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Abstract: Nowadays, there is a clear trend toward increasing the number of remote-sensing images
acquired and their average size. This leads to the need to compress the images for storage, dis-
semination, and transfer over communication lines where lossy compression techniques are more
popular. The images to be compressed or some of their components are often noisy. They must
therefore be compressed taking into account the properties of the noise. Due to the noise filtering
effect obtained during lossy compression of noisy images, an optimal operating point (OOP) may
exist. The OOP is a parameter that controls the compression for which the quality of the compressed
image is closer (closest) to the corresponding noise-free image than the quality of the noisy (original,
uncompressed) image according to some quantitative criterion (metric). In practice, it is important
to know whether the OOP exists for a given image, because if the OOP exists, it is appropriate to
perform the compression in the OOP or at least in its neighborhood. Since the real image is absent
in practice, it is impossible to determine a priori whether the OOP exists or not. Here, we focus on
three-channel-remote-sensing images and show that it is possible to easily predict the existence of the
OOP. Furthermore, it is possible to predict the metric values or their improvements with appropriate
accuracy for practical use. The BPG (better portable graphics) encoder is considered a special case of
an efficient compression technique. As an initial design step, the case of additive white Gaussian
noise with equal variance in the three components is considered. While previous research was mainly
focused on predicting the improvement (reduction) of the PSNR and PSNR-HVS-M metrics, here
we focus on the modern visual quality metrics, namely PSNR-HA and MDSI. We also discuss what
to do if, according to the prediction, an OOP is absent. Examples of lossy compression of noisy
three-channel remote sensing images are given. It is also shown that the use of three-dimensional
compression provides a compression ratio increase by several times compared with component-wise
compression in the OOP.

Keywords: image lossy compression; better portable graphics; optimal operation point; quality
prediction; additive noise

1. Introduction

Many remote-sensing (RS) systems and complexes are used nowadays, and many
projects are in progress. The main reason is that RS systems and complexes can operatively
provide valuable data for ecological monitoring, agriculture, forestry, and other fields [1–4].
An obvious advantage of RS is that it is possible to monitor territories of large areas and
estimate and control their parameters in real time. A better spatial resolution and more
frequent observation of territories are also positive features of RS that make it attractive
and beneficial for modern applications.

Meanwhile, improved spatial resolution, more frequent observations, and the use of
more spectral (or polarization) components in multichannel (multispectral, hyperspectral,
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dual, and full-polarization) RS imaging systems lead to several data processing problems
and managing issues [4,5]. In particular, it becomes necessary to compress RS images where,
in general, lossless and lossy compression approaches are possible [6–8]. An advantage
of lossless compression [6,7] is that it does not introduce any distortions into the RS data.
However, the compression ratio (CR) attained by lossless compression techniques is often
too low and not appropriate. Lossy compression can achieve higher CR values [6,8–11].
Meanwhile, a higher CR results in the introduction of larger distortions. Therefore, a
reasonable compromise needs to be found and proposed [12].

Note that different viewpoints can characterize distortions using different metrics [12–15].
Whilst metrics that are conventional for image processing are still widely used in remote
sensing, such as mean square error (MSE) or peak signal-to-noise ratio (PSNR), other measures
of compressed image quality are also employed. They might be related to an end task of
RS data processing, for example, the probability of correct classification [13–15], which can
even be improved by lossy compression under certain conditions [13,14]. The use of visual
quality metrics is also becoming popular [16,17]. There are two main reasons for this. First,
compressed RS images are often subjected to visual inspection and analysis. Second, the visual
quality metric values correlate quite highly with the accuracy of parameter estimation and the
probability of correct classification for “heterogeneous” classes such as Urban or Forest, which
typically contain textures and abrupt changes. The novelty of this paper is partly related to
our decision to focus on the analysis of visual quality metrics such as the Mean Deviation
Similarity Index (MDSI) [18] and PSNR-HA [19], which are among the best full-reference
visual quality metrics [20] for color and three-channel images. Note that we prefer considering
the visual quality metrics with approximately linear behavior and avoid working with the
metrics of the SSIM-based family (such as MS-SSIM or color version of FSIM) because of
their sufficiently nonlinear properties that create problems in prediction and interpretation of
their results.

One further peculiarity of this paper is that we consider three-channel RS images.
Multichannel imaging is the primary mode of operation for RS sensors today. The term
“multichannel” includes multispectral [1] imaging, joint optical and radar observations [3],
dual and full-polarization radar [21,22], and hyperspectral [23] imaging. Three-channel
images are the simplest cases of such RS data. The tendencies and observations obtained
for these images can be later generalized for images with a larger number of components.
It should be noted that multichannel observation opens up new possibilities for remote
sensing and/or improves the accuracy of parameter estimation, classification, and ob-
ject detection. On the one hand, a larger number of RS image components increases the
need for more efficient RS data compression. On the other hand, CR in this case can be
increased (compared with component-wise compression) using three-dimensional com-
pression of multichannel images that exploits sufficient correlation between component
images [7,11,15].

Many papers discuss lossy compression of RS data under the assumption that images
are free of noise (see, e.g., ref. [9,10,24,25] and references therein). However, this assumption
is not always valid in practice. Let us give some examples of remote sensing when noise
is visible in acquired images and can be intensive. A first example is speckle, which is
always present in synthetic aperture radar images [21,22]. Another example is components
of multispectral and hyperspectral RS data, for which the input PSNR can be of the order
20–30 dB [23]. This can also be the case for so-called night-light images [26], etc. Here, we
are not interested in the origin of the noise. We only assume that there are three or more
components of multichannel RS data for which noise is quite intensive.

The specific features of lossy compression applied to noisy images were discovered
approximately 25 years ago [27–30]. Two features are the most important. First, a noise-
filtering effect occurs due to lossy compression. Second, due to this denoising, an optimal
operation point (OOP) can be observed for some images and noise properties. Here, by
OOP, we mean a parameter that controls the compression (PCC) for a coder used in such
a manner that a minimal “distance” between the compressed and noise-free images is



Remote Sens. 2023, 15, 1669 3 of 24

observed. This distance can be characterized in different ways, starting from traditional
measures such as mean square error (MSE) and peak signal-to-noise ratio (PSNR), and
ending with visual quality metrics such as, e.g., PSNR-HVS-M [31] or FSIM [32]. Note that
the OOP corresponds to a minimum value of the similarity measure if it is low for similar
images, e.g., MSE or MDSI, and vice versa. Moreover, note that different coders apply
different PCCs. For JPEG, the quality factor serves as the PCC [33,34]; wavelet-based coders
are often controlled by BPP (bits per pixel) [35]; discrete cosine transform (DCT)-based
coders are usually controlled by quantization step (QS) [36]; and for the modern better
portable graphics (BPG) coder, a special parameter Q is used as the PCC [37,38].

