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Abstract: Turbid water is known to affect aquatic ecosystems. If the spread of turbid water can be
predicted, it is expected to lead to the prediction of damage caused by turbid water in rich aquatic
ecosystems and aquaculture farms, and to countermeasures against turbid water. In this study, we
developed a method for predicting the area of high-turbidity water using machine learning with
satellite-observed total suspended solids (TSS) product and relatively readily available meteorological
and oceanographic data (rainfall, wind direction and speed, atmospheric pressure, and tide level)
in the past and evaluated it for the Kuma River estuary of the Yatsushiro Sea in Japan. The results
showed that the highest accuracy was obtained using random forest regression, with a coefficient
of determination of 0.552, when the area of high-turbidity water based on the previous day’s TSS
product and hourly meteorological and oceanographic data from the previous day were used as
inputs. The most important factor for the prediction was the area of high-turbidity water, followed by
wind, and tide level, but the effect of rainfall was small, which was probably due to the flood-control
function of the river. Our future work will be to evaluate the applicability of the method to other
areas, improve the accuracy, and predict the distribution area.

Keywords: turbidity; total suspended solids; prediction; machine learning; support vector regression;
random forest regression; GOCI; inland sea; aquatic ecosystem; aquaculture

1. Introduction

The preservation of the aquatic environment is an important issue for modern society.
Turbid water is known to affect organisms living in the aquatic environment, and an
accurate understanding of turbid water is useful in confirming the state of pollution. There
are various substances that cause turbid water, ranging from inorganic substances such as
sand and gravel to organic substances such as leaves and plankton. In particular, insoluble
inorganic and organic matter that is less than 2 mm and greater than 1 µm is called total
suspended solids (TSS) [1].

Many researchers have studied the effects of turbid water on aquatic ecosystems. For
example, it has been confirmed that although “sand discharge”, which is the discharge of
sand and other substances that accumulate in dams downstream, is not directly related
to fish injury or mortality, it causes stress to fish by raising their hemoglobin levels when
concentrations are high [2–5]. Cases of fish showing avoidance behavior toward turbid
water have also been reported [4]. In addition, when the particle size of suspended solids
in turbid water exceeds a range of 1.237–35.977 µm, they tend to adhere to the gills, leading
to gill blockage [6]. As for tuna, it is said that tuna are susceptible to the effects of harmful
algae such as red tide because they require a large amount of oxygen and take in large
amounts of seawater at a time [7]. In the case of a large number of bluefin tuna dying due
to a red tide in a tuna aquaculture fishery, it was pointed out that the high concentration
of turbid water made the tuna less visible in the water, causing them to come into contact
with nets and other objects, resulting in injuries [8]. In addition to fish, turbid water also
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adversely affects the growth of brown algae such as wakame and kajime seaweed. For
example, it has been reported that suspended solids inhibit the sedimentation of migratory
spores produced by brown algae, increasing the time required for their attachment, which
leads to a decrease in brown algae [9]; it has also been reported that suspended solids
inhibit the attachment of Nori shell spores [10,11].

If the turbid water spreads to areas with rich aquatic ecosystems and aquaculture
farms, the damage described above is expected to become more pronounced. However, if
its characteristics and scale can be predicted in advance, it could be used to predict damage
and evacuate aquaculture facilities. There are several examples of studies on the prediction
of turbidity: Wang et al. (2021) focused on the relationship between turbidity and tidal level
and compared and evaluated several methods for predicting turbidity areas based on tidal
level [12]. The results showed that an artificial neural network method that uses the tide
level as an input and the turbidity index “Nephelometric Turbidity Unit (NTU)” obtained
from buoys installed in coastal areas as an output has the highest accuracy, and that the two
previous tidal cycles, excluding the forecast period, are important for the input tide-level
data. The input tide-level data are important for the previous two tidal cycles, excluding
the time of the forecast. Turbidity prediction based on weather information was studied by
Zhang et al. (2021) and Tsai et al. (2017) [13,14]. Zhang et al. developed a method to predict
lake turbidity information obtained from smartphone photography by inputting wind
speed, wind direction, temperature, and rainfall into a random forest [13]. The coefficient
of determination is more than 0.89, and the most important input parameters are wind
direction and wind speed. Tsai et al. developed a model to predict weir turbidity from
rainfall and water volume and obtained 5.787 as the mean-square error [14]. Alizadeh et al.
(2018) used buoys placed at an estuary to obtained data on turbidity, water temperature,
salinity, etc., and river flow data were used to study a method for predicting turbidity in
estuaries [15]. The results showed that the river flow of one hour before was important for
the prediction; Kumar et al. (2022) predicted turbidity at multiple sites in an estuary in
Hong Kong based on meteorological information, pH, and oxygen-dissolved solids [16].
As a result, they achieved an average prediction accuracy of 88.45% with LSTM-RNN.
However, since most existing studies focus on turbidity, it is difficult to capture the area of
turbid water. In addition, they often use detailed field data, which are difficult to apply in
places where the observation environment is not well-developed.

