a suite of 11 satellite-based products (including fAPAR and prevalent greenness indices) in predicting GPP for a decadal timeseries (ca. 2000–2012) at four European sites (a mix of forests and grassland) and reported contrasting results—no single product proved capable of capturing each drought event at each site. Independent of leaf cover, some ecosystems (for example, tropical savannas and Mediterranean-type forests) regularly show reduced LUE during part or all of the dry season [32]. Moreover, extreme droughts to which ecosystems are not well adapted are expected to suppress LUE via a combination of reduced Ci and (under the most severe drying) reduced carboxylation capacity, as has been observed in drying-down experiments [33]. Therefore, in common with other operational products, the P model, when driven by air temperature, is likely to overestimate dry-season GPP in some ecosystems, and to underestimate the negative effect of extreme droughts on GPP [34]. When, however, air temperature is replaced with LST as a driver, the P model should implicitly take some account of the effect of drought-induced stomatal closure on transpiration and on GPP.



Exploiting the natural experiment provided by the European drought of 2018, this study aimed to evaluate the performance of the P model in simulating spatial and seasonal variability of GPP for a variety of ecosystems. We hypothesised that agreement with flux-derived GPP estimates would be stronger for simulations forced with LST versus gridded meteorological air temperature and superior performance would be most evident in dry summers.




2. Materials and Methods


2.1. Validation Data


The validation dataset was drawn from the Integrated Carbon Observation System (ICOS) measurement sites situated across Europe. ICOS eddy-covariance flux data are processed and audited consistent with the pipeline methodology developed within the FLUXNET network [4]. For this study, in order to match compatible satellite-derived data available only post 2016 (Sentinel3), we elected to focus on the years 2018 and 2019 employing the ‘Warm Winter 2020’ dataset, first release. A total of 69 sites were considered. Data exploration steps (e.g., screening for gaps of greater than two months) reduced the final dataset to 64 sites (Table A1, Figure A1, Appendix A). Vegetation categories follow the IGBP land cover classification: evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), mixed forest (MF), closed shrublands (CSH), open shrublands (OSH), savannahs (SAV), grasslands (GRA), permanent wetlands (WET) and croplands (CRO).



Daily GPP data (gC m−2 d−1) were based on the day-time flux decomposition method and the filtering based on a variable friction velocity threshold (GPP_DT_VUT_USTAR50). We retained only those days for which less than 20% of the underlying half-hourly meteorological and flux data were gap-filled. Our analysis is based on ten-day averages. This was the preferred timescale as voted in a user survey and mirrors the commonly adopted timestep for remote sensing products such as the Copernicus Land Monitoring Service.




2.2. Drought Index


In order to identify those periods when sites were experiencing drought conditions, we employed the Standardized Evapotranspiration–Precipitation Index (SPEI), a commonly used indicator of drought [35,36]. SPEI values were generated for each site using a three-decade time series (1989–2021 inclusive) of climatic water balance (precipitation minus potential evapotranspiration, European Centre for Medium-range Weather Forecasts (ECMWF)) via the R package ‘SPEI’ [37]. Unusually dry conditions, for a given site, were characterised as those time points with SPEI less than −1.5 [31].




2.3. Driving Variables for the P Model Simulations


GPP simulations were generated using the P-model and implemented via the R package ‘rpmodel’ [15,38]. Here, we used a formulation of the P-model that does not account for soil moisture stress, but with an updated formulation for the temperature sensitivity of quantum yield in C4 plants (see below).



Solar radiation and vapour pressure data were obtained from the ECMWF high-resolution forecast model. These data (available in 0.25° grid cells) are operational forecasts for the next 24 h obtained via the MeteoGroup operational forecast system: (https://www.ecmwf.int/en/forecasts/datasets/set-i, accessed on 11 May 2021). IPAR data were derived from global radiation and converted to PPFD using the conversion factor 2.04 μmol J−1 [39]. The vapour pressure deficit was calculated from vapour pressure and air temperature following Allen et al. [40].