If an OOP exists for a given image and the coder used, then compression in the OOP
can be beneficial for two reasons. First, the compressed image quality is quite high and,
depending on the metric used, is better than the quality of the original image (or the image
compressed in a lossless manner, or the image compressed with another PCC). Second,
the CR observed for an OOP-compressed image is generally sufficiently high. In addition,
OOP compression can be beneficial for image classification [39]. On the other hand, if OOP
does not exist, a more “conservative” compression is desired [40].

Then, at least two particular tasks have to be solved. First, it is necessary to know how
to set the PCC for a given coder applied to a noisy image to compress this image at the
OOP if it exists. Second, it is necessary to predict whether or not an OOP exists in order to
properly set the PCC in both cases.

Sufficient research has been already performed to answer these questions for single-
component images. In the papers [41,42], it was demonstrated that the OOP can be reached
iteratively [41] or in a single step [42] for DCT-based coders controlled by QS if noise is
additive, white, and Gaussian, and its variance is known a priori. In [43], it was shown that
reaching the OOP is possible for the SPIHT coder under the same conditions. The authors
of [44,45] proved that the OOP can be reached automatically for DCT-based coders for
signal-dependent noise with a priori known characteristics. The case of BPG coder applied
to noisy images has been considered in [40,46]. The case of single-component images has
been studied in depth there. However, for three-channel images, only preliminary analysis
results showing that the OOP can exist were given [40]. Note that the results in [47] show
that the OOP is more likely if multichannel noisy images are jointly compressed compared
with component-wise compression. The possibility of predicting the existence of the OOP
has been demonstrated in [36,40].

Keeping this summary in mind, in this paper, we concentrate on the BPG-based lossy
compression of three-channel images corrupted by additive white Gaussian noise (AWGN)
supposed to have zero mean and equal variances in all components. We show that, as
in [36,40], the presence of the OOP and the compression in this point can be easily predicted
prior to compression based on a calculation of statistical parameters previously used in
image denoising theory [48,49]. The paper novelty consists of the following. First, we show
that 3D compression has clear benefits compared with component-wise compression in the
OOP in the sense of having a CR that is several times larger, and better values of PSNR-HA
and MDSI. Second, the presented results of our studies allow the choice of the best option
among the compression versions 4:4:4, 4:2:2, and 4:2:0, as well as predicting the existence of
the OOP for all three of these versions. Third, we give a modified formula for QOOP for
the 3D case that differs from the one for the single component case. Fourth, the metrics
intended for the characterization of quality for three-channel (color) images are considered
and it is shown that prediction is possible not only for the metrics of PSNR-like family but
for MDSI as well. Finally, our recommendations and conclusions are supported by the
results and statistics for more than 30 images.

The structure of the document is as follows. Section 2 describes the image/noise
model used and it also presents the metrics considered and explains the basic criteria
and dependencies. Section 3 deals with the prediction of the OOP. The methodology for
obtaining the dependencies is given and discussed. Decision-making and some practical
aspects are considered in Section 4. Results of statistical testing for three versions of 3D
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compression and component-wise compression for a set of 20 three-channel images not
used in training (scatter-plot obtaining and regression) are also presented in section. Finally,
the conclusions and directions for future studies are presented.

2. Image/Noise Model and Behavior of Compression Efficiency Criteria

In this paper, we consider the AWGN model for all components of three-channel
images. This is because of several reasons. First, this is the simplest model often used in
the theory and practice of image processing [50,51] and we need a starting point in our
research. Second, if noise is not additive (it is signal-dependent), there are the so-called
variance-stabilizing transforms that allow the conversion of images corrupted by signal-
dependent noise to images corrupted by practically pure additive noise [44,45,52] and this
offers favorable conditions for further lossy compression. Note that there are numerous
methods for blind estimation of noise characteristics of additive and signal-dependent
noise (see [53–55] and references therein). This allows the assumption that we know noise
variance in component images in advance.

Thus, one has the following model of an observed noisy three-channel image

In
ijk = Itrue

ijk + nijk,

where Itrue
ijk , i = 1, . . . , IIm, j = 1, . . . , JIm, k = 1, . . . , 3 is the true or noise-free image in a

k-th component, nijk denotes AWGN in the ij-th pixel of a k-th component, and IIm and JIm
define the image size. The noise mean is assumed to be equal to zero whilst the AWGN
variance is supposed to be equal to σ2 in all components and it is assumed to be known in
advance. The assumption that noise variance is the same in all components is one more
simplification dealing with the possible use of variance-stabilizing transforms.

For the preliminary study, we use four test three-channel images (Figure 1) visualized
as color ones from the USC-SIPI image database—Aerials (https://sipi.usc.edu/database/
database.php?volume=aerials (accessed on 15 March 2023)). Our goal is to study pecu-
liarities of rate/distortion dependencies for images of different complexities where we
consider that the image Frisco (Figure 1a) is of simple structure, the image Earth (Figure 1c)
is of middle complexity, and the images Diego and Diego 2 (Figure 1b,d, respectively) are
complex ones since they contain many small objects (details) and textures.

A standard way to characterize the quality of the original noisy image is to use

PSNRn = 10log10

(
2552

σ2

)
, (1)

that relates to the case of equal variance values in all components where images in all
components are represented as 8-bit two-dimensional (2D) arrays of integers.

In turn, a standard way to obtain and analyze rate/distortion curves is to calculate
a metric between the original (in our case, noisy) and compressed images for a set of
PCC values. Thus, we have to give brief information concerning the BPG coder. First,
we have used the coder realization freely available at http://bellard.org/bpg/ (accessed
on 15 March 2023). The reasons for our interest in this coder are explained by its advan-
tages. BPG provides a higher compression rate with the same quality compared with the
commonly used analogs (e.g., JPEG).