Based on this background, we propose a machine learning method to predict the
area of high-turbidity water around an estuary on the following day, using satellite TSS
products and easily obtainable local meteorological and oceanographic data as inputs,
using the Yatsushiro Sea in Japan as the study area. We believe that the prediction of
the area of high-turbidity water using these types of data is a unique attempt not seen in
previous studies. For machine learning, Support Vector Regression (SVR) and Random
Forest Regression (RFR) are evaluated in terms of accuracy. Satellite data will be used
for the TSS product using Geostationary Ocean Color Imager-I (GOCI-I) [17,18], which is
capable of observing coastal areas at high frequency from geostationary orbit.

2. Materials and Methods
2.1. Satellite-Based TSS Observations and GOCI

Sensors such as GOCI, the Second-generation Global Imager (SGLI) onboard Global
Change Observation-Climate (GCOM-C), and the Moderate Resolution Imaging Spec-
troradiometer (MODIS) instruments onboard the Terra and Aqua satellites have bands
suitable for observing coastal areas and are capable of estimating TSS [19,20]. In this type
of sensor, although GOCI has a lower spatial resolution (500 m) than SGLI and MODIS
and its observation area is limited to East Asia, it is capable of TSS observation with high
frequency (eight times a day) from a geostationary orbit and cloud removal by time-series
composite [17]. Since no other satellite sensor has these characteristics, we selected the TSS
product of the GOCI-I instrument for this study, although it is limited to analysis of sea
areas that do not include narrow bays.
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Table 1 shows the spectral bands of the GOCI-I instrument [21]. The TSS product
of GOCI-I is calculated from the visible bands at 490 nm and 745 nm by the following
equation [22].

TSS = 101.0758+1.1230×Rrs(745)/Rrs(490), (1)

where Rrs(490) and Rrs(745) are the remote sensing reflectance values for the 490 nm and
745 nm bands, respectively. This equation is less accurate when TSS is low in concentra-
tion and should be used with caution in the open ocean but provides more reliable TSS
information in coastal areas where TSS is generally high in concentration [22].

Table 1. Spectral bands of the GOCI-I instrument.

Band Center Wavelength Band Width Spatial Resolution

1 412 nm 20 nm

500 m

2 443 nm 20 nm
3 490 nm 20 nm
4 555 nm 20 nm
5 660 nm 20 nm
6 680 nm 10 nm
7 745 nm 20 nm
8 865 nm 40 nm

2.2. Proposed Method

In this study, we propose a method to predict the area of high-turbidity water one
day later by machine learning using satellite-based TSS products and local meteorological
and oceanographic data, acquired over the past several days. Local meteorological and
oceanographic data should be parameters that are closely related to turbidity; in this
study, wind direction and speed, and tide level, were selected based on the work of
Zhang et al. [13] and Wang et al. [12], and rainfall and pressure were selected based on the
work of Kumar et al. [16]. It is known that glacial meltwater can affect turbidity in the
presence of glacial meltwater [23], but this effect was not considered in this study area,
which is located at mid-latitudes.

The processing procedure of the proposed method is as follows.

1. In the target area, using a specific time T of the prediction day as the prediction
reference, collect a satellite-based TSS product at time T one day ago, and rainfall,
wind speed and direction, pressure, and tide-level data for each hour from 1 to N
days ago. That is, the input TSS image is one image, whereas the meteorological and
oceanographic data are 24 data per day (from time T to 23 h before that time).

2. Binarize the TSS product by thresholding based on the presence or absence of high-
turbidity water. The number of high-turbid water pixels in the binarized TSS image is
then counted to obtain the area of high-turbidity zone.

3. Standardize the area of the high-turbidity water based on satellite observations, and
the four meteorological and oceanographic parameters to have a mean of 0 and a
standard deviation of 1, respectively, and apply these values to the learned machine
learning model to regressively estimate the area of high-turbidity water (normalized
value) for the prediction day. The machine learning model needs to be trained in
advance using training data sets for each of the prediction dates for which TSS data
were available.

Figure 1 shows the above process flow. In the proposed method, the importance
of each input data and the value of N are evaluated in the sections that follow. We also
compare and evaluate SVR and RFR as the machine learning model.
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Figure 1. Process flow of the proposed method.