Daily temperature data were obtained from (a) gridded ECMWF meteorological data as described above (Tair, °C); and (b) from remotely sensed LST using daily level 3C Sentinel-3A SLSTR [41] obtained via the ESA project Land Surface Temperature Climate Change Initiative (https://climate.esa.int/en/projects/land-surface-temperature/about/, accessed on 7 July 2021). Pre-processing of these LST data involved cloud/confidence masking, separating day- and night-time overpasses, and interpolation using a cubic smoothing spline (function smooth.spline () with parameter spar = 0.01 in R) to provide ten-day averages based on the daytime overpass (typically mid-morning ca 10:00).



fAPAR data were obtained from the operational Sentinel-3 ESA Full Resolution OLCI product (OL_2_LFR, https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/product-types/level-2-land, accessed on 12 May 2021). The OGVI (OLCI Global Vegetation Index) and “OGVI_err” band contain respectively the instantaneous green fAPAR and associated product uncertainties. Pre-processing implemented the associated LQSF layer (classification, quality, and science flags) to remove clouds and cloud shadows. The remaining data were further smoothed, and gap-filled, with a Gaussian process regression (https://scikit-learn.org/stable/modules/gaussian_process.html, accessed on 13 May 2021) algorithm, that allows the propagation of the initial data uncertainties to the gap-filled time series. The resulting output series were mapped to a 10-day interval.



Annual values of the CO2 mole fraction were obtained from the monitoring station at Mauna Loa, Hawaii (Scripps Institution CO2 monitoring network: http://scrippsco2.ucsd.edu/data/atmospheric_co2/mlo, accessed on 1 September 2021) and converted to partial pressure units for input to the P model.




2.4. C3 versus C4 Photosynthesis


The FvCB model relates to the predominant C3 photosynthetic pathway. C4 plants, including important crop species present in our dataset, employ a CO2-concentrating mechanism that calls for different formulations. The approach adopted here for modelling C4 photosynthesis follows Cai and Prentice [16] by removing the CO2 limitation term and applying a modified (lower) intrinsic quantum yield. Individual sites were classified as C3 or C4 dominated based on the predominant vegetation type as described in the available ICOS metadata. This included cases, for a number of sites, where crops with different photosynthetic pathways were grown in 2018 versus 2019 (Table A1).





3. Results


We found a strong, overall correlation between the Tair and LST estimates (r = 0.81), but there was marked variation among the different vegetation classes (Figure 1). There was a general tendency for air temperature to underestimate remotely sensed LST and this was especially pronounced for non-forest sites.



Overall, the P-model simulations of GPP showed good agreement with the eddy-covariance values (Figure 2). There was, however, a general finding (indicated by the bias and slope metrics in Figure 2) that the simulations tended to underestimate the GPP data. Simulations forced with remotely sensed LST did not consistently perform better than the Tair predictions.



A more nuanced pattern emerged, however, when relative performance was compared across vegetation categories (Figure 3). For ENF sites, the largest category in the dataset (Table A1), the two simulations were virtually indistinguishable even under drought conditions. However, for certain classes (e.g., DBF) the LST simulations performed better than Tair; and that advantage was enhanced in dry periods. Model performance was somewhat weaker (higher RMSE) during periods of drought.



Time-series plots allowed us to investigate seasonal variation in model performance for individual sites; Figure 4 provides examples for contrasting vegetation classes including: Norunda in Sweden, a region where the effects of the 2018 drought were especially marked [27]; and Hesse in France, the primary site analysed in the Vicca et al. [31] study of the 2003 European drought. The P-model simulations reproduced the eddy-covariance patterns realistically, but at certain sites (e.g., Hesse in France, Figure 4) the predictions over-estimated productivity in spring. The pronounced drought of the summer of 2018 was not evident at all sites (e.g., Font-Blanche in southern France, Figure 4) and there was little evidence that productivity was markedly lower in 2018 compared to 2019. In aggregate, our analysis suggests that simulations forced with LST performed better than Tair equivalents for certain sites and vegetation categories—especially sparsely vegetated categories (e.g., shrublands and savannas, Figure 3). However, the predictions, even forced with LST, do not fully capture the observed effects of drought on productivity—notice the gap between eddy covariance estimates and simulations at Font-Blanche during summer 2019 (Figure 4).




