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Abstract: Accurate monitoring of bare soil land (BSL) is an urgent need for environmental governance
and optimal utilization of land resources. High-resolution imagery contains rich semantic information,
which is beneficial for the recognition of objects on the ground. Simultaneously, it is susceptible to
the impact of its background. We propose a semantic segmentation model, Deeplabv3+-M-CBAM,
for extracting BSL. First, we replaced the Xception of Deeplabv3+ with MobileNetV2 as the backbone
network to reduce the number of parameters. Second, to distinguish BSL from the background, we
employed the convolutional block attention module (CBAM) via a combination of channel attention
and spatial attention. For model training, we built a BSL dataset based on BJ-2 satellite images. The
test result for the F1 of the model was 88.42%. Compared with Deeplabv3+, the classification accuracy
improved by 8.52%, and the segmentation speed was 2.34 times faster. In addition, compared with the
visual interpretation, the extraction speed improved by 11.5 times. In order to verify the transferable
performance of the model, Jilin-1GXA images were used for the transfer test, and the extraction
accuracies for F1, IoU, recall and precision were 86.07%, 87.88%, 87.00% and 95.80%, respectively.
All of these experiments show that Deeplabv3+-M-CBAM achieved efficient and accurate extraction
results and a well transferable performance for BSL. The methodology proposed in this study exhibits
its application value for the refinement of environmental governance and the surveillance of land use.

Keywords: bare soil land; high-resolution remote sensing imagery; semantic segmentation; deep learning;
Deeplabv3+; CBAM

1. Introduction

Rapid growth of the population and economy, acceleration of urbanization, and unrea-
sonable land use lead to a serious waste of land resources and ecological and environmental
impacts in China. Bare soil land (BSL) is a significant source of air pollution. Large-area
BSL leads to low land utilization rates, as well as ecological and environmental problems,
such as dust pollution and soil erosion [1]. In recent years, the accurate monitoring of BSL
is an urgent need for the refined management of urban environments and the improvement
of land resources utilization.

Compared with traditional methods, remote sensing technology has obvious advan-
tages in large-scale and dynamic automatic monitoring for BSL. The commonly used
classification systems for land use/land cover (LULC) were proposed by the United States
Geological Survey (USGS) [2], the Food and Agriculture Organization of the United Nations
(FAO) [3], and the Chinese Academy of Sciences (CAS) [4]. For these systems, there are
some differences in the number and definition of the classes. BSL is not defined in the
USGS’s and the CAS’s classification systems. In the FAO’s land cover classification system
(LCCS), “bare areas” is defined, which includes bare soil and loose/shifting sands. For
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current research on the classification of LULC, BSL is mostly overlooked, and the granu-
larity of the classification involving bare land is usually coarse. According to the Chinese
National Standard for Classification of Land Use Status (GB/T 2010–2017) [5], “BSL” is
defined as “soil covered land in surface layer, basically without vegetation cover”, and it is
classified as “other land categories”, including bare rock and gravel land and sandy land.

In terms of the classification and mapping of BSL based on remote sensing technology,
there are mainly two types of studies. The first is based on traditional methods. For example,
Tateishi [6] and Friedl [7] used supervised classification based on MODIS data to produce
land cover products. The land cover type containing bare land is mostly defined as mixing
exposed rock, saline–alkali land, sand and other lands. For these products, the renewal
frequency, spatial resolution and the class granularity cannot meet the requirements for
BSL monitoring. The second uses the bare soil index (BSI). Xu [1] constructed a BSI using
30 m resolution data from Landsat TM5. Nguyen [8] proposed a modified BSI using 15 m
resolution data from Landsat 8. The calculation of the BSI depends on the shortwave
infrared and midinfrared bands. With the development of remote sensors with high spatial
resolution, sensors increasingly retain only four bands, including red, green, blue, and near-
infrared, as well as a panchromatic band [9]. As a result, it is difficult to establish the BSI. In
addition, BSL is mostly shapeless and has different sizes and broken boundaries. Therefore,
it is still a challenge to extract BSL from other land cover classes using high-resolution
remote sensing images.

Deep learning methods have been widely used in recent years. Compared with the
classical machine learning method based on supervised classification, they have the ad-
vantages of a strong ability to extract adaptive features, high computational and reasoning
speed, high transferability and end-to-end learning. Therefore, they are more suitable for
the classification of large volumes of high-resolution images. There are many studies on
semantic segmentation for the extraction of buildings [10], roads [11], water bodies [12], etc.,
using deep learning. In addition, Karra [13] applied a deep learning method using 10 m
resolution Sentinel-2 data to produce a global LULC map. However, semantic segmentation
requires a significant amount of annotated data, which limits the use of deep learning
models. To address this challenge, transfer learning is proposed. Transfer learning can be
divided into instance-based transfer learning, feature-based transfer learning, model-based
transfer learning and relation-based transfer learning [14]. Domain adaptation is another
term commonly used in transfer learning, and many studies address this challenge of
limited annotated data [15–18]. For cases where the dataset types of the source and target
domains are homogeneous (for example, photos of roads in different countries), domain
adaptation can transfer their domain invariant features. If the data types of the source
and target domains are heterogeneous (for example, photos taken by a phone and remote
sensing images), model-based transfer learning is more feasible.