2.3. Study Area

In this study, a part of the Yatsushiro Sea, Japan, defined as the region of (32.43◦N,
130.58◦E) to (32.54◦N, 130.42◦E) including the estuary of the Kuma River (around 32.50◦N,
130.57◦E) flowing through Kumamoto Prefecture, was selected as the study area. The
location of the study area is shown in Figure 2. The Yatsushiro Sea is relatively calm
because it is an inland sea surrounded by the Kyushu mainland and the Amakusa Islands.
This sea is rich in fishery resources, especially in the cultivation of sea bream, yellowtail,
nori, tiger prawn, and pearls [24]. We chose this area rather than a larger area because the
range of turbidity variation and the mechanism of turbidity are different in the coastal and
open ocean areas, and the coastal areas generally have diverse aquatic ecosystems and are
important for aquaculture.
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2.4. Data Used

The period covered by this study was defined as 11 years, from 2011 to 2021.
TSS products were obtained from data observed by GOCI-I at 10:16 UTC (1:16 UTC)

during this period, and only those data with cloud coverage of 10% or less in the target
water area were selected. In addition, a cutout was made from each TSS image to include
the study area according to the turbid water coverage of each image, and only pure water
pixels without land were selected using a land mask created from coastline vector data and
high-resolution satellite imagery. Then, of all the TSS data obtained, one set of TSS images
was defined as those obtained for two consecutive days. As a result, a total of 219 TSS data
sets were obtained for the study period under study.

Next, for each of the 219 datasets, hourly meteorological and oceanographic data
were obtained from the Japan Meteorological Agency (JMA) website for each day up to
nine days prior to the prediction date [26]. Rainfall data were obtained from the Auto-
mated Meteorological Data Acquisition System (AMeDAS) [27] at eight sites located in the
catchment area of the Kuma River (Yatsushiro, Isshochi, Yamae, Hitoyoshi, Itsuki, Kami,
Taraki, and Yamae-Yokoya). Wind direction and speed data were obtained from AMeDAS
at one location (Yatsushiro) near the mouth of the river, and east–west and north–south
vectors were calculated from these data and used as input data (for example, for a 2 m wind
speed from the east-southeast, the east–west vector is 1.848 m/s and the north–south vector
is −0.766 m/s). The barometric pressure was obtained from the nearest meteorological
observatory (Hitoyoshi) from the mouth of the river. Figure 3 shows the location of each
observation station.
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Figure 3. Locations of observation stations in the Kuma River catchment area: (1) Yatsushiro,
(2) Isshochi, (3) Yamae, (4) Hitoyoshi, (5) Itsuki, (6) Kami, (7) Taraki, and (8) Yamae-Yokotani. Original
map was provided by Geospatial Information Authority of Japan [25].

For tide data, we used astronomical tide data near the mouth of the river (Yatsushiro)
provided by JMA [28]. Astronomical tide level is a predicted value of the change in tide
level caused by lunar and solar tidal forces, and although it differs from the actual measured
tide level, it was adopted because it is readily available.

In applying the above data to machine learning, the 219 data sets were divided in half,
with 109 sets for training and 110 sets for testing.
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2.5. Evaluation Method
2.5.1. Evaluation (A)

In Section 2.2, Procedure (1), N is the number of days back for the meteorologi-
cal/oceanographic data to be input. In this study, nine cases were evaluated, ranging from
N = 9 (using data from one to nine days before the prediction date) to N = 1 (using only
data from one day before). In addition, for SVR, the radial basis function (RBF) was applied
with epsilon = 0.1 and 0.01, and the cost parameter C = 1 and 10 for SVR; and the number
of trees, trees = 100 and 1000, and the maximum depth of each tree, depth = 100 and 1000,
were investigated for RFR. Thus, combining these conditions, the total number of cases
evaluated is 9 (N) × { 4 (SVR parameters) + 4 (RFR parameters) } = 72 cases.

2.5.2. Evaluation (B)

In Evaluation (A), N means that all meteorological and oceanographic data for each
day from 1 to N days before the prediction date are used, but alternatively, a model that uses
only meteorological and oceanographic data from n days ago is also possible. Therefore,
we evaluated this alternate model by inputting only the meteorological and oceanographic
data from n days ago and no TSS images to each machine learning model. In this case, the
number of evaluation cases is 9 (n) × { 4 + 4 } = 72 cases.