4. Discussion


We found partial (site- and vegetation-dependent) support for our hypothesis that remotely sensed LST would allow better simulations of GPP than adopting equivalent measures of Tair. For certain categories, notably ENF, there was little to choose—even in high latitude sites where indicators of the 2018 drought were most pronounced [27]. The model performance presented here (Figure 2) compares favourably with GPP predictions reported in recent remote sensing evaluations. Using a validation dataset that partially overlaps with our own, Pablo-Moreno et al. [42] used Sentinel-2 data to predict daily GPP and achieved best results (r2 = 0.71) with an iterative machine learning technique that selected a model with 11 variables made up of spectral bands, red-edge and near-infrared vegetation indices. In a study of seven US sites, each representing a separate biome, Zhang et al. [43] exploited the greater temporal resolution and smoother spatial distribution offered by the Ocean and Land Colour Instrument aboard Sentinel-3 to generate GPP simulations for comparison with flux tower estimates: r2 coefficients ranged from 0.76 for a deciduous broadleaf forest to 0.45 for a grassland.



4.1. LST versus Tair


Even though there was evidence within our dataset that ten-day averages of daytime LST > Tair for most sites and PFTs, the implications for the GPP simulations were muted. This is perhaps not surprising because temperature is not the sole, or even principal, driver of variation in LUE. VPD influences LUE because of the universal response of stomata [44]—which progressively close to restrict transpiration, and hence photosynthesis, as VPD increases. As a consequence, VPD imposes important limitations on GPP [45]. Inductive multivariate modelling (avoiding a priori assumptions) applied to a daytime dataset for a forest in Germany [46] found the most important non-radiative drivers of variation in NEE to be VPD, Tair and wind direction—soil water content ranked in the lowest category for explanatory power. That same ranking of effects (VPD > Temperature > Soil moisture) has found support in recent modelling experiments [47].



Just as light conditions at the crown are not representative of conditions lower down the canopy, so with temperature. Temperature deltas are influenced by height [48]. If we are right to assume that remotely sensed LST can mimic the temperature of the leaf canopy, then we might expect the advantages of adopting LST rather than Tair to be most pronounced where the leaf area index is low (but not less than 1, see below). Our findings lend support to that expectation.



Daytime overpasses, typically mid-morning for these European sites, may not accurately reflect average conditions over the course of the daylight hours. On the other hand, many studies have reported a midday depression of photosynthetic activity [45] and so an overpass in mid-morning may often coincide with optimal conditions for photosynthesis. Might model performance be improved if we adopted a daytime average of LST rather than a single snapshot (as here)? Currently, Sentinel3 provides two overpasses in the diurnal cycle: day and night. An averaging methodology is required that will account for daylight hours as influenced by season and latitude. Early attempts (not presented here) proved unsatisfactory and must be developed further. Utilising a suite of different sensors including the Advanced Very High-Resolution Radiometer (offering increased temporal resolution and shorter revisit intervals) could help to resolve the diurnal cycle.




4.2. Possible Data Imprecisions


How can we explain the finding, at certain sites, of early season bias (GPP simulations > eddy-covariance values)? Time lags may occur between changes in greenness detected by spectral vegetation indices and photosynthetic activity [49]. For temperate deciduous species this decoupling might arise early or late in the growing season. An observed lag in GPP behind LAI during leaf emergence can be attributed to sustained investment in photosynthetic capacity beyond foliation [50]. It is also possible that these deltas arose, in part at least, from fAPAR values inflated by neighbouring vegetation not incorporated in the flux-tower’s footprint. In a study of 21 FLUXNET sites, Balzarolo et al. [51] found that the strength of the correlation between in situ and remotely sensed values of a prevalent vegetation index decreased with decreasing spatial resolution (i.e., correlations were stronger for single than for multi-pixel aggregations). The footprint of the tower (on a given day) may not correspond accurately to the pixel(s) used to generate the remotely sensed forcing variables (here, greenness and temperature) [6]. A review of high-resolution images (GoogleEarth), 1 km2 centred on the flux-tower, suggested that around 20 of our sites might be classified as ‘heterogeneous’ (e.g., the sites are in close proximity to agriculture or human habitation, Table A1). A model validation exercise limited to that subset of sites classified as ‘homogeneous’ did not, however, provide marked improvement over the full dataset (r = 0.84 homogeneous sites, Figure A2; r = 0.83 all sites, Figure 2).