As a typical deep learning model for semantic segmentation, DeepLab was developed
in four versions, V1, V2, V3 and V3+, from 2015 to 2018. For DeepLab V1 [19], convolution
in full convolutional networks (FCNs) is replaced with atrous convolution to expand the
receptive field. For DeepLab V2 [20], atrous spatial pyramid pooling (ASPP) is introduced.
It allows for the input image at arbitrary scales to be performed by feature maps. For
DeepLab V3 [21], several atrous convolution modules with different expansion rates are
used to capture the multiscale context. Simultaneously, the model removes the full connec-
tion condition random field (CRF), which has a lesser effect on the model. Deeplabv3+ [22]
was released in 2018, which uses ASPP to fuse the multiscale information in its encoder,
and its concise decoder can efficiently recover the precision edge. There are some successful
applications in semantic segmentation for high-resolution remote sensing images. Lin [23]
integrated the attention mechanism module squeeze-and-excitation (SE) for channels into
DeepLab V3 to alleviate the multiscale problems due to the different length–width ratios
of roads so that the weights could be applied to different channels. The intersection over
union (IoU) of the two classifications of road/nonroad was 84.62%. To solve the imbal-
anced distribution problem of samples, Ren [24] combined the Dice loss functions and the
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binary cross entropy (BCE) loss functions with Deeplabv3+ so that the mean intersection
over union (mIoU) for desert, road, water and other categories reached 87.74%. However,
Deeplabv3+ has not been used for BSL extraction so far.

To reduce the impact of BSL on the environment, common governance measures
include covering with dust-proof nets, hardening with cement and planting trees or grass.
The areas where these measures are taken mainly have no dust pollution risk, so they
were not treated as BSL in this study. They were regarded as the background objects.
However, even if these areas have been treated, there will probably be some bare soil
exposed. We named the BSL areas by the governance measure of planting trees, for short,
BSL-PT. For the areas where bare soil is often, again, exposed due to the seasonal withering
of grass, we named them, for short, BSL-PG. As a temporary treatment measure, coverings
with dust-proof nets easily lead to the repeated exposure of BSL. Meanwhile, the spectral
characteristics of BSL on high-resolution images are similar to those of buildings [25]. The
distinction between them has still been a difficulty for the research of urban impervious
surface extraction. Therefore, together with the BSL-PT, BSL-PG, dust-proof nets and
buildings, they form a complex background that affects the extraction of BSL.

In this study, we adopted the definition of BSL in the Chinese National Standard
for Classification of Land Use Status. In order to reduce the impacts on BSL extraction
caused by complex backgrounds, buildings, BSL-PT and BSL-PG were regarded as the
background in the process of the BSL dataset construction based on high-resolution remote
sensing images. Then we constructed the Deeplabv3+–MobileNetV2–convolutional block
attention module (Deeplabv3+-M-CBAM) based on Deeplabv3+ for the real-time semantic
segmentation of BSL. Finally, it was tested on two different sources of data to verify
its transferability.

2. Materials and Methods
2.1. Study Areas and Data
2.1.1. Study Areas

In recent years, due to the large volume of urban renewal construction, the problem
of dust pollution caused by BSL in Beijing has become prominent. Daxing District is the
national collective commercial construction land pilot of Beijing. Large-scale demolition
in this district has caused a large amount of BSL, which is an important source of PM10
and PM2.5 contributing to environmental pollution. Since 2020, Beijing has implemented
the “Beijing Municipal Pollution Prevention and Control Battle Action Plan in 2020”, and
Daxing District has carried out monitoring of BSL using remote sensing technology.

We took three towns in Daxing District as the study areas: Yufa, Beizangcun and
Weishanzhuang, as shown in Figure 1, labeled the training area, testing area and transfer
area, respectively, with areas of 134.14, 47.4 and 81.33 km2.
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2.1.2. Data

(1) Data sources
For this study, the images used for the above study areas all had a spatial resolution

of 0.8 m without cloud coverage. For the training area and testing area, the images
were acquired by the BJ-2 satellite on 21 April 2020, by Twenty First Century Aerospace
Technology Co., Ltd. (Beijing, China). For the transfer area, to validate the model’s
transferability, the images were acquired by the Jilin-1 GXA satellite on 30 August 2021, by
Chang Guang Satellite Technology Co., Ltd. (Changchun, China).

(2) Preparation for the BSL dataset
Considering that some grass or trees are planted in the BSL-governed areas, there

were still some small BSL patches exposed, which should be taken as non-BSL patches. The
examples are as shown in Figure 2. Some BSL-PG areas often become areas of withered
grass in the winter, the textural features of which in images are smooth and mostly similar to
those of BSL, such as in Figure 2a–c. Figure 2d is a field survey photo, and BSL-PT areas with
dotted textures are shown in Figure 2e–g along with BSL-covered areas. Figure 2h is another
field survey photo. We took BSL-PG and BSL-PT areas such as these as the background.
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Generally, a deep learning dataset is divided into three parts: training set, validation
set and test set. The training set and validation set are used for training the deep learning
model, while the test set is used for evaluating the transferability of the model. To extract
BSL, we established a BSL dataset. The procedures mainly included the preprocessing of the
high-resolution satellite images, such as geometric correction and radiometric correction,
image cropping and image labeling.

After cropping, the size of each image was 256 × 256 pixels, with bands of red, green
and blue. Image labeling refers to the pixel-level labeling of the targets and background in
the selected images. The semantic annotation was conducted in EISeg (Efficient Interactive
Segmentation), which is an efficient and intelligent interactive segmentation annotation
software developed based on PaddlePaddle. The BSL and its backgrounds are represented
by different colors, as shown in Figure 3. The format of the images was JPG and for the
labeling images PNG.
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The final number of valid samples for the study areas was 1395, which is a small
dataset with fewer than 1500 samples. Of these, 1031 samples were from training area, with
800 used for the training set and 231 for the validation set, and 364 were from the testing
area and used in the test set. They are shown in Table 1.