2.5.3. Evaluation (C)

Using the model that showed the highest accuracy in evaluations (A) and (B), we
evaluated the impact of each input parameter on estimation accuracy by training the
model using only one of the five input parameters: TSS, rainfall, wind direction and speed,
barometric pressure, and tide level.

3. Results
3.1. TSS Image and Its Binarization

Figure 4 shows the Landsat 8 image at 9:45 on 17 November 2020 JST and the TSS
image of GOCI-I and its binarized image at 10:16 on the same day as an example. In the
binarized TSS image (c), pixels with high turbidity were selected from the original TSS
image (b) with a threshold of 4 mg/L. The area of high-turbidity water in this example
is 20.50 km2 (=82 pixels), and its normalized area is 0.390, where each normalized area
was obtained by dividing each area of high-turbidity water by the maximum area of
high-turbidity water of 52.50 km2 (=210 pixels) obtained from all data from 2011 to 2021.
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Figure 5 shows the relationship between the threshold value for extracting high-
turbidity water and the number of pixels extracted as high-turbidity pixels. In the case of
the threshold value of 4 mg/L used in this study, the number of extracted high-turbidity
pixels corresponds to approximately 10% of the total number of water pixels.
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Figure 5. Relationship between the threshold value for extracting high-turbidity water and the
number of pixels extracted as high-turbidity pixels.

3.2. Results of Evaluation (A)

Table 2 shows the root mean-square error (RMSE) of the coefficient of determination
(R2), correlation coefficient (R), and area (km2) for each result. The results show that SVR has
a low R2 and is unreliable, while RFR has a high R2 and has the potential to make predictions.
The most accurate model was RFR with N = 1 and trees = 100 and depth = 100, resulting in
R2 = 0.552, R = 0.746, and RMSE = 7.260 km2 (0 to a maximum of 52.50 km2). In addition,
Table 3 shows the results of feature importance (FE) analysis for each input variable: rainfall
(RF), wind vector (WV), barometric pressure (BP), tide level (TL), and area of high-turbidity
water (HT). From this table, it can be seen that the factor that most influences the prediction
is the area of high-turbidity water on the previous day, followed by wind and tide level.
Figure 6 is a scatterplot showing the relationship between the observed and predicted
normalized high-turbidity area for each case of N = 1 to 9 in evaluation (A) using RFR with
trees = 100 and depth = 100.

Table 2. Coefficient of determination (R2), correlation coefficient (R), and RMSE (km2) for each model
in each case of N = 1 to 9 in Evaluation (A).

Model Index N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9

SVR
(ε = 0.1,
C = 1.0)

R2 0.237 0.109 0.073 0.050 0.021 0.028 0.018 −0.016 −0.034
R 0.561 0.433 0.390 0.381 0.343 0.350 0.326 0.271 0.238

RMSE (km2) 9.463 10.234 10.435 10.569 10.725 10.684 10.742 10.928 11.026

SVR
(ε = 0.01,
C = 1.0)

R2 0.373 0.222 0.140 0.132 0.107 0.108 0.096 0.068 0.046
R 0.635 0.506 0.388 0.381 0.345 0.348 0.329 0.270 0.228

RMSE (km2) 8.579 9.559 10.054 10.096 10.241 10.232 10.308 10.467 10.587

SVR
(ε = 0.1,

C = 10.0)

R2 0.251 0.120 0.097 0.066 0.017 0.056 0.025 −0.013 −0.030
R 0.568 0.429 0.417 0.388 0.337 0.350 0.329 0.284 0.257

RMSE (km2) 9.375 10.165 10.287 10.465 10.727 10.527 10.706 10.907 11.005
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Table 2. Cont.

Model Index N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9

RFR
(trees = 1000,
depth = 100)

R2 0.530 0.524 0.524 0.509 0.511 0.517 0.520 0.515 0.516
R 0.737 0.736 0.736 0.726 0.725 0.728 0.729 0.725 0.725

RMSE (km2) 7.436 7.478 7.483 7.596 7.581 7.535 7.514 7.552 7.547

RFR
(trees = 100,
depth = 100)

R2 0.552 0.532 0.544 0.531 0.519 0.480 0.518 0.504 0.493
R 0.746 0.743 0.742 0.741 0.729 0.710 0.738 0.718 0.719

RMSE (km2) 7.260 7.418 7.326 7.425 7.521 7.821 7.531 7.640 7.723

SVR
(ε = 0.01,
C = 10.0)

R2 0.402 0.248 0.194 0.161 0.111 0.137 0.107 0.072 0.056
R 0.645 0.511 0.459 0.422 0.371 0.378 0.340 0.283 0.255

RMSE (km2) 8.378 9.389 9.718 9.910 10.198 10.059 10.242 10.438 10.534

RFR
(trees = 100,

depth = 1000)