Second, BPG is supported by the most popular Web browsers. Third, BPG supports
the same formats as JPEG, including grayscale, YCbCr 4:2:0, 4:2:2, and 4:4:4. Color spaces
such as RGB, YCgCo, and CMYK are supported. We have not found papers and examples
dealing with the use of the BPG coder in remote sensing. However, we have found
discussions concerning this in https://lwn.net/Articles/625535/ (accessed on 15 March
2023) as well as examples of successful application of the BPG coder in medical image
compression [38].

https://sipi.usc.edu/database/database.php?volume=aerials
https://sipi.usc.edu/database/database.php?volume=aerials
http://bellard.org/bpg/
https://lwn.net/Articles/625535/
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We would like to pay special attention to the formats 4:2:0, 4:2:2, and 4:4:4 where the
first and second formats relate to color component subsampling. On the one hand, their
use allows to partly solve the near-lossless compression task.
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On the other hand, subsampling of color component images leads to introducing addi-
tional and specific distortions that have to be studied with application to lossy compression
of noisy three-channel images.

Thus, let us look at the dependencies of PSNRnc on Q where the notation PSNRnc is
calculated between the original and compressed images and Q serves as PCC for the BPG
encoder (Q are integers from 1 to 51 where smaller values correspond to a smaller CR).

As is typical for lossy compression, the quality of compressed images becomes worse
if the CR increases. This is seen in Figure 2 where we present the plots PSNRnc(Q) for all
three possible formats of noisy image representation (σ2 = 49). For all formats and for
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all test images, the considered rate/distortion curves monotonously decrease. However,
there are significant differences in their behavior depending on the compressed image
format. For the format 4:4:4 (Figure 2a), one can observe three obvious intervals of different
behavior. If Q < 7, PSNRnc(Q) ≈ 53 dB, i.e., losses introduced by compression are negligible
and one is unable to notice the differences between the original and the corresponding
compressed images. Then, for 7 ≤ Q ≤ Qupp, there is practically a linear dependence that
can be approximated as PSNRnc(Q) ≈ 60 − Q where Qupp approximately corresponds to
input PSNR defined by (1) (approximately 31.3 dB for the considered case of σ2 = 49). For
the two aforementioned intervals, the rate/distortion curves for different images practically
coincide. For the third interval, Q > Qupp, the curves continue to decrease although the
decrease is slower for the images with simpler structures (Frisco and Earth).
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Here, it is worth recalling some properties of the metric PSNR. Although it is not the
best metric for characterizing the visual quality of images [56,57], it is possible to state [57]
that distortions start to become visible if PSNR is approximately 35 dB. This means that
compression with Q ≤ 25 does not lead to visible distortions. For larger Q, distortions are
associated both with simultaneous noise suppression and information degradation, and a
more careful analysis is needed.

One peculiarity of dependencies PSNRnc(Q) for the formats 4:2:2 (Figure 2b) and 4:2:0
(Figure 2c) is that they behave individually. They start (Q = 1) from PSNRnc at approximately
34 dB (Figure 2b) and 32.5 dB (Figure 2c). This means that the images already sufficiently
differ from the original ones after subsampling. For Q < 15, the quality of compressed
images remains practically the same as for Q = 1. Then, for a larger Q, there is an obvious
tendency to have a larger difference between an original and the corresponding compressed
images. A comparison of the corresponding curves in Figure 2b,c shows that PSNRnc values
for the format 4:2:2 are slightly larger for a small Q.

The dependencies PSNRnc(Q) do not show what happens to the noise if lossy compres-
sion is applied to noisy images. Because of this, dependencies PSNRtc(Q) and Metrtc(Q) are
often considered where subscript tc indicates that a full-reference metric (Metr) is calculated
between the compressed and the corresponding true (noise-free) images. Certainly, this is
impossible in practice when one has a noisy image to be compressed and any noise-free
image is absent. However, this is possible in the analysis of simulated data when one
has a noise-free image, adds noise to it, and then applies compression with several PCC
values [36,40–46]. Such analysis is beneficial since it allows an understanding of how the
properties of compressed images change with changes to the PCC values.

As an example of such dependencies, Figure 3 presents the plots PSNRtc(Q) for all
three considered formats. As it is seen, the plots for simple and middle complexity images
Frisco and Earth have obvious maxima (optimal operation points) observed for QOOP = 30.
In turn, the plots for the complex structure images Diego and Diego 2 either do not have
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obvious maxima or are monotonously decreasing. This example shows that it is worth
compressing simple structure images in OOP whilst for complex structure images it is
not clear what to do. At the moment, it seems that it is worth using a Qrec smaller than
the QOOP to avoid considerable distortions. The examples provided also explain why it is
reasonable to predict if OOP exists for a given image and noise variance.
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Although dependencies for the same image but different formats seem similar, there
are some differences. The main difference is that PSNRtc in the OOP for simple structure
images is usually the largest for the format 4:4:4 (Figure 3a). Moreover, whilst PSNRtc is the
same for all test images for the format 4:4:4 for small Q, it is different for various images for
the formats 4:2:2 and 4:2:0 (Figure 3b,c).

For the considered case of σ2 = 49, we have QOOP = 30. A thorough analysis has
been carried out in [58] for the metrics PSNR-HVS-M [57] and MSSIM [59] for σ2 = 100,
and it has been demonstrated that the OOP (if it exists) takes place at QOOP = 32 or 33.
Additional analysis has been carried out in our paper [60] for the visual quality metrics
PSNR-HA [20] and MDSI [19] for σ2 = 100. It has been shown again that there are images
for which the OOP exists (according to the aforementioned metrics) and this occurred at
QOOP = 33. Figure 4 shows the plots for the metric MDSI [19] for two other values of noise
variance—σ2 = 64 and σ2 = 196 (here it is worth recalling that for the metric MDSI, in
contrast to other visual quality metrics, smaller values correspond to better visual quality).
Analysis shows that obvious local minima are observed for simple structure images. For
σ2 = 196, a “non-obvious” minimum exists even for the complex structure image Diego 2.
For σ2 = 64, one has QOOP = 31 (Figure 4a) whilst, for σ2 = 196, the OOP is observed at
QOOP = 36.

The presented results, as well as analysis of other data obtained during our experi-
ments, show several important tendencies. First, for a given noise variance, QOOP (if OOP
exists) is practically the same for different metrics and different images. The same was
observed for lossy compression of grayscale images corrupted by AWGN [40]. However,
for three-channel images, QOOP is slightly smaller than QOOP for grayscale (single-channel)
images for the same variance of AWGN. In [40], it has been found for grayscale images that

QOOP ≈ 14.9 + 20log10(σ) (2)

Meanwhile, in [60], for three-channel data, it is recommended to determine Q for the
OOP as (see the data in Figures 3 and 4 for confirmation)

QOOP ≈ 12.9 + 20log10(σ). (3)

The reason for this is the following: in the case of three-channel images, they are first
converted to YCbCr color format and then the BPG compression is applied component-wise
(decompression performs in inverse order). Such a conversion (https://en.wikipedia.org/

https://en.wikipedia.org/wiki/YCbCr
https://en.wikipedia.org/wiki/YCbCr
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wiki/YCbCr (accessed on 15 March 2023)) changes noise variance and reduces the range
of image data representation. In particular, noise variances in component images become
σ2

Y ≈ 0.45σ2, σ2
Cb ≈ 0.39σ2, and σ2

Cr ≈ 0.43σ2, i.e., smaller than in RGB components. Thus,
optimal Q should be smaller as well.
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4:4:4.