Table 1. BSL dataset.

Training Set Validation Set Test Set All

Sample Number 800 231 364 1395
Area Training Area Training Area Testing Area -

2.2. Methods

To extract the BSL from high-resolution remote sensing images, we used Deeplabv3+
as the basic model. To decrease the number of operations and the memory needed by
Deeplabv3+, we replaced its Xception backbone network with a more lightweight network,
MobileNetV2. To speed up the learning process of the model, we used a pretrained model
on the PASCAL Visual Object Classes 2012 (VOC2012) dataset [26]. In addition, to enhance
the ability of the MobileNetV2 network, the convolutional block attention module (CBAM)
was used to reduce the impact of complex backgrounds. In summary, this study merged
MobileNetV2 and CBAM to construct the BSL extraction model Deeplabv3+-M-CBAM. To
verify the robustness and transferability of this model, a test using BJ-2 images of the testing
area and a transfer test using Jilin-1GXA images for the transfer area were undertaken. The
automatic thematic mapping for the two large-scale t areas was completed. The process is
shown in Figure 4.

2.2.1. Deeplabv3+ Model

Deeplabv3+ is the latest semantic segmentation model of the DeepLab series, and its
framework is shown in Figure 5. Deeplabv3+ employs the entire DeepLab V3 network as
the encoder and uses ASPP modules and depthwise separable convolution (DSC) to fuse
multiscale features and balance the accuracy and time consumption. The decoder is used
to gradually recover a feature’s boundary [22], which is simple but effective. In the encoder,
the result of the image processing by backbone networks is divided into two parts. One is
introduced to the decoder directly as the shallow feature, and the other passes through the
parallel ASPP module at different scales of atrous convolution, obtaining feature extraction
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results with different scales, which are merged into deep features by the compression of
the features using a 1 × 1 convolution layer. Then, the deep features are upsampled into
the decoder. In the decoder, the shallow features and the deep features can be concatenated
into a merged feature map, and subsequently, the merged feature map is processed by the
convolution layer and the upsampling layer. Finally, the final prediction results can be
obtained.
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2.2.2. Construction of the Deeplabv3+-M-CBAM Model

Due to the BSL dataset being a small dataset, when it was used to train the Deeplabv3+
model directly for BSL extraction, it easily resulted in overfitting, which makes it difficult
to achieve high robustness. Therefore, we replaced the Xception backbone network of
Deeplabv3+ with the lighter MobileNetV2 to avoid overfitting by reducing the number
of original model parameters. Because the background of BSL is complicated, as well as
the similar spectral characteristics of buildings and BSL, we optimized the MobileNetV2
network by combining the channel and spatial attention mechanisms using the CBAM
module in order to enhance the ability to distinguish BSL from BSL-PG, BSL-PT and build-
ings. With the above two improvements, we finally constructed the semantic segmentation
model, Deeplabv3+-M-CBAM, for the extraction of BSL.

(1) A lighter backbone network—MobileNetV2
MobileNetV2 [27] is a lightweight network with a small size and strong feature

extraction ability, which performs well in semantic segmentation and target detection tasks.
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Its structure is shown in Figure 6. The parameters of MobileNetV2 are shown in Table 2,
where “t” is the expansion factor of the input channel. Each line describes a sequence of 1
or more identical (modulo stride) layers, repeated n times. All layers in the same sequence
have the same number, c, of output channels. The first layer of each sequence has a stride s,
and all others use stride 1.
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Table 2. Parameters of the MobileNetV2 network.

Input Operator t c n s

2242 × 3 conv2d - 32 1 2
1122 × 32 bottleneck 1 16 1 1
1122 × 16 bottleneck 6 24 2 2
562 × 24 bottleneck 6 32 3 2
282 × 32 bottleneck 6 64 4 2
142 × 64 bottleneck 6 96 3 1
142 × 96 bottleneck 6 160 3 2
72 × 160 bottleneck 6 320 1 1
72 × 320 conv2d 1 × 1 - 1280 1 1

72 × 1280 avgpool 7 × 7 - - 1 -
1 × 1 × 1280 conv2d 1 × 1 - k -

When the stride for the convolution operation is 1, its input features are first processed
by 1 × 1 convolution, which is building new features through computing linear combina-
tions of the input channels. Next, they are extracted by the DSC layer and then processed
by a 1 × 1 convolution layer to reduce the channels. By these processes, the results of the
dimension reduction and the input feature are added to construct an inverted residual
structure to alleviate the gradient disappearance. When the stride is 2, there is no inverted
residual structure, because the size of the input feature is inconsistent with that of the
output feature. Instead, the original information is directly merged and spliced with the
subsequent results, and the other steps are consistent with the steps when the stride is 1.