R2 0.537 0.517 0.526 0.520 0.472 0.525 0.534 0.512 0.520
R 0.744 0.729 0.738 0.730 0.709 0.735 0.736 0.724 0.729

RMSE (km2) 7.380 7.537 7.462 7.514 7.880 7.476 7.404 7.577 7.516

RFR
(trees = 1000,
depth = 1000)

R2 0.538 0.520 0.520 0.517 0.511 0.509 0.515 0.508 0.515
R 0.741 0.734 0.731 0.729 0.726 0.725 0.726 0.721 0.725

RMSE (km2) 7.370 7.516 7.513 7.539 7.586 7.599 7.553 7.605 7.549

Table 3. Feature importance analysis results for N = 1 to 9 for each input variable in RFR: rainfall (RF),
wind vector (WV), barometric pressure (BP), tide level (TL), and area of high-turbidity water (HT).

Model Variable N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9

RFR
(trees = 100,
depth = 100)

RF 0.001 0.012 0.033 0.039 0.051 0.058 0.068 0.053 0.032
WV 0.238 0.252 0.242 0.238 0.204 0.202 0.223 0.234 0.224
BP 0.012 0.015 0.018 0.012 0.015 0.021 0.016 0.020 0.021
TL 0.062 0.085 0.070 0.085 0.109 0.111 0.084 0.115 0.097
HT 0.688 0.637 0.637 0.626 0.621 0.608 0.609 0.578 0.626

RFR
(trees = 1000,
depth = 100)

RF 0.001 0.017 0.032 0.047 0.045 0.048 0.048 0.046 0.044
WV 0.249 0.242 0.233 0.217 0.224 0.223 0.229 0.230 0.236
BP 0.013 0.014 0.017 0.016 0.016 0.017 0.016 0.018 0.017
TL 0.075 0.077 0.085 0.096 0.100 0.095 0.098 0.105 0.106
HT 0.662 0.650 0.633 0.624 0.615 0.617 0.608 0.601 0.597

RFR
(trees = 100,

depth = 1000)

RF 0.001 0.023 0.030 0.040 0.059 0.034 0.048 0.044 0.031
WV 0.263 0.229 0.229 0.229 0.219 0.232 0.235 0.242 0.231
BP 0.015 0.017 0.022 0.015 0.014 0.021 0.015 0.020 0.022
TL 0.075 0.100 0.079 0.082 0.094 0.079 0.081 0.077 0.106
HT 0.646 0.631 0.641 0.635 0.614 0.634 0.621 0.617 0.609

RFR
(trees = 1000,
depth = 1000)

RF 0.001 0.017 0.033 0.048 0.042 0.044 0.055 0.046 0.049
WV 0.250 0.248 0.229 0.219 0.223 0.221 0.226 0.233 0.229
BP 0.013 0.014 0.016 0.015 0.015 0.017 0.018 0.017 0.016
TL 0.068 0.078 0.088 0.091 0.096 0.101 0.092 0.110 0.102
HT 0.668 0.643 0.634 0.626 0.625 0.616 0.609 0.594 0.603

Figure 6 shows several outliers. Investigation of these outliers revealed that some
of them are often caused by several consecutive days of strong winds. Therefore, from
the 219 training data, we excluded the five data sets that had five consecutive days with
daily maximum values of instantaneous wind speeds exceeding 10 m, and trained the RFR
(trees = 100, depth = 100). The obtained coefficients of determination, correlation coefficients,
and RMSE are shown in Table 4, and the scatter plots are shown in Figure 7. A comparison
of Figures 6 and 7 shows that most of the outliers were removed and the correlation was
improved for all N. In fact, Table 4 shows that R2 = 0.636, R = 0.810, and RMSE = 6.081 km2

are obtained for N = 1, which is an improvement over Table 3.
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Figure 6. Scatter plot of observed and predicted normalized areas of high-turbidity water for each
case of N = 1 to 9 in Evaluation (A) using RFR with trees = 100 and depth = 100, with the kernel
function set to RBF.

Table 4. Coefficient of determination (R2), correlation coefficient (R), and RMSE (km2) in each case of
N = 1 to 9 using the best model (RFR with trees = 100 and depth = 100) trained by the data excluding
samples of five or more consecutive days with maximum instantaneous wind speeds exceeding 10 m.