4.3. The 2018 Drought


Our measure of drought, SPEI, by focusing on climatic water balance largely ignores soil conditions. Our P-model simulations, likewise, have no explicit soil moisture term. How important might that omission be for our results? For a Mediterranean evergreen broadleaf forest, Liu et al. [52] found consistent anomalies when comparing eddy covariance GPP estimates with simulations generated by a remote sensing product (MODIS17A); those discrepancies were most pronounced during summer months of the ten-year study. The authors found that relative water content, a measure of soil water limitation, could explain ca. 75% of the GPP anomalies. Soil moisture and VPD effects can, however, be challenging to separate because low soil moisture is often accompanied by high VPD [53]. After controlling for covariation in greenness, VPD and other factors Stocker et al. (2019) concluded that soil moisture deficits were a globally important constraint on GPP inducing a global reduction of ca. 15% and amplifying the effects of extreme weather events. By contrast, Fu et al. [30], also studying the European drought of 2018, found that when soils are wet, moderate drying could have a positive effect on GPP; and that the relative importance, for GPP, of VPD and soil moisture depends on the prevailing soil water conditions, with soil moisture dominating in the driest soils.



It therefore seems likely that even if canopy temperatures are based on LST (or alternatively, for climate modelling applications, calculated using the canopy energy balance), it will be necessary to formulate responses of stomatal behaviour and photosynthetic capacity to low levels of soil moisture.




4.4. Next Steps for the Application of LST


Sparsely vegetated pixels present particular challenges for remote-sensing approaches to estimating leaf temperature because the LST values may represent a combination of bare ground as well as foliage. Sims et al. [54] evaluated a GPP model driven only by the MODIS Enhanced Vegetation Index and LST at 11 flux sites in North America and found strong correlations between eddy-covariance and modelled 16-day estimates of GPP for selected forest sites, but not for a drought-prone, shrubland site. Work is underway, supported by the spatial detail offered by high resolution satellites [55], to assess whether the Sentinel-3 LST pixel values can be usefully disaggregated to distinguish vegetation and bare ground components.





5. Conclusions


For this European dataset, incorporating a major drought event, we found good agreement between estimates of GPP inferred from eddy-covariance measurements and simulations generated using the P-model. We found that model error was higher under drought conditions as characterised by a standardised climatic index. For sparsely vegetated sites, simulations forced with land surface temperature did perform better than those forced with air temperature during periods of drought. However, our simulations, even driven by available LST estimates, do not yet reproduce the observed effects of drought on productivity.



The P-model is under continual development. There are proposals for improved formulations of the effects of temperature and soil moisture, and consideration of the role of the diffuse radiation fraction. However, the guiding principle remains seeking simplicity and generality, rather than adding complexity. Assessed against global GPP data and evaluated in terms of functional relationships of GPP to key environmental drivers, the model already performs well in comparison to considerably more complex models [47], thus offering the initial basis for a well-founded, parameter-sparse global monitoring system for GPP.
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Table A1. Site details: longitude (negative values are west of the prime meridian); latitude (north as positive); site elevation (m above sea level); vegetation categories follow the IGBP land cover classification: evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), mixed forest (MF), closed shrublands (CSH), open shrublands (OSH), savannahs (SAV), grasslands (GRA), permanent wetlands (WET) and croplands (CRO). spatial heterogeneity assessment (homogeneous versus heterogeneous).






Table A1. Site details: longitude (negative values are west of the prime meridian); latitude (north as positive); site elevation (m above sea level); vegetation categories follow the IGBP land cover classification: evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), mixed forest (MF), closed shrublands (CSH), open shrublands (OSH), savannahs (SAV), grasslands (GRA), permanent wetlands (WET) and croplands (CRO). spatial heterogeneity assessment (homogeneous versus heterogeneous).