(2) An optimized backbone network—M-CBAM
Since BSL-PT and BSL-PG for the governance of BSL by planting trees or grass mostly

contain an amount of BSL, when using Deeplabv3+ for pixel-level semantic segmentation,
this will result in the extraction of small patches of BSL in these areas, which are uninterested
areas in this study. Meanwhile, buildings are difficult exclude due to the similar spectral
characteristics with BSL. Hence, in order to exclude those uninterested areas, we introduced
the convolutional block attention module (CBAM) [28], which can link the channel attention
module and spatial attention module to improve Deeplabv3+. Its structure is shown in
Figure 7.
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The channel attention module can compress the spatial dimensions of a feature map
and enlarge the difference in the spectral features between different objects, solving the
problem caused by the similar spectral features of buildings to those of BSL. Moreover,
the spatial attention module can integrate multiscale spatial information to expand the
distinction between BSL and BSL-PT and BSL-PG. Given an intermediate feature map for
input, the CBAM can deduce the attentional map along two independent dimensions and
then multiply the attentional map by the feature map for adaptive feature optimization.
The overall attention process can be summarized as:

F1 = Mc(F0)⊗ F0 (1)

F2 = Ms(F1)⊗ F1 (2)

where ⊗ represents element-wise multiplication, MC is the channel attention map, Ms is the
spatial attention map, F0 is the input feature map, and F1 is the intermediate feature map.

The channel attention module compresses the feature map in the spatial dimensions
to obtain a 1D channel attention map. Given F0 as the input feature map, the module
utilizes both max-pooling outputs and average-pooling outputs with a shared network so
that the spatial information of F0 is aggregated. Then, the channel attention map, Mc, is
obtained by summing the corresponding pixels in each feature map pixel by pixel. After
the element-wise multiplication of Mc and F0, F1 is obtained. Channel attention can be
expressed as:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ

(
W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
) (3)

The spatial attention module takes F1 as the input feature. After two pooling op-
erations, the average-pooled features and max-pooled features are obtained. They are
concatenated and convolved by a standard convolution layer, producing an Ms of 2D. After
the element-wise multiplication of Ms and F1, F2 as the output of the CBAM is obtained.
Spatial attention can be expressed as:

Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)

= σ
(

f 7×7
([

Fs
avg; Fs

max

])) (4)

where σ represents the sigmoid function, and f 7×7 represents the size of the convolu-
tion kernel.

Semantic segmentation focuses on both category information (“what”) and boundary
information (“where”). In addition, the channel and spatial attention modules of the CBAM
can learn “what” and “where” to attend in the channel and spatial axes, respectively.
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In this study, we merged the CBAM and MobileNetV2 to construct MobileNetV2–
CBAM (M-CBAM). The network structure is shown in Figure 8. Taking the M-CBAM as
the backbone network of Deeplabv3+, the constraints on the spatial features and channel
features of BSL can be added in the generation stage of the intermediate feature map. When
the stride is 1, the input image will be first transformed into a feature map through the
CBAM module, and then it can successively go through the 1 × 1 convolution layer, DSC
layer and 1 × 1 convolution layer. The feature map of MobileNetV2 and CBAM can be
fused by shortcut structure. Finally, the fusion map can be operated by the CBAM module
again, and the output feature map of the backbone network can be obtained. When the
stride is 2, there is no shortcut structure, and the other steps are the same as when the
step size is 1, where the parameters t, n, c and s remain unchanged. In the M-CBAM
structure, the category information and boundary information of BSL are enhanced twice
by the CBAM.
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In summary, MobileNetV2 can decrease the number of operations and memory needed
by losing a small amount of precision. The CBAM can focus on BSL and suppress back-
ground information. Based on the above points, the Deeplabv3+-M-CBAM was constructed.

2.2.3. Model-Based Transfer Learning

Transfer learning is a method that aims to transfer knowledge from a source domain
to improve a model’s performance or minimize the number of labeled examples required in
a target domain [14]. Model-based transfer learning is a kind of transfer learning solution.
It is a way to continue learning based on the previous learning for the model. For deep
learning, this refers to the fact that a model is first trained on an unrelated dataset of task A
and uses the training result as the pretrained model for task B to initialize the model.

During the process of model training, if the initial weights of the model are completely
random, it will take a long time for the model to find the appropriate weights and result in
an insignificant effect on feature extraction, hardly achieving good network training. In
order to speed up the model training, the transfer learning strategy of the pretraining model
of MobileNetV2 was adopted in this study. The VOC2012 is a classical dataset for image
segmentation, which contains 20 real-world categories, such as bikes, boats and people,
and it is commonly used as a pretraining dataset for segmentation tasks. An effective
deep learning model requires a large amount of annotated data. However, compared to
large datasets, such as VOC12, the BSL dataset has a small number of labeled samples.
Thus, based on the transferability of the convolutional neural network in knowledge
learning [29,30], the weights learned by MobileNetV2 on VOC2012 were taken as the
initial weights of the model to avoid the initial weights being too random. The process of
model-based transfer learning is shown in Figure 9.
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2.2.4. Accuracy Evaluation Indexes of the Model

In this study, the accuracy evaluation indexes we used included Precision, Recall, F1
and IoU. The evaluation index for the model’s running speed was frames per second (FPS).
The indexes are defined as follows:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(7)

IoU =
TP

TP + FP + FN
(8)

In the binary classification of BSL, a BSL pixel in the label is called positive, and the
background pixel in the label is called negative. In addition, a correct prediction pixel by
the model is denoted as true, and wrong is denoted as false.

TP: true positive, where the area predicted by the model is BSL, and the truth is BSL.
FP: false positive, where the area predicted by the model is BSL, but the truth is

the background.
FN: false negative, where the area predicted by the model is the background, but the

truth is BSL.
FPS refers to the number of images processed by the model per second. Under the

same software and hardware conditions, the larger the FPS, the faster the data processing
speed of the model.

2.3. Experimental Settings

The hardware configuration of the computer used for the model training and test
was an Intel Xeon e5-2678 processor, 32 GB memory and a NVIDIA Geforce RTX 2080 Ti
graphics card (11 GB). The operating system was Windows10 and the main deep learning
library was torch1.8.0. The programming language was Python.