Second, due to the Formula (3) introduced above, it becomes possible to determine
QOOP (here it does not matter whether OOP exists or not). Then, our task is to obtain some
information concerning the considered quality metric for Q = QOOP that will allow deciding
if OOP exists or not, and what Q to set.

3. Prediction of OOP Existence and Parameters in It

We state that the existence of the OOP can be predicted. Our confidence is based on
earlier-obtained results and experience [36,40]. The main difference between the results
given below compared with the results in [36,40] is that we consider three-channel images
and the visual quality metrics PSNR-HA [20] and MDSI [19], which were not analyzed
with application to lossy image compression earlier.

Recall here some basic ideas of the papers [36,40]. First, it is assumed that it is possible
to somehow predict or estimate the difference ∆Metr = Metrtc(QOOP)− Metrtc(Q = 1)
where Metrtc(QOOP) is the considered metric in QOOP calculated according to (3). Suppose
that if a given metric is larger for better quality (as PSNR-HA in our case), then ∆Metr > 0
is the evidence in favor of the existence of the OOP. Similarly, if a given metric is smaller
for better quality (as MDSI in our case), then the OOP exists if ∆Metr < 0. Thus, in fact, we
should know the sign of ∆Metr to understand if the OOP exists or not.

Second, the prediction is based on a simple procedure. Two statistical parameters, P2σ
and P2.7σ, have been used in prediction [36,40]. They are both calculated in a limited set of
M 8 × 8 pixel blocks in the DCT domain. In further detail, P2σ is determined as

P2σ =
M
∑

m=1

P2σ(m)
M , P2σ(m) = (∑7

k=0 ∑7
l=0 δ(k, l, m))/64,

δ(k, l, m) = 1, i f |D(k, l, m)| < 2σ
0 otherwise,

(4)

where D(k, l, m) is the kl-th DCT coefficient for the m-th block. Thus, P2σ is the probability

https://en.wikipedia.org/wiki/YCbCr
https://en.wikipedia.org/wiki/YCbCr
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that modulus values of DCT coefficients are smaller than 2σ. P2.7σ is determined as

P2.7σ =
M
∑

m=1

P2.7σ(m)
M , P2.7σ(m) = ((∑7

k=0 ∑7
l=0 δ(k, l, m))−1)/63,

δ(k, l, m) = 1, i f |D(k, l, m)| > 2.7σ
0 otherwise.

(5)

The Formulas (4) and (5) correspond to the grayscale image case. For the considered
three-channel case, probabilities P2σ and P2.7σ have been separately estimated for the
original three (R, G, and B) components and then averaged.

Third, it has been assumed that ∆PSNR− HA or ∆MDSI, i.e., predictor outputs, are
strictly connected with input parameters, P2σ or P2.7σ. If such an assumption is valid, then,
for a given noisy image (with a known noise standard deviation σ) to be compressed,
one calculates P2σ or P2.7σ and, using the a priori known dependency (function), predicts
∆PSNR− HA or ∆MDSI or another reliable metric.

Questions that naturally arise are: What is the dependence between input and output
parameters? How can it be obtained, and how strict is it? The papers [36,40] already
provide possible answers and solutions. Regression using scatter-plots allows the finding
of dependencies between output and input parameters whilst parameters characterizing
curve fitting as goodness-of-the-fit R2, adjusted R2, or root mean square error (RMSE) [61]
serve as standard indicators of dependency strictness.

This general information requires examples and additional explanations. Let us start
by establishing a dependency between ∆PSNR− HA and P2σ or P2.7σ for the format 4:4:4.
The scatter-plots are obtained once and in advance (meaning that this work is done off-line
and the dependency between output and input parameters is available at the time that
the prediction has to be carried out for a given image). The scatterplots are represented in
Figure 5. Each point of the scatterplot corresponds to one test image corrupted by AWGN
with a given noise standard deviation. Then, the input parameter is estimated and the
image is compressed using QOOP defined by (3). After decompression, ∆Metr is calculated.
In all of the scatterplots, the vertical axis corresponds to the output parameter and the
horizontal axis relates to the input parameter. Test images of different complexity are used,
and the noise variance varies from 0.25 to 400.
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Figure 5. The scatter-plots ∆PSNR− HA vs. P2σ (a) and vs. P2.7σ (b) and the fitted curves (format
4:4:4).

Before analyzing the data in Figure 5, one must know the following. Small P2σ and
large P2.7σ correspond to complex structure images and/or small variance values. PSNR-
HA is expressed in dB and its variation by 0.5–1 dB can be observed by visual inspection.

Analysis of the scatterplots in Figure 5 allows the making of the main conclusion—
scatterplot points are placed in a compact manner and a good curve fitting is possible.
Thus, an accurate prediction is possible for both input parameters (quantitative data are
given below). There are situations when ∆PSNR − HA is negative and its values are
approximately −3 dB. This mostly happens for complex structure images corrupted by
AWGN with a variance smaller than 10. Meanwhile, this also happens for the test images
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Diego and Diego 2 for σ2 = 25. There are also images and noise variance values when
∆PSNR− HA is negative and its values are approximately −1 dB. One example is the
test image Diego corrupted by AWGN with σ2 = 49 (Figure 3a). Then, it is reasonable
to compress such images with Q < QOOP, e.g., Q = 25 when the introduced distortions
are invisible (Figure 2a). There are also images and noise variance values for which
∆PSNR− HA is positive. This happens with a high probability if P2σ > 0.84 (Figure 5a)
or P2.7σ < 0.08 (Figure 5b). Positive values of ∆PSNR− HA mainly take place for simple
structure images corrupted by quite intensive noise (one example is the test image Frisco
corrupted by AWGN with σ2 = 49 (Figure 3a). Then, compression at the OOP is expedient.