Model Index N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9

RFR
(trees = 100,
depth = 100)

R2 0.636 0.632 0.633 0.626 0.601 0.619 0.613 0.617 0.600
R 0.810 0.804 0.800 0.794 0.775 0.788 0.784 0.788 0.777

RMSE (km2) 6.081 6.110 6.100 6.165 6.367 6.217 6.269 6.238 6.375
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Figure 7. Sca er plot of observed and predicted normalized areas of high-turbidity water for each 
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Figure 7. Scatter plot of observed and predicted normalized areas of high-turbidity water for each
case of N = 1 to 9 using the best model (RFR with trees = 100 and depth = 100) trained by the data
excluding samples of five or more consecutive days with maximum instantaneous wind speeds
exceeding 10 m.

3.3. Results of Evaluation (B)

Table 5 shows the R2, R, and the RMSE of area (km2) for each result in Evaluation
(B). Outliers due to high winds were not excluded. It can be seen that both SVR and RFR
are less accurate than the results of Evaluation (A), and even n = 1, which corresponds to
N = 1, the highest accuracy in Evaluation (A). Evaluation (B) uses only meteorological and
oceanographic data from n days ago and does not use the high-turbidity-area data from the
previous day, suggesting that it is necessary to include the high-turbidity-area data from the
previous day when predicting the area of high-turbidity water. The accuracy with respect
to n was slightly higher for n = 3, where the importance analysis of RFR with trees = 100
and depth = 100 showed that rainfall, wind, barometric pressure, and tide level were 0.061,
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0.643, 0.055, and 0.241, respectively, indicating that wind had the greatest influence on the
prediction. However, the accuracy for the value of n varied overall due to the influence of
meteorological factors.

Table 5. Coefficient of determination (R2), correlation coefficient (R), and RMSE (km2) for each model
in each case of n = 1 to 9 in Evaluation (B).

Model Index n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

SVR
(ε = 0.1,
C = 1.0)

R2 −0.027 0.012 0.077 0.007 −0.043 −0.090 −0.057 −0.161 −0.086
R 0.197 0.222 0.329 0.238 0.144 0.043 0.142 0.049 0.140

RMSE (km2) 10.987 10.777 10.417 10.803 11.071 11.319 11.151 11.684 11.300

SVR
(ε = 0.01,
C = 1.0)

R2 0.026 0.022 0.074 0.040 −0.031 −0.043 0.022 −0.155 −0.023
R 0.220 0.206 0.289 0.233 0.125 0.099 0.205 0.055 0.166

RMSE (km2) 10.704 10.723 10.436 10.622 11.008 11.074 10.721 11.654 10.970

SVR
(ε = 0.1,

C = 10.0)

R2 −0.126 −0.032 0.031 −0.019 −0.104 −0.206 −0.198 −0.376 −0.148
R 0.178 0.210 0.348 0.247 0.173 0.034 0.059 0.011 0.170

RMSE (km2) 11.506 11.015 10.676 10.946 11.394 11.906 11.866 12.720 11.619

SVR
(ε = 0.01,
C = 10.0)

R2 −0.122 −0.030 0.052 −0.005 −0.124 −0.160 −0.174 −0.392 −0.163
R 0.170 0.202 0.354 0.242 0.136 0.091 0.120 0.037 0.163

RMSE (km2) 11.485 11.004 10.557 10.870 11.498 11.677 11.747 12.793 11.691

RFR
(trees = 100,
depth = 100)

R2 −0.098 −0.103 0.044 −0.013 −0.048 −0.127 −0.102 −0.222 −0.183
R 0.201 0.253 0.340 0.259 0.193 0.146 0.101 0.058 0.079

RMSE (km2) 11.360 11.390 10.600 10.913 11.100 11.512 11.384 11.986 11.795

RFR
(trees = 1000,
depth = 100)

R2 −0.058 −0.131 0.050 0.019 −0.037 −0.078 −0.096 −0.192 −0.164
R 0.223 0.219 0.336 0.274 0.193 0.175 0.106 0.054 0.089

RMSE (km2) 11.153 11.530 10.566 10.738 11.041 11.258 11.349 11.837 11.700

RFR
(trees = 100,

depth = 1000)

R2 −0.058 −0.121 0.060 −0.015 −0.069 −0.071 −0.091 −0.203 −0.141
R 0.221 0.246 0.345 0.255 0.169 0.184 0.116 0.051 0.099

RMSE (km2) 11.155 11.480 10.511 10.924 11.211 11.222 11.327 11.895 11.580

RFR
(trees = 1000,
depth = 1000)