In order to show the advantage of Deeplabv3+-M-CBAM, this study completed two
sets of model training for Deeplabv3+-Xception (Deeplabv3+), Deeplabv3+-MobileNetV2
(Deeplabv3+-M), Deeplabv3+-M-CBAM and the classical semantic segmentation models
FPN [31], UNet [32] and LinkNet [33]. The training parameters of each model are shown in
Table 3.
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Table 3. Training parameters of the different models. “-M” means using MobileNetV2 as the
backbone network.

Model Initial Learning
Rate Optimizer Epoch Batch

FPN-M 1 × 10−4 Adam 100 2
UNet-M 1 × 10−4 Adam 100 2

LinkNet-M 1 × 10−4 Adam 100 2
Deeplabv3+ 5 × 10−5 Adam 300 4

Deeplabv3+-M 5 × 10−4 Adam 200 4
Deeplabv3+-M-CBAM 5 × 10−4 Adam 200 4

3. Results
3.1. Model Training and Results

The learning rate decline curve of Deeplabv3+-M-CBAM is shown in Figure 10. It can
be seen that the curve decline rate became increasingly smaller and finally flattened out.
In addition, the learning rate dropped and was close to zero. The loss curve is shown in
Figure 11. In the first round of training, the loss value of the training set differed greatly
from that of the validation set, indicating that the model had not completed learning. In
the 70th round of training, the two loss curves dropped to the same level and remained
stable, indicating that the model training was completed. If the model was overfitted, then
as the training loss curve becomes increasingly lower, the validation loss curve will become
increasingly higher. The overfitting will result in poor model transferability, i.e., the model
cannot be used outside of the training set area.
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When Xception, MobileNetV2 and M-CBAM were taken as the backbone network,
their accuracy curves on the BSL validation set are shown in Figure 12a. After this training,
the F1 of the Deeplabv3+ model reached 92.76%. In addition, after the first round of learning,
the Deeplabv3+-M model achieved an accuracy of more than 70%, which demonstrates the
advantage of lightweight networks on small datasets. After using the CBAM module to
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improve the MobileNetV2 network, Deeplabv3+-M-CBAM had a higher accuracy in the
early training stage, and the final training accuracy was higher than the first two models.
This indicates that the CBAM module can help a model to learn the features of BSL faster
and better. Compared to the combinations of MobileNet v2 with the UNet, FPN and
LinkNet models, the combination of MobileNet v2 with Deeplabv3+ worked better. Their
accuracy curves are shown in Figure 12a. In Figure 12b, the trends of the IoU curves and
the F1 curves were similar.
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To make the comparison statistically meaningful, this study repeated the experiments
five times and report both the average performance and the standard deviation (σ). Com-
parisons of the training performances of the different models on the BSL validation set are
shown in Table 4. Compared with Deeplabv3+, the parameter sizes of FPN-M, UNet-M and
LinkNet-M were smaller, but their accuracy was not satisfactory. When we replaced the
backbone network of Deeplabv3+ with MobileNetV2, the parameter size of the model was
reduced from 52.25 M to 5.60 M, which decreased greatly by approximately 90%. When
combining the CBAM with the above pretraining strategy into Deeplabv3+-M-CBAM on
this basis, its F1 accuracy was improved by 2.30%, from 91.09% to 93.49%, without increas-
ing its number of parameters. Comparing Deeplabv3+-M-CBAM with Deeplabv3+-M, the
FPS increased less, but compared with Deeplabv3+, the FPS increased by 2.34 times, from
17.29 to 40.50 f/s.

Table 4. The performance comparison for training the different models on BSL validation set.

Indexes / FPN-M UNet-M LinkNet-M Deeplabv3+ Deeplabv3+-M Deeplabv3+-
M-CBAM

F1 (%)
Average 69.44 61.95 68.32 91.96 91.09 93.49

σ ±3.35 ±2.27 ±1.26 ±0.76 ±0.97 ±0.24

Precision (%)
Average 70.71 63.39 69.67 92.53 92.49 93.89

σ ±3.58 ±1.91 ±1.33 ±0.48 ±0.34 ±0.40

Recall (%)
Average 93.58 92.97 93.17 92.13 91.64 94.31

σ ±0.38 ±0.47 ±0.13 ±0.78 ±1.12 ±0.25

IoU (%)
Average 65.35 57.58 64.09 86.58 85.05 88.85

σ ±3.40 ±2.22 ±1.33 ±1.01 ±0.29 ±0.38

Training time (h) Average 0.92 0.64 0.74 5.80 1.89 1.87
σ ±0.07 ±0.08 ±0.12 ±0.03 ±0.07 ±0.03

FPS (f/s)
Average 4.01 5.45 7.11 17.29 40.04 40.50

σ ±0.09 ±0.27 ±0.08 ±0.35 ±0.96 ±1.44
Parameter size (M) / 5.08 7.78 4.08 52.25 5.60 5.60

The bold represents the best performance in the same group.
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3.2. Model Testing and Results

On the BSL test set, the accuracies of the FPN-M, UNet-M, LinkNet-M, Deeplabv3+
and Deeplabv3+-M-CBAM are shown in Table 5. Figure 13 shows the extraction details
for nine example images for BSL-PG (such as Figure 13a–c), BSL-PT (such as Figure 13d,e),
buildings (such as Figure 13b–e) and dust-proof net covered areas (such as Figure 13f,g).

Table 5. Comparisons for BSL extraction accuracies for different models on BSL test set.