Let us analyze the data for the metric ∆MDSI. The scatter-plots and the fitted curves
are given in Figure 6. Note here that the MDSI varies in the limits from 0 to approximately
0.6 where a difference of approximately 0.02 can be noticed. Again, the scatter-plot points
are placed in a compact manner and a good fitting is possible.
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Conclusions that can be drawn from the analysis of data in Figure 6 are as follows.
There are positive values of ∆MDSI that correspond to P2σ < 0.85 (Figure 6a) or to
P2.7σ > 0.08). Then, compression has to be carried out “with care”, i.e., using Q < QOOP,
e.g., QOOP = 25 (an example of such a situation is the test image Diego corrupted by AWGN
with σ2 = 64, Figure 4a). In the opposite situations, i.e., for P2σ ≥ 0.85 (Figure 6a) or
P2.7σ ≤ 0.08, the OOPs are observed with high probability and it is worth compressing the
corresponding images at the OOP.

Let us briefly consider the data obtained for other formats. The scatterplots for the
format 4:2:2 are presented in Figure 7. The scatterplot in Figure 7a is very similar to the one
in Figure 5a, whilst the scatterplot in Figure 7b is similar to that one in Figure 5b. Thus,
the conclusions are practically the same. According to the metric ∆PSNR− HA, the OOP
exists if P2σ ≥ 0.85 (Figure 7a) or P2.7σ ≤ 0.1 (Figure 7b). The scatter-plot in Figure 7c is
similar to the one in Figure 6a, whilst the scatter-plot in Figure 7d is analogous to the one
in Figure 6b. According to the metric ∆MDSI, the conclusions are practically the same
as according to ∆PSNR − HA: the OOP exists if P2σ ≥ 0.82 (Figure 7c) or P2.7σ ≤ 0.1
(Figure 7d). Thus, the results for two different visual metrics are in quite strong agreement.

The scatterplots for the format 4:2:0 are given in Figure 8. The scatterplot in Figure 8a
is quite similar to the ones in Figures 5a and 7a; the scatterplot in Figure 8b is quite similar
to those in Figures 5b and 7b. Th analysis of the data in Figure 8a,b leads to practically
the same conclusions as earlier. According to the metric ∆PSNR− HA, the OOP exists if
P2σ ≥ 0.76 (Figure 8a) or P2.7σ ≤ 0.14 (Figure 8b). These recommendations slightly differ
from previous ones obtained for the formats 4:4:4 and 4:2:2.
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∆MDSI vs. P2.7σ (d), and the fitted curves (the format is 4:2:0).

The scatter-plot in Figure 8c is similar to those in Figures 6a and 7c, whilst the scatter-
plot in Figure 8d is analogous to the ones in Figures 6b and 7d. The analysis of the
metric ∆MDSI allows the conclusion that the OOP exists if P2σ ≥ 0.81 (Figure 8c) or
P2.7σ ≤ 0.11 (Figure 8d). These results and conclusions are in good agreement with the
above recommendations for the formats 4:4:4 and 4:2:2.

Thus, the results for different formats differ somewhat but the general tendencies are
the same. The values of QOOP for all three formats practically coincide, but the quality
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metric values in the OOP slightly differ. Because of this, additional comparison and
analysis are required. This will be undertaken in the next Section; additionally, some
comparison results are given in [60] where it is shown that each format has its advantages
and drawbacks.

Here, we would like to pay attention to curve fitting. In general, it is more of an
engineering task than a scientific task. Meanwhile, while solving the curve-fitting task for
our application, we have taken into account the following.

First, according to visual inspection of the scatter-plot properties, the fitted curves
have to be smooth enough. Second, there are special tools available that are designed for
curve fitting (regression); we have used a MATLAB Curve Fitting Tool. Third, relying
on previous experience [40], we have employed rational functions (the fitted curves in
Figures 5–8 are obtained using such functions). The function parameters and the fitting
criteria are given in Table 1.

Table 1. Parameters of the fitted curves.

Dependence Expression Parameters R2 Adjusted R2 RMSE

∆PSNR− HA on P2σ (4:4:4) f(x) = (p1 × x2 + p2 × x + p3)/(x3 + q1 × x2 + q2 × x + q3)

p1 = 1.195 × 105

p2 = −1.003 × 105

p3 = 147.4
q1 = −1.92 × 104

q2 = 1.778 × 104

q3 = 2454

0.9530 0.944 0.5143

∆PSNR− HA on P2.7σ (4:4:4) f(x) = (p1 × x2 + p2 × x + p3)/(x3 + q1 × x2 + q2 × x + q3)

p1 = 3.114
p2 = −4.159
p3 = 0.3203
q1 = −1.482
q2 = 1.015
q3 = 0.03138

0.9539 0.945 0.5094

∆MDSI on P2σ (4:4:4) f(x) = (p1 × x2 + p2 × x + p3)/(x3 + q1 × x2 + q2 × x + q3)

p1 = −36.59
p2 = 25.2
p3 = 4.732
q1 = −59.71
q2 = −478.2
q3 = 547.8

0.9154 0.8991 0.007974

∆MDSI on P2.7σ (4:4:4) f(x) = (p1 × x2 + p2 × x + p3)/(x3 + q1 × x2 + q2 × x + q3)

p1 = −61.94
p2 = 110.5
p3 = −8.54
q1 = 2341
q2 = 1243
q3 = 71.58

0.9036 0.885 0.008512

∆PSNR− HA on P2σ (4:2:2) f(x) = (p1 × x2 + p2 × x + p3)/(x3 + q1 × x2 + q2 × x + q3)

p1 = 4.964 × 104

p2 = −4.162 × 104

p3 = 1942
q1 = −1.602 × 104

q2 = 1.342 × 104

q3 = 2861

0.965 0.9582 0.2938

∆PSNR− HA on P2.7σ (4:2:2) f(x) = (p1 × x2 + p2 × x + p3)/(x3 + q1 × x2 + q2 × x + q3)

p1 = −5.772 × 104

p2 = 6.093 × 104

p3 = −6402
q1 = 2.003 × 104

q2 = −2.481 × 104

q3 = −717.6

0.9623 0.9551 0.3048

∆MDSI on P2σ (4:2:2) f(x) = (p1 × x2 + p2 × x + p3)/(x3 + q1 × x2 + q2 × x + q3)

p1 = −25.17
p2 = 21.54
p3 = −0.8092
q1 = −152
q2 = −256
q3 = 408.8

0.8778 0.8543 0.007885

∆MDSI on P2.7σ (4:2:2) f(x) = (p1 × x + p2)/(x2 + q1 × x + q2)

p1 = 0.008652
p2 = −0.0008153
q1 = 0.1452
q2 = 0.00661

0.853 0.8372 0.008334

∆PSNR− HA on P2σ (4:2:0) f(x) = (p1 × x2 + p2 × x + p3)/(x3 + q1 × x2 + q2 × x + q3)

p1 = 6922
p2 = −5483
p3 = 243.9
q1 = −4101
q2 = 3003
q3 = 1025

0.9869 0.9843 0.1482
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Table 1. Cont.