	Code
	Sitename
	Lat
	Lon
	Elevation (masl)
	IGBP Code
	Metabolism
	Homogeneity





	BE-Bra
	Brasschaat
	51.308
	4.520
	30
	MF
	C3
	Homo



	BE-Dor
	Dorinne
	50.312
	4.968
	248
	GRA
	C3
	Hetero



	BE-Lon
	Lonzee
	50.552
	4.746
	169
	CRO
	C3
	Homo



	BE-Maa
	Maasmechelen
	50.980
	5.632
	86
	CSH
	C3
	Homo



	BE-Vie
	Vielsalm
	50.305
	5.998
	495
	MF
	C3
	Homo



	CH-Aws
	Alp Weissenstein
	46.583
	9.790
	1969
	GRA
	C3
	Hetero



	CH-Cha
	Chamau
	47.210
	8.410
	391
	GRA
	C3
	Hetero



	CH-Dav
	Davos
	46.815
	9.856
	1652
	ENF
	C3
	Hetero



	CH-Fru
	Früebüel
	47.116
	8.538
	980
	GRA
	C3
	Hetero



	CH-Lae
	Laegern
	47.478
	8.364
	685
	MF
	C3
	Homo



	CH-Oe2
	Oensingen crop
	47.286
	7.734
	452
	CRO
	C3
	Hetero



	CZ-BK1
	Bily Kriz forest
	49.502
	18.537
	876
	ENF
	C3
	Homo



	CZ-Lnz
	Lanzhot
	48.682
	16.946
	181
	MF
	C3
	Homo



	CZ-RAJ
	Rajec
	49.444
	16.697
	653
	ENF
	C3
	Homo



	CZ-Stn
	Stitna
	49.036
	17.970
	580
	DBF
	C3
	Homo



	CZ-wet
	Trebon (CZECHWET)
	49.025
	14.770
	426
	WET
	C3
	Hetero



	DE-Akm
	Anklam
	53.866
	13.683
	-
	WET
	C3
	Hetero



	DE-Geb
	Gebesee
	51.100
	10.915
	161
	CRO
	C3
	Homo



	DE-Gri
	Grillenburg
	50.950
	13.513
	377
	GRA
	C3
	Hetero



	DE-Hai
	Hainich
	51.079
	10.453
	467
	DBF
	C3
	Homo



	DE-HoH
	Hohes Holz
	52.085
	11.219
	220
	DBF
	C3
	Hetero



	DE-Hte
	Huetelmoor
	54.210
	12.176
	2
	WET
	C3
	Homo



	DE-Hzd
	Hetzdorf
	50.964
	13.490
	385
	DBF
	C3
	Hetero



	DE-Kli
	Klingenberg
	50.893
	13.522
	481
	CRO
	Rotation: C3 2018, C4 2019
	Homo



	DE-Obe
	Oberbärenburg
	50.787
	13.721
	755
	ENF
	C3
	Homo



	DE-RuR
	Rollesbroich
	50.622
	6.304
	515
	GRA
	C3
	Hetero



	DE-RuS
	Selhausen Juelich
	50.866
	6.447
	103
	CRO
	C3
	Homo



	DE-RuW
	Wustebach
	50.505
	6.331
	624
	ENF
	C3
	Homo



	DE-Tha
	Tharandt
	50.963
	13.565
	403
	ENF
	C3
	Homo



	DK-Sor
	Soroe
	55.486
	11.645
	52
	DBF
	C3
	Hetero



	ES-Abr
	Albuera
	38.702
	−6.786
	280
	SAV
	C3
	Homo



	ES-Agu
	Aguamarga
	36.940
	−2.033
	203
	OSH
	C3
	Hetero



	ES-LM1
	Majadas del Tietar North
	39.943
	−5.779
	264
	SAV
	C3
	Homo



	ES-LM2
	Majadas del Tietar South
	39.935
	−5.776
	269
	SAV
	C3
	Homo



	FI-Hyy
	Hyytiala
	61.847
	24.295
	190
	ENF
	C3
	Homo



	FI-Let
	Lettosuo
	60.642
	23.960
	124
	ENF
	C3
	Homo



	FI-Sii
	Siikaneva
	61.833
	24.193
	166
	WET
	C3
	Hetero



	FI-Var
	Varrio
	67.755
	29.610
	395
	ENF
	C3
	Homo



	FR-Aur
	Aurade
	43.550
	1.106
	244
	CRO
	C3
	Homo



	FR-Bil
	Bilos
	44.494
	−0.956
	39
	ENF
	C3
	Hetero



	FR-EM2
	Estrees-Mons A28
	49.872
	3.021
	85
	CRO
	C3
	Homo



	FR-FBn
	Font-Blanche
	43.241
	5.679
	434
	MF
	C3
	Homo



	FR-Fon
	Fontainebleau-Barbeau
	48.476
	2.780
	112
	DBF
	C3
	Homo



	FR-Gri
	Grignon
	48.844
	1.952
	123
	CRO
	C4
	Homo



	FR-Hes
	Hesse
	48.674
	7.065
	323
	DBF
	C3
	Homo



	FR-Lam
	Lamasquere
	43.496
	1.238
	179
	CRO
	Rotation: C3 2018, C4 2019
	Hetero



	FR-LGt
	La Guette
	47.323
	2.284
	157
	WET
	C3
	Hetero



	FR-Mej
	Mejusseaume
	48.118
	−1.796
	39
	GRA
	C4
	Homo



	IT-BFt
	Bosco Fontana
	45.198
	10.742
	42
	DBF
	C3
	Homo



	IT-BCi
	Borgo Cioffi
	40.524
	14.957
	9
	CRO
	C4
	Hetero



	IT-Lav
	Lavarone
	45.956
	11.281
	1371