Model F1 (%) Precision (%) Recall (%) IoU (%)

FPN-M 60.97 68.77 70.18 53.74
UNet-M 77.36 79.83 79.43 57.95

LinkNet-M 79.10 81.95 80.39 69.59
Deeplabv3+ 79.90 79.85 88.49 75.34

Deeplabv3+-M-CBAM 88.42 87.18 92.03 85.13
The bold represents the best performance in the same group.
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For FPN-M, UNet-M, LinkNet-M and Deeplabv3+, there were false detections in
different degrees for the BSL-PG, labeled by the red, dotted boxes in the images, as shown
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in Figure 13a–c. Conversely, Deeplabv3+-M-CBAM could distinguish almost all BSL-PG
from the background. In Figure 13d, two BSL-PT, as shown by the red, dotted boxes,
were mistakenly detected as BSL by FPN-M, UNet-M and LinkNet-M, and buildings were
detected as BSL as well. Deeplabv3+ only mistakenly detected one of them as BSL, and
Deeplabv3+-M-CBAM had no incorrect detections. In Figure 13e, the BSL-PT in the red,
dotted box was extracted by Deeplabv3+, while it was not by Deeplabv3+-M-CBAM. In
Figure 13f, all models achieved good extraction. However, in Figure 13g, due to the thinner
dust-proof net than that in Figure 13f, the distinction between it and BSL was lower. As
a result, there were many false detections in FPN-M and UNet-M, and a small number
of false detections in LinkNet-M and Deeplabv3+. Although Deeplabv3+-M-CBAM did
not make a mistake, it failed to detect the small area of BSL exposed by the damage of the
dust-proof net.

Based on the above analysis, FPN-M, UNet-M and LinkNet-M, as classical semantic
segmentation networks, achieved good segmentation results in the case of simple back-
grounds and high differentiation from BSL, such as in Figure 13f. However, they had
difficulty in distinguishing buildings, BSL-PT and BSL-PG from BSL in complex back-
grounds, such as in Figure 13b–d. Since the atrous convolution in Deeplabv3+ can enlarge
the receptive field, Deeplabv3+ could distinguish buildings, BSL-PT and BSL-PG from BSL
to some extent, but it still cannot meet the segmentation requirements. The Deeplabv3+-M-
CBAM greatly improved the ability to distinguish between buildings, BSL-PT and BSL-PG.
As can be seen from Table 5, the F1 of Deeplabv3+-M-CBAM was higher than those of the
previous models. The test result for F1 was 88.42%, and the FPS was 42.99 f/s, with F1
increased by 27.45%, 11.06%, 9.32% and 8.52% compared to FPN-M, UNet-M, LinkNet-M
and Deeplabv3+, respectively.

3.3. Automatic Mapping of Large-Scale Transfer Area

In recent years, the application of deep learning technology to automatic mapping
for large-scale thematic maps has gradually been applied. Ma [34] used a deep learning
method to make a thematic map of greenhouses in China based on high-resolution remote
sensing images. Jiang [35] used a deep learning method to quickly create a large map for
flood-affected areas. Li [36] used deep learning methods to produce forest canopy maps of
combined UAV images with photogrammetric point cloud data.

To further verify the robustness of the Deeplabv3+-M-CBAM model, this study used
the transfer area to conduct large-scale automated mapping. As shown in Table 6, taking
the result of the visual interpretation as the ground truth, the F1, recall, precision and IoU
of our model for BSL was 86.07%, 87.00%, 95.80% and 87.88%, respectively. The time cost
of the visual interpretation was 47 min, while the time cost of the automated mapping by
our model was only 4 min and 5 s. The efficiency of the mapping of BSL improved by
11.5 times. Figure 14 is a visualization of the extraction results of the transfer area. The
transfer test results show that the Deeplabv3+-M-CBAM model had good robustness on
data from different data sources and different seasons. In addition, the postprocessing
can further improve the accuracy of semantic segmentation results to meet the quality
standard of mapping, such as removing pixel noise (filtering or morphological processing)
and artificially correcting errors.

Table 6. BSL extraction accuracy of Deeplabv3+-M-CBAM in the transfer area.

Imaging Time
Visual

Interpretation
Time

Model
Extraction

Time
F1 (%) Recall (%) Precision (%) IoU (%)

30 Aug 2021 47 min 4 min 5 s 86.07 87.00 95.80 87.88
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Figure 14. The results of the large-scale mapping of BSL in the transfer area by visual interpretation
and Deeplabv3+-M-CBAM: (a) transfer area; (b) ground truth of BSL for the transfer area; (c) BSL
extraction results using our model. The coordinate system is GCS_WGS_1984.

4. Discussion
4.1. Visualizing Convolutional Networks

To better explain how the deep learning model processes images, this paper visualized
the features of different network layers in Figure 15. The redder the pixel in the features,
the higher the probability that the pixel belongs to BSL. In shallow features, the boundary
details of BSL are rich, but the category information is poor. Although the backbone
features have strong category information, the boundary information loss is obvious. After
the extraction of the ASPP layers with different rates, the deep features had stronger
category information, and the boundary resolution was further reduced. After fusing
features in the decoder, the fusion features had obvious category information and clearer
boundary information.
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4.2. Lighter Semantic Segmentation Mode

Generally, larger receptive fields, deeper networks and more parameters mean that the
model has a stronger feature expression ability. On the contrary, the shallower the network
and the fewer the number of parameters, the weaker the feature expression ability of the
model. However, if the network is too deep and the number of parameters is too large,
it will not only increase the detection time and the burden of computer memory but also
have the risk of overfitting. Therefore, the model is expected to have as few parameters as
possible, be as high precision as possible and have good transferability.