Dependence Expression Parameters R2 Adjusted R2 RMSE

∆PSNR− HA on P2.7σ (4:2:0) f(x) = (p1 × x2 + p2 × x + p3)/(x3 + q1 × x2 + q2 × x + q3)

p1 = 2.433
p2 = −2.668
p3 = 0.3562
q1 = −2.571
q2 = 2.324
q3 = 0.02283

0.9844 0.9814 0.1615

∆MDSI on P2σ (4:2:0) f(x) = (p1 × x2 + p2 × x + p3)/(x3 + q1 × x2 + q2 × x + q3)

p1 = −12.84
p2 = 11.17
p3 = −0.7154
q1 = −86.94
q2 = −255.8
q3 = 334.8

0.8558 0.8281 0.007658

∆MDSI on P2.7σ (4:2:0) f(x) = (p1 × x2 + p2 × x + p3)/(x3 + q1 × x2 + q2 × x + q3)

p1 = −0.4441
p2 = 0.4425
p3 = −0.04341
q1 = −10.63
q2 = 21.37
q3 = 0.05467

0.8431 0.813 0.007988

Analysis of the data given in Table 1 shows the following. First, for the metric
∆PSNR − HA, the fitting is very good for all formats. The values of R2 are approxi-
mately 0.97 (from 0.95 till 0.99), and RMSE is approximately or less than 0.5 dB. These are
appropriate pre-conditions for accurate prediction. Second, fitting for the metric ∆MDSI is
characterized by an R2 of approximately 0.9 for the format 4:4:4 and approximately 0.83
for the two other formats. Such accuracy is acceptable in practice as well. Third, the input
parameter to be used makes almost no difference since the values R2 and RMSE (for the
same format and predicted metric) are practically the same.

4. Decision Undertaking and Other Practical Aspects
4.1. Prediction Verification and Additional Accuracy Analysis

First of all, we have to be sure that the proposed approach to prediction performs well
enough. For this purpose, let us select the three-channel images that have not been exploited
in the obtaining of the scatter-plots. Such images are represented in Figure 9, where there
are four RS images of different complexity. Using the obtained fitted curves (regressions),
we have carried out an experiment for AWGN with a variance equal to 100. ∆PSNR− HA
and ∆MDSI values have been predicted using both considered input parameters and
calculated for images compressed at the OOP. The obtained data are collected in Table 2.

Table 2. Predicted and true parameters for verification images compressed with QOOP.

Image Format Input
Parameter

Predicted
∆PSNR−HA

Calculated
∆PSNR−HA

Predicted
∆MDSI

Calculated
∆MDSI

Woodland Hills 4:4:4
P2σ −1.7 −1.8

0.021
0.033P2.7σ −1.64 0.023

Point Loma 4:4:4
P2σ 2.2

1.8
−0.031 −0.018P2.7σ 2.52 −0.037

Foster City 4:4:4
P2σ 0.53

0.97
−0.006 −0.024P2.7σ 0.53 −0.008

Shelter Island 4:4:4
P2σ −0.29 −0.74

0.005
0.008P2.7σ −0.29 0.005

Woodland Hills 4:2:2
P2σ −0.42 −0.52

0.01
0.019P2.7σ −0.43 0.01

Point Loma 4:2:2
P2σ 2.31

2.16
−0.031 −0.019P2.7σ 2.6 −0.037
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Table 2. Cont.

Image Format Input
Parameter

Predicted
∆PSNR−HA

Calculated
∆PSNR−HA

Predicted
∆MDSI

Calculated
∆MDSI

Foster City 4:2:2
P2σ 1.04

1.6
−0.011 −0.023P2.7σ 1.08 −0.011

Shelter Island 4:2:2
P2σ 0.48

0.18
−0.002

0.01P2.7σ 0.48 −0.001

Woodland Hills 4:2:0
P2σ −0.02 −0.12

0.005
0.012P2.7σ −0.02 0.005

Point Loma 4:2:0
P2σ 2.18

2.09
−0.029 −0.016P2.7σ 2.45 −0.033

Foster City 4:2:0
P2σ 1.06

1.57
−0.011 −0.021P2.7σ 1.09 −0.01

Shelter Islands 4:2:0
P2σ 0.62

0.47
−0.004

0.007P2.7σ 0.62 −0.004
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Analysis of the data shows the following: (1) predictions based on both considered
input parameters are very close for both of the predicted metrics; (2) predictions are quite
close to the obtained (calculated) values of the studied metrics; (3) predictions show that
the OOP exists for the test image Point Loma according to both metrics for all three formats
and the image Foster City, also according to both metrics and for all three formats; whereas
the OOP does not exist for the image Woodland Hills according to both metrics for all three
formats; and (4) the situation is borderline for the image Shelter Islands—the OOP does not
exist for the format 4:4:4, but it does exist according to ∆PSNR− HA for the formats 4:2:2
and 4:2:0, although the values of the metric ∆MDSI are very close to zero.

4.2. Visual Analysis and Decision Undertaking

Let us give some examples of noisy image compression. Figure 10a presents the test
image Frisco corrupted by AWGN with a variance equal to 100. Noise is seen, especially in
homogeneous image regions. Images compressed in OOP for the original formats 4:4:4,
4:2:2, and 4:2:0 are shown in Figure 10b–d, respectively. It is seen that noise is sufficiently
suppressed whilst useful information (edges, textures, small-sized objects) is preserved
well for all three formats. It is difficult to detect a considerable difference in the visual
quality of images in Figure 10b–d. The main conclusion is that compression at the OOP is
reasonable. The question of which format to use will be discussed later.

Let us analyze the results for the complex-structure image Woodland Hills. The
original (noisy) image for the same noise variance (100) is shown in Figure 11a. Noise can
be noticed in some quasi-homogeneous image regions whilst it is masked in image areas
containing texture and fine details.