	ENF
	C3
	Homo



	IT-Lsn
	Lison
	45.740
	12.750
	-
	OSH
	C3
	Hetero



	IT-MBo
	Monte Bondone
	46.015
	11.046
	1557
	GRA
	C3
	Homo



	IT-SR2
	San Rossore 2
	43.732
	10.291
	10
	ENF
	C3
	Homo



	IT-Tor
	Torgnon
	45.844
	7.578
	2158
	GRA
	C3
	Hetero



	NL-Loo
	Loobos
	52.167
	5.744
	37
	ENF
	C3
	Homo



	RU-Fy2
	Fyodorovskoye, dry spruce stand
	56.448
	32.902
	275
	ENF
	C3
	Homo



	RU-Fyo
	Fyodorovskoye
	56.462
	32.922
	278
	ENF
	C3
	Homo



	SE-Deg
	Degero
	64.182
	19.557
	266
	WET
	C3
	Homo



	SE-Htm
	Hyltemossa
	56.098
	13.419
	123
	ENF
	C3
	Homo



	SE-Lnn
	Lanna
	58.341
	13.102
	71
	CRO
	C3
	Homo



	SE-Nor
	Norunda
	60.086
	17.480
	89
	ENF
	C3
	Homo



	SE-Ros
	Rosinedal-3
	64.173
	19.738
	168
	ENF
	C3
	Homo



	SE-Svb
	Svartberget
	64.256
	19.775
	277
	ENF
	C3
	Homo
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Figure A1. Map of participating sites—locations are indicated (blue dots). 
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Figure A2. Model validation, GPP simulations versus eddy-covariance estimates; companion to Figure 2 (main text), but restricted to those sites deemed to show spatial homogeneity of vegetation cover. Forcing temperature is Sentinel3 LST. The intensity of the colours (heat-map) is designed to indicate the density of points. Each point is a ten-day average. The dashed-grey line shows the ideal fit. 
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Figure 1. Scatterplots comparing ECMWF gridded air temperatures with Sentinel3 daytime LST estimates; organised by vegetation class: evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), mixed forest (MF), closed shrublands (CSH), open shrublands (OSH), savannahs (SAV), grasslands (GRA), permanent wetlands (WET) and croplands (CRO). The dashed red line shows the ideal fit. Each point is a ten-day average. 
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Figure 2. Goodness of fit: GPP simulations versus eddy-covariance estimates. Left panel—forcing temperature is Sentinel3 LST; Right panel—forcing temperature is ECMWF gridded air temperature. The intensity of the colours (heat-map) is designed to indicate the density of points. Each point is a ten-day average. The dashed-grey line shows the ideal fit. 
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Figure 3. Error estimation (GPP simulations versus eddy-covariance) by vegetation class with the number of participating sites indicated. Those periods identified as unusually dry (SPEI < −1.5) are shown in red and contrasted with the full timeseries (all, in blue). Bars relate to simulations driven by S3_LST and dots to ECMWF gridded Tair. 
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Figure 4. Seasonal variation in GPP estimates for selected sites. Inferred (eddy-covariance) values are shown as points: those periods with a site-specific SPEI < −1.5 are indicated in red. GPP simulations are shown as lines: forced with ECMWF gridded air temperature (purple) and forced with Sentinel3 daytime LST (cyan). Notice that the ranges on the y-axes vary between the plots. 
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