The ASPP module of the Depplabv3+ model can combine multiscale features to
expand the receptive field. However, Depplabv3+ could not distinguish BSL-PT and
BSL-PG from BSL. The DSC and inverted residual structure of MobileNetV2 can reduce
the number of parameters and efficiently integrate features. The CBAM can improve the
model’s attention to BSL in the process of feature fusion without increasing the number
of additional parameters. The extraction results of Deeplabv3+-M-CBAM in the BSL test
set show that the CBAM could improve the model’s attention to BSL and greatly enhance
the distinction ability between buildings, BSL-PG and BSL-PT. Finally, the Deeplabv3+-M-
CBAM network achieved a higher model accuracy, with only 10% of the model parameters
of Deeplabv3+. A lighter real-time semantic segmentation model can provide effective
technical support for monitoring BSL.

4.3. Comparison with Other Public Datasets

In order to verify the mapping results of BSL by Deeplabv3+-M-CBAM, the test area
was chosen for comparisons with public global land cover products and ground truth by
visual interpretation for the same year. Considering the timeliness and accuracy of the data,
ESRI10 (2020) and ESA10 (2020) with a 10 m resolution, downloaded from Google Earth
Engine, were used.

ESRI10 (2020) was produced by Environmental Systems Research Institute, Inc., (Esri)
based on 10 m resolution Sentinel images from 2020 and a deep learning method, which
has 10 categories, and the overall accuracy of this product is 85%. ESA10 (2020) is jointly
produced based on Sentinel-1 and Sentinel-2 data from 2020 by the European Space Agency
(ESA) and some scientific research organizations, which has 10 categories, and its overall
accuracy is 74.4%. The classification systems for ESRI10 and ESA10 are shown in Table 7.
Bare ground or barren land, including sand, gravel, rock and BSL, is classified in these two
classification systems.
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Table 7. The classification system of ESRI10 and ESA10.

ESRI10 ESA10

Categories

Water Water bodies
Trees Forest
Grass Grasslands

Flooded vegetation Wetlands
Crops Cropland

Scrub/shrub Shrublands
Built area Impervious

Bare ground Barren land
Snow/ice Snow and ice

Clouds Tundra

The comparisons of the mapping results using our model, ESRI10 (2020) and ESA10
(2020) with ground truth data are shown in Figure 16. It was found that there were also
great differences among the different mapping results. For ESRI10 (2020), the classification
results were coarse, and there were only a few bare land patches. For ESA10 (2020), there
were many more bare land patches than that of the results using Deeplabv3+-M-CBAM,
because there were only BSL patches extracted by Deeplabv3+-M-CBAM.
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Figure 16. BSL-related mapping results for the different LULC products: The coordinate system of
the maps is GCS_WGS_1984.

We selected four typical regions (corresponding to four images) from the test area
for more detailed comparisons. The results are shown in Figure 17. For ESRI10, only one
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region of bare land in the image shown in Figure 17(3) was classified. For ESA10, the
boundary fineness of bare land was insufficient, and there were obvious omissions for
large areas of BSL in the images shown in Figure 17(1),(2). Some areas of greenhouses
and buildings were falsely detected as bare land in the images in Figure 17(3),(4). Some
of the omissions were probably due to the different acquisition times of the images. Yet,
the results of Deeplabv3+-M-CBAM were the closest to the ground truth, except for some
fragmental patches of BSL and noise.
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From the comparisons, it can be found that there were problems of insufficient accuracy
and coarse-grained definition for bare land, although the current public datasets contain
bare land. For the results of the BSL extraction by Deeplabv3+-M-CBAM from high-
resolution remote sensing images, both the boundary accuracy and class accuracy were the
closest to the ground truth.

5. Conclusions

The precise detection of BSL is of great significance to improve the utilization rate of
land resources and ecological environmental governance. Current land cover products are
mostly produced based on medium- or low-resolution images, such as MODIS, Landsat and
Sentinel, and the granularity and accuracy of the classes cannot meet the requirements of
regional BSL extraction and monitoring. High-resolution images can provide more detailed
information on objects, but its limited number of spectral bands results in some difficulties
in separating BSL and buildings with similar spectral characteristics. Moreover, complex
backgrounds with rich semantic information pose challenges to traditional methods. In the
process of the fine management of BSL, BSL-PT and BSL-PG are formed due to the planting
of grass and trees, which makes the background more complicated and interferes with the
extraction of BSL.

In summary, this study proposes a lighter semantic segmentation model combined
with the CBAM. The improved Deeplabv3+ model (Deeplabv3+-M-CBAM) extracts BSL
from complex backgrounds and performs well in test accuracy. Compared with mainstream
models, Deeplabv3+-M-CBAM had the highest ability to distinguish BSL from BSL-PG,
BSL-PT and buildings. Due to the 90% reduction in the parameters, Deeplabv3+-M-CBAM
can be deployed to run on machines with more limited resources. This study provides
technical support for the governance of BSL by artificial intelligence technology. Meanwhile,
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it will enrich the classification granularity of traditional LULC classification and promote
the fine classification of LULC in the near future.