The image in Figure 11b shows the image Woodland Hills compressed with Q = 33
(i.e., with Q = QOOP) for the format 4:4:4. It is possible to see that there is some reduction of
the noise, although information degradation (smoothing) is observed as well. Figure 11c,d
present the images compressed with Q = 31 (QOOP − 2) and Q = 29 (QOOP − 4), respectively
(the same format). If Q reduces, noise suppression efficiency becomes worse and the
CR decreases, but the edge/texture/detail preservation improves. Thus, a reasonable
compromise could be to set Q as

Qrec ≈ QOOP − 3 (6)

Summarizing the results presented above, it is possible to propose the following
practical algorithm (which is quite similar to that one proposed in [40]):

(1) If ∆PSNR− HA > 1 dB, the OOP exists with high probability; then use QOOP (3);
(2) If −1 dB ≤ ∆PSNR − HA ≤ 1 dB, consider that the OOP might exist and use

Q = QOOP − 1, this allows avoiding image over-smoothing;
(3) If ∆PSNR− HA ≤ −1 dB, use max{Q = QOOP − 3, 25} to have invisible distortions,

or, at least, distortions that are not annoying (note that in [40] it was recommended to
use Q = 29 for analogous case).

4.3. Comparison of Image Compression for Different Formats

Let us first give one example of compressing noisy images for different formats as
well as for component-wise and 3D approaches. Table 3 gives the main characteristics of
the compressed images for two values of Q: Q = 33 that corresponds to the OOP for the
3D compression (with the conversion from RGB to YCbCr) for the formats 4:4:4, 4:2:2, and
4:2:0; and Q = 35, which corresponds to the OOP for the component-wise compression. The
data are obtained for the image Frisco and AWGN variance equal to 100.
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Figure 10. Original (noisy) image (a) and images compressed in OOP for the formats 4:4:4 (true ∆PSNR−
HA = 1.98, predicted ∆PSNR−HA = 1.70, true ∆MDSI = −0.038, predicted ∆MDSI = −0.023)
(b), 4:2:2 (true ∆PSNR − HA = 2.09, predicted ∆PSNR − HA = 1.91, true ∆MDSI =

−0.035, predicted ∆MDSI = −0.024) (c), and 4:2:0 (true ∆PSNR− HA = 1.98, predicted ∆PSNR−
HA = 1.80, true ∆MDSI = −0.036, predicted ∆MDSI = −0.023) (d); thus, compression in OOP
is desired.
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Figure 11. Original (noisy) image (a) and images compressed in Q = 33 (true ∆PSNR− HA = −1.8,
predicted ∆PSNR− HA = −1.7, true ∆MDSI = 0.033, predicted ∆MDSI = 0.021) (b), Q = 31 (c),
and Q = 29 (d) for the format 4:4:4; thus, compression with Q smaller than QOOP is needed.

Their analysis shows the following. First, the format 4:4:4 provides slightly better
quality of compressed images for Q = QOOP = 33 and Q = 35 compared with the formats
4:2:2 and 4:2:0. Meanwhile, the format 4:2:0 is characterized by the largest CR (additional
data supporting the same tendencies can be found in [60]). Thus, the decision of choosing
the best format depends on the priority of the requirements. Second, the component-
wise compression at the OOP (Q = 35) provides approximately the same image quality
as 3D compression for the formats 4:2:2 and 4:2:0 in OOP (Q = 33), but the CR for the 3D
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compression is 2–3 times larger. This is an obvious advantage of 3D compression that
results from data decorrelation by their conversion from RGB to YCbCr.

Table 3. Data for comparison of compression variants’ performance characteristics.

Q Format PSNRtc PSNR-HAtc MDSItc CR

33

4:4:4 32.08 35.01 0.239 33.05
4:2:2 31.41 34.19 0.239 42.15
4:2:0 31.05 33.63 0.240 46.29

Component-wise 29.21 33.46 0.260 7.25

35

4:4:4 31.55 34.23 0.249 51.49
4:2:2 30.83 33.27 0.249 62.20
4:2:0 30.51 32.74 0.249 66.76

Component-wise 31.37 34.62 0.238 15.78

Because one example is unable to prove the tendency, we have carried out additional
experiments for 20 three-channel images of different complexities (see examples of beach
area in Figure 12) used by the authors of [62].
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Figure 12. Two examples of the test images.

Noise has been artificially added; its variance was equal to 100 in all components.
After this, similarly to the data in Table 3, we have determined the PSNRtc, PSNR-HAtc,
and MDSItc for each version of compression for two values of Q—33 and 35. The difference
is that we present not all 20 values of PSNRtc for each image and so on, but mean, minimal,
and maximal values determined for the set of twenty test images.

Table 4 presents the results for the metric PSNRtc. The best characteristics (maximal
values of mean, minimal and maximal PSNRtc) are observed for the format 4:4:4 for QOOP
= 33. They are slightly better than for the formats 4:2:2 and 4:2:0. Meanwhile, these results
are also considerably better than for component-wise compression with QOOP = 35 (recall
that the QOOP are different for 3D and component-wise compression). Note that PSNRtc for
QOOP vary in wide limits (up to 10 dB) showing the necessity of compressing noisy images
with the same intensity of the noise adaptively depending on their complexity.
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Table 4. Statistical data for comparison of compression variants’ performance characteristics (PSNRtc).

Q Format Mean PSNRtc
Minimal
PSNRtc

Maximal
PSNRtc

33

4:4:4 35.43 31.94 41.27
4:2:2 35.25 31.83 41.01
4:2:0 35.21 31.86 41.01

Component-wise 29.34 28.52 30.16

35

4:4:4 34.90 31.15 40.99
4:2:2 34.66 31.08 40.52
4:2:0 34.65 31.02 40.60

Component-wise 32.61 29.57 36.68

The results for the metric PSNR-HAtc are given in Table 5. Again, the best charac-
teristics (maximal values of mean, minimal and maximal PSNR-HAtc) are observed for
the format 4:4:4 for QOOP = 33. The metric values are only slightly better than for the
other two formats. The mean results are considerably (by more than 1 dB) better than for
component-wise compression with QOOP = 35. PSNRtc for QOOP for 3D compression vary
in wide limits (up to 7 dB) depending on image complexity.

Table 5. Statistical data for comparison of compression variants’ performance characteristics
(PSNR-HAtc).

Q Format Mean
PSNR-HAtc

Minimal
PSNR-HAtc

Maximal
PSNR-HAtc

33

4:4:4 36.75 34.70 41.35
4:2:2 36.59 34.64 41.17
4:2:0 36.60 34.70 41.17

Component-wise 34.13 33.48 35.05

35

4:4:4 36.03 33.81 40.78
4:2:2 35.86 33.76 40.81
4:2:0 35.85 33.72 40.64

Component-wise 35.48 33.81 38.71

Let us now proceed with the analysis for the metric MDSItc. The obtained data are
shown in Table 6 (recall that for this metric, smaller values correspond to better quality).
According to the mean values of this metric, there is practically no difference between
the formats for both of the considered values of Q. Meanwhile, all three 3D versions of
compression with QOOP = 33 outperform the component-wise compression with QOOP = 35.