R2 −0.064 −0.130 0.035 0.024 −0.048 −0.066 −0.100 −0.226 −0.166
R 0.224 0.223 0.326 0.280 0.185 0.187 0.097 0.036 0.086

RMSE (km2) 11.183 11.526 10.653 10.711 11.099 11.194 11.371 12.008 11.711

3.4. Results of Evaluation (C)

The results of Evaluation (A) and (B) showed that N = 1 was the most accurate for SVR
and RFR. Therefore, Evaluation (C) was conducted to examine the contribution of each
factor (rainfall, wind direction and speed, pressure, tide level, and high-turbidity area) at
N = 1 in each model. Outliers due to high winds were not excluded. The results obtained
are shown in Table 6. It can be seen that, as in Evaluation (B), it is difficult to predict the
area of high-turbidity water from meteorological and oceanographic data alone, and that
the area of high-turbidity water on the previous day is important.

Table 6. Coefficient of determination (R2), correlation coefficient (R), and RMSE (km2) for each model
for each meteorological and oceanographic parameter, in Evaluation (C) with N = 1. Each parameter
was separately input to each model.

Model Index Rainfall Wind Vector Barometric
Pressure Tide Level

Area of
High-Turbidity

Water

SVR
(ε = 0.1,
C = 1.0)

R2 −0.011 −0.039 −0.009 0.088 0.354
R 0.080 0.209 0.019 0.305 0.646

RMSE (km2) 10.903 11.053 10.894 10.356 8.713



Remote Sens. 2023, 15, 1652 12 of 15

Table 6. Cont.

Model Index Rainfall Wind Vector Barometric
Pressure Tide Level

Area of
High-Turbidity

Water

SVR
(ε = 0.01,
C = 1.0)

R2 −0.138 0.050 −0.156 0.046 0.474
R 0.082 0.228 0.028 0.325 0.712

RMSE (km2) 11.565 10.571 11.658 10.593 7.861

SVR
(ε = 0.1,

C = 10.0)

R2 −0.014 −0.039 −0.113 0.076 0.335
R 0.073 0.209 0.019 0.339 0.621

RMSE (km2) 10.918 11.053 11.439 10.421 8.841

SVR
(ε = 0.01,
C = 10.0)

R2 −0.149 0.042 −0.084 0.033 0.368
R 0.062 0.222 0.125 0.327 0.652

RMSE (km2) 11.624 10.615 11.292 10.664 8.617

RFR
(trees = 100,
depth = 100)

R2 0.055 −0.203 −0.205 −0.178 0.350
R 0.236 0.033 −0.057 0.282 0.676

RMSE (km2) 10.538 11.891 11.902 11.766 8.743

RFR
(trees = 1000,
depth = 100)

R2 0.060 −0.163 −0.209 −0.133 0.376
R 0.245 0.060 −0.047 0.284 0.680

RMSE (km2) 10.514 11.691 11.922 11.541 8.566

RFR
(trees = 100,

depth = 1000)

R2 0.065 −0.142 −0.221 −0.127 0.377
R 0.257 0.069 −0.068 0.299 0.679

RMSE (km2) 10.483 11.586 11.983 11.513 8.559

RFR
(trees = 1000,
depth = 1000)

R2 0.060 −0.165 −0.210 −0.112 0.373
R 0.246 0.051 −0.053 0.289 0.678

RMSE (km2) 10.512 11.704 11.926 11.436 8.583

4. Discussion

The results of evaluation (A) showed that the RFR with trees = 100 and depth = 100 was
the most accurate at N = 1, with R2 = 0.552, R = 0.746, and RMSE = 7.260 km2 (0 to maximum
52.50 km2). The accuracy improved to R2 = 0.636, R = 0.810, and RMSE = 6.081 km2 when
data with five or more consecutive days of daily maximum instantaneous wind speeds
exceeding 10 m were excluded. The importance analysis of RFR showed that the previous
day’s high-turbidity area had the strongest influence, and the next most influential factors
were wind direction and speed. On the other hand, rainfall had little influence. The
coefficients of determination were close to zero or negative for most of the inputs in
Evaluations (B) and (C), suggesting that any model would have difficulty predicting
without using the previous day’s high-turbidity area. However, the highest prediction
accuracy using only the area of the previous day’s high-turbidity water in Evaluation (C)
(R2 = 0.474, R = 0.712, and RMSE = 7.861 km2 in SVR with ε = 0.01 and C = 1.0 for N = 1) is
lower than the highest accuracy in Evaluation (A). Thus, it can be seen that combining the
area of high-turbidity water on the previous day with meteorological and oceanographic
data is better than using the area alone. This may indicate that the area of high-turbidity
water can be approximated by the area of high-turbidity water on the previous day, but
the meteorological and oceanographic conditions (especially wind) up to the previous day
explain the degree of its diffusion.