Certainly, there are still two further studies on the datasets and postprocessing for the
results that can be considered. In regard to the data, the cloud coverage of the image data
we used was 0%. However, in most cases, the acquired images often have cloud coverage.
Therefore, in order to enhance the robustness of the model, cloud samples can be added
into the BSL dataset for the training of the model. In regard to the postprocessing of the
results of the model, since the BSL extraction results were pixel-based raster data, it should
be processed according to the different minimum statistic units, for example, 3 × 3 pixels,
to remove the pixels smaller than this size and to satisfy the different demands for BSL
governance. These improvements will provide better technical support for perennial BSL
monitoring and more detailed demands.

Author Contributions: Conceptualization, C.H., Y.L. and Y.R.; methodology, C.H. and Y.L.; software,
C.H.; validation, Y.R. and Y.L.; formal analysis, Y.L.; investigation, Y.R., S.L., L.Y. and Y.L.; resources,
Y.L.; data collection and processing, Y.R. and S.L.; writing—original draft preparation, C.H. and
Y.L.; writing—review and editing, Y.R. and C.H; visualization, D.W.; supervision, Y.L, Y.R. and S.L.;
project administration, D.W. and Y.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Project of Dynamic Remote Sensing Monitoring of Bare
Soil in Daxing District, Beijing, China (grant number: DXCG_21_0904).

Data Availability Statement: Not applicable.

Acknowledgments: The authors are very grateful to the people who helped in the acquisition of the
satellite images for this article and are also grateful to the anonymous reviewers for their helpful
comments and suggestions.

Conflicts of Interest: We declare that we have no conflict of interest.

References
1. Xu, H. Dynamics of Bare Soil in A Typical Reddish Soil Loss Region of Southern China: Changting County, Fujian Province. Sci.

Geogr. Sin. 2013, 33, 489–496. [CrossRef]
2. Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote

Sensor Data. In Professional Paper; USGS Publications Warehouse: Reston, VA, USA, 1976. [CrossRef]
3. Gregorio, A.D.; Jansen, L.J.M. Food and Agriculture Organization of the United Nations. Land Cover Classification System:

LCCS: Classification Concepts and User Manual; Food and Agriculture Organization of the United Nations: Rome, Italy, 2000;
ISBN 978-92-5-104216-8.

4. Liu, J.; Zhuang, D.; Luo, D.; Xiao, X. Land-Cover Classification of China: Integrated Analysis of AVHRR Imagery and Geophysical
Data. Int. J. Remote Sens. 2003, 24, 2485–2500. [CrossRef]

5. Chen, B.; Zhou, X. Explanation of Current Land Use Condition Classification for National Standard of the People’s Republic
of China. J. Nat. Resour. 2007, 22, 994–1003. [CrossRef]

6. Tateishi, R.; Uriyangqai, B.; Al-Bilbisi, H.; Ghar, M.; Tsend-Ayush, J.; Kobayashi, T.; Kasimu, A.; Hoan, N.; Shalaby, A.;
Alsaaideh, B.; et al. Production of Global Land Cover Data—GLCNMO. Int. J. Digital Earth 2011, 4, 22–49. [CrossRef]

7. Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.;
Cooper, A.; et al. Global Land Cover Mapping from MODIS: Algorithms and Early Results. Remote Sens. Environ. 2002, 83,
287–302. [CrossRef]

8. Nguyen, C.T.; Chidthaisong, A.; Kieu Diem, P.; Huo, L.-Z. A Modified Bare Soil Index to Identify Bare Land Features during
Agricultural Fallow-Period in Southeast Asia Using Landsat 8. Land 2021, 10, 231. [CrossRef]

9. Li, D.; Wang, M.; Jiang, J. China’s High-Resolution Optical Remote Sensing Satellites and Their Mapping Applications. Geo-Spat.
Inf. Sci. 2021, 24, 85–94. [CrossRef]

10. Zhao, W.; Persello, C.; Stein, A. Extracting Planar Roof Structures from Very High Resolution Images Using Graph Neural
Networks. ISPRS J. Photogramm. Remote Sens. 2022, 187, 34–45. [CrossRef]

11. Ghandorh, H.; Boulila, W.; Masood, S.; Koubaa, A.; Ahmed, F.; Ahmad, J. Semantic Segmentation and Edge Detection—Approach
to Road Detection in Very High Resolution Satellite Images. Remote Sens. 2022, 14, 613. [CrossRef]

12. Li, M.; Wu, P.; Wang, B.; Park, H.; Hui, Y.; Yanlan, W. A Deep Learning Method of Water Body Extraction From High Resolution
Remote Sensing Images With Multisensors. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3120–3132. [CrossRef]

http://doi.org/10.13249/j.cnki.sgs.2013.04.489
http://doi.org/10.3133/pp964
http://doi.org/10.1080/01431160110115582
http://doi.org/10.11849/zrzyxb.2007.06.017
http://doi.org/10.1080/17538941003777521
http://doi.org/10.1016/S0034-4257(02)00078-0
http://doi.org/10.3390/land10030231
http://doi.org/10.1080/10095020.2020.1838957
http://doi.org/10.1016/j.isprsjprs.2022.02.022
http://doi.org/10.3390/rs14030613
http://doi.org/10.1109/JSTARS.2021.3060769


Remote Sens. 2023, 15, 1646 20 of 21

13. Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global Land Use/Land Cover with Sentinel 2
and Deep Learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels,
Belgium, 11–16 July 2021; pp. 4704–4707.

14. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE
2021, 109, 43–76. [CrossRef]

15. Toldo, M.; Michieli, U.; Zanuttigh, P. Unsupervised Domain Adaptation in Semantic Segmentation via Orthogonal and
Clustered Embeddings. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV),
Waikoloa, HI, USA, 3–8 January 2021; pp. 1357–1367.
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