Table 6. Statistical data for comparison of compression variants’ performance characteristics (MDSItc).

Q Format Mean MDSItc
Minimal
MDSItc

Maximal
MDSItc

33

4:4:4 0.290 0.246 0.320
4:2:2 0.290 0.246 0.321
4:2:0 0.290 0.247 0.321

Component-wise 0.360 0.337 0.381

35

4:4:4 0.299 0.252 0.333
4:2:2 0.299 0.252 0.332
4:2:0 0.299 0.253 0.332

Component-wise 0.303 0.269 0.325

Finally, let us examine the data for the CR. They are presented in Table 7. As one
can see, the mean CR values for the format 4:4:4 are approximately 8% smaller than for
two other formats. While the minimal values observed for complex structure images
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are practically the same, the maximal CR values differ sufficiently. The main point is
that for 3D compression with QOOP = 35, the CR values are several (4–12) times larger
than for component-wise compression with QOOP = 35. This is the main advantage of 3D
compression where the format 4:2:0 is preferable.

Table 7. Statistical data for comparison of compression variants’ performance characteristics (CR).

Q Format Mean CR Minimal CR Maximal CR

33

4:4:4 106.1 25.5 382.3
4:2:2 114.9 25.8 422.5
4:2:0 115.8 25.9 410.7

Component-wise 7.9 5.8 10.4

35

4:4:4 176.3 35.7 683.0
4:2:2 185.2 36.0 729.2
4:2:0 189.9 36.2 756.1

Component-wise 14.3 5.59 33.3

It is also seen that for 3D compression formats, one can use Q = QOOP + 1 or Q = QOOP
+ 2. Then, image quality is only slightly worse but the CR can be increased considerably.
This is reasonable if providing a larger CR is of prime importance.

We have also analyzed the case of noise variance equal to 25, i.e., if noise is practically
not seen. All of the conclusions are the same as for the case of noise variance equal to
100 studied above. There are only two differences. First, the OOP takes place sufficiently
more rarely. Second, the CR values are smaller. The mean CR is approximately 50 for 3D
formats and approximately 14 for component-wise compression (for the corresponding
OOP values).

Additionally, the accuracy of the prediction has been checked for twenty new images
not used to obtain the scatter-plots and curve fitting. The obtained values of RMSE are from
1 to 1.6 for the metric PSNR-HA (the smallest RMSE is observed for the 4:2:0 format) and
approximately 0.02 for the metric MDSI. These values are larger than the corresponding
RMSE for fitting, but they can be considered appropriate for practice.

4.4. Discussion of Practical Aspects

Several important practical aspects deal with computational efficiency, the selection of
compression parameters, the influence of different degrading factors, etc.

Concerning computational efficiency, it is worth mentioning the following. First,
compression (and decompression) can be parallelized for both the component-wise and 3D
compression. In the former case, the components R, G, and B are processed separately and
this can be done in parallel. In the latter case, the components Y, Cb, and Cr are processed
separately and their parallel processing is also possible (conversion from RGB to YCbCr
forward and backward does not take a lot of time). Second, prediction is easy and fast.
DCT in 8 × 8 blocks is a standard operation in digital image processing [63] and it can
be easily implemented in software or hardware. Moreover, a limited number of blocks
(500 or 1000) is needed to accurately estimate an input parameter used. Because of this,
the metric prediction and decision undertaking on the Q setting can be done much faster
than compression itself. This is a good pre-condition for making the procedure of lossy
compression of images corrupted by AWGN fully automatic. Noise variance is known
in advance or can be estimated by blind methods [53–55,64], then QOOP is determined by
(3), input and output parameters are determined and, after that, a decision is undertaken
concerning what Q to set for the final compression. Even if the noise is not additive,
variance stabilizing transforms can be applied to match the noise model considered in this
paper (although such an approach needs additional studies and the use of blind methods
for estimation of signal-dependent noise characteristics [53,65]).

An important advantage is that the proposed approach works well for three-channel
RS images and is quite general. In this paper [40], a thorough analysis of factors influencing
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prediction accuracy has been performed. Its conclusions are valid for the considered case
of three-channel images. Noise realization has practically no impact on prediction. The
positions of blocks (if their number is large enough and they are positioned randomly) do
not have a noticeable impact on prediction accuracy. Decisions based on prediction can be
wrong but this does not essentially influence the compression performance (see an example
for three values of Q in Figure 11).

5. Conclusions

This paper deals with the lossy compression of three-channel images corrupted by
AWGN. The BPG coder is studied. We demonstrate the possible existence of the OOP
according to advanced visual quality metrics, such as PSNR-HA and MDSI. The probability
of the existence of the OOP depends on the complexity of the image and the variance of
the noise. The OOP exists more often for images of simple structure corrupted by a rather
intensive noise. QOOP depends on the intensity of the noise and it increases if the variance
of the noise increases. Meanwhile, QOOP for 3D compression that exploits data conversion
to YCbCr space is slightly smaller than QOOP for single-channel image compression or
for component-wise compression of three-channel images. Nevertheless, 3D compression
produces sufficient benefits in terms of the CR.

The approach to predict the existence of the OOP is put forward. It employs the
calculation of the input parameter and determines the output parameter (metric) using the
dependencies obtained in advance. It is shown that these predictions are quite accurate and
allow the undertaking of the proper decision on setting the Q value for a given image. The
compression procedure is fully automatic provided that the format to be used is decided in
advance. The considered formats have different advantages and drawbacks; the format
4:2:0 seems to be the best according to the CR criteria. The proposed prediction procedure
is tested for three-channel images that have not been exploited in obtaining scatter-plots
and curve fitting. It is shown that the metric prediction for them is sufficiently accurate.

We do not guarantee that P2σ or P2.7σ are the best input parameters that provide the
most accurate prediction. Further studies are needed to find the best solutions. In addition,
two or more input parameters used together might produce better prediction accuracy. We
also need to study how the accuracy of blind estimation of the noise variance [53–55,64]
influences the prediction. The drawback of our approach could be that it requires a quite
accurate estimation of noise characteristics. However, modern methods [53,54,64–67]
provide a sufficiently high level of accuracy in the estimation of parameters for both pure
additive and signal-dependent noises.

In the future, it would also be reasonable to consider more adequate models of the
noise and to design methods for 3D compression of more than three-component images
corrupted by the noise.
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