The comparison results between SVR and RFR show that the latter is able to predict
the high-turbidity area with more stable accuracy for all inputs, though SVR showed a
better performance in Evaluation (C), which was a simpler regression problem.

The present assessment indicated that the influence of rainfall was low. This may
be due to the characteristics of the catchment area of the Kuma River. Several flood-
control dams have been installed on the Kuma River. In addition to these, there are
about 3000 hectares of rice paddies around the Kuma River, which are used as “rice
field dams” during heavy rains [29], and since the soil in the catchment easily permeates
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water, the proportion of water directly flowing into the river due to rainfall is low and the
amount of sand and other substances that cause TSS to be transported to the estuary is
considered relatively low [30]. Due to these effects, the impact of rainfall on TSS dispersion
is considered to be relatively small in the study area [29]. In addition, the reason for the
strong influence of wind direction and wind speed, followed by tide level, in the importance
analysis of RFR shown in Table 3 may be related to the characteristics of the Yatsushiro
Sea. The Yatsushiro Sea is an inland sea with a high degree of closure. In other words, the
area away from the connecting waters is less influenced by the ocean currents of the open
sea and more susceptible to the influence of tidal currents, resulting in a relatively calm
sea. In such calm seas, wind is thought to have a stronger influence on the diffusion of
surface water.

In this study, the Kuma River estuary in the Yatsushiro Sea was targeted, but it can be
applied to other ocean areas as well. However, since the Yatsushiro Sea is a highly enclosed
inland sea, the entry and exit of seawater from the open sea is limited, and it is strongly
influenced by tidal currents and is susceptible to wind and so on, while conditions will be
very different in the estuary facing the open sea. In addition, the Kuma River has three
flood-control dams and about 3000 hectares of rice paddies in its vicinity, so the impact of
rainfall around the river will be suppressed for normal levels of rainfall, except for extreme
rainfall such as typhoons; however, in rivers where these conditions are different, the effects
of rainfall are expected to be more significant. In addition, although GOCI TSS products
were used in this study, it should be noted that the observation area of GOCI is limited
to East Asia, and that the use of polar-orbiting satellite sensor products such as SGLI and
MODIS is necessary to apply this method to other regions of the world. However, this
study suggests that the combination of satellite-based TSS products and readily available
meteorological and oceanographic data can be used to predict the approximate area of
high-turbidity water, and future developments are expected.

5. Conclusions

In this study, we developed a method to predict the area of high-turbidity water
around the estuary of the Kuma River in the Yatsushiro Sea, Japan, by feeding satellite
TSS products and meteorological/oceanographic data to machine learning models. This
method differs from previous studies in that it does not predict turbidity for each location
where observation buoys are installed, but rather predicts the area of high-turbidity water
around the estuary of the river. The evaluation results showed that the highest accuracy
was obtained when RFR with trees = 100 and depth = 100 was used, with a determina-
tion coefficient of 0.552, correlation coefficient of 0.746, and RMSE of 7.260 km2 with the
maximum range of 0 to 52.50 km2, using TSS product and meteorological/oceanographic
data from the previous day as inputs. The accuracy improved to R2 = 0.636, R = 0.810,
and RMSE = 6.081 km2 when data with five or more consecutive days of daily maximum
instantaneous wind speeds exceeding 10 m were excluded.

In the importance analysis of the RFR, the most important factor for prediction was the
area of high-turbidity water on the previous day, followed by wind and tide level due to the
study area being an inland sea. On the other hand, rainfall had a smaller impact because
there are three flood-control dams on the Kuma River and approximately 3000 hectares of
rice paddies in the surrounding area. However, it is highly likely that the accuracy and
parameter contributions will differ in other ocean areas where these conditions are different,
and particularly the impact of rainfall is expected to be more significant. In addition, we
excluded narrow bays in this study due to limitations of the spatial resolution of GOCI.
However, since the occurrence and diffusion mechanisms of turbidity in narrow bays may
differ from one another, the prediction of turbidity in narrow bays using a higher resolution
image is a topic that should be addressed in the future.

In this study, we have demonstrated the possibility of predicting the area of high-
turbidity water around an estuary on the following day using satellite TSS products and
local meteorological and oceanographic data as inputs. This result is expected to lead to
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research that can predict damage to rich aquatic ecosystems and aquaculture farms caused
by turbid water and provide information for evacuating aquaculture facilities. Our future
work is to evaluate its applicability to other ocean areas, improve its accuracy, and predict
its distribution area.
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