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Abstract: Contrast enhancement of images is a crucial topic in image processing that improves the 
quality of images. The methods of image enhancement are classified into three types, including the 
histogram method, the fuzzy logic method, and the optimal method. Studies on image enhancement 
are often based on the rules: if it is bright, then it is brighter; if it is dark, then it is darker, using a 
global approach. Thus, it is hard to enhance objects in all dark and light areas, as in satellite images. 
This study presents a novel algorithm for improving satellite images, called remote sensing image 
enhancement based on cluster enhancement (RSIECE). First, the input image is clustered by the 
algorithm of fuzzy semi-supervised clustering. Then, the upper bound and lower bound are esti-
mated according to the cluster. Next, a sub-algorithm is implemented for clustering enhancement 
using an enhancement operator. For each pixel, the gray levels for each channel (R, G, B) are trans-
formed with this sub-algorithm to generate new corresponding gray levels because after clustering, 
pixels belong to clusters with the corresponding membership values. Therefore, the output gray 
level value will be aggregated from the enhanced gray levels by the sub-algorithm with the weight 
of the corresponding cluster membership value. The test results demonstrate that the suggested 
algorithm is superior to several recently developed approaches. 
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1. Introduction 
Improving the contrast of images is an essential topic of research in the image pro-

cessing field. Various methods and algorithms have been proposed to improve image 
quality. The term “image enhancement” refers to a wide variety of processes, including 
the elimination of noise [1,2], modifying the gray-level range, and unblurring an image. 
A number of distinct picture-enhancing techniques can be employed in combination with 
one another to get the best possible results [3,4]. 

Image enhancement methods could be widely classified into three categories: fuzzy 
logic, optimal, and histogram-based methods [5]. Fuzzy logic methods use fuzzy trans-
formations to improve image quality. Optimal methods involve enhancing images by op-
timizing certain parameters. Histogram-based techniques, i.e., histogram equalization 
and histogram specification, modify the histogram of images to enhance their contrast 
and brightness. These methods can be used individually or in combination to enhance the 
visual appeal of an image, make it more readable, or highlight certain features. In recent 
research, different studies have combined different methods to improve image enhance-
ment. For example, the gray-level modifying formulas and fuzzy logic are combined for 
enhancing images [6], the enhancement algorithm is based on a homogeneity measure-
ment [7], a novel algorithm for MR image improvement is based on homomorphic and 
weighted mean filtering [8], and a technique of image enhancement for MRI brain images 
was presented based on neural networks [9]. Maini and Aggarwal [10] have conducted an 
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overall assessment of image enhancement methods and found that power–law transfor-
mations are effective for general-purpose contrast manipulation. Specifically, a power–
law transformation with a fractional exponent could be utilized for images with low 
brightness to expand the gray levels. Similarly, log transformation can enhance details in 
darker regions of the image, but it also causes a loss of details in brighter regions by de-
creasing the higher-level values. A novel method for enhancing retinal images was sug-
gested by Ghosh et al. [11], and it makes use of a measure of fuzziness in conjunction with 
particle swarm optimization. In 2020, Kandhway et al. [12] introduced a novel framework 
for the analysis of medical images that was built on a krill herd and optimized for contrast 
and sharp edge improvement. Jia et al. [13] described a method that utilizes the ABC al-
gorithm (artificial bee colony) to optimize the parameters of an incomplete beta function 
for grayscale transformation to enhance the images. In addition, Malika and Singh [14] 
suggested an ABC-based technique as a means of improving color photos within the 
wavelet domain. One approach developed by Iqbal et al. [15] for enhancing low-light pho-
tos is to increase input contrast and topic prominence while decreasing artifacts. In a study 
by Liu and Tian [16], the authors presented an algorithm for the improvement of images 
that was based on the fractional differential. A fusion-based low-light enhancing frame-
work that directly integrates the image semantics into the improvement procedure was 
developed by Xie et al. [17]. Recent research in image enhancement has proposed a variety 
of techniques to increase the visibility of underwater photos. In the work conducted by 
Liang et al. [18], the authors presented a method that utilizes color correction and dehaz-
ing. Another approach proposed in the research of Fu and Cao [19] combines compressed-
histogram equalization and global–local networks to enhance underwater images. Other 
techniques have also been introduced to enhance images in other scenarios. Dhal et al. 
[20] described a technique for dynamic histogram equalization that preserves brightness. 
Gu et al. [21] introduced a technique for retinex image enhancement that prioritizes the 
brightness channel. In Krylov et al. [22], a new method based on non-iterative grid warp-
ing was suggested for enhancing images in general. Moreover, Chao et al. [23] used the 
directional fields to enhance and post-process fingerprint images. Each method has its 
own strengths and weaknesses, and the best approach will depend on the specific image 
and the desired outcome of the enhancement. For example, histogram equalization is a 
broadly-utilized technique that adjusts the image�s brightness and contrast by redistrib-
uting the intensity values of the pixels. However, it may not be suitable for dark images 
because it may result in an over-saturation of bright regions. Other methods, such as log 
transformation, retinex, and multi-scale retinex, are also useful for enhancing the contrast, 
but could also have limitations. 

Studies on image enhancement have traditionally relied on rule-based approaches 
that make images brighter if they are already bright and darker if they are already dark, 
using a global method. However, this approach can make it challenging to discriminate 
dark objects within an image, particularly when it contains dark and light areas. In recent 
years, researchers have begun to focus on developing methods that can more effectively 
deal with these dark areas. For instance, Singh et al. [24] suggested an approach for dark 
image enhancement using histogram equalization with gamma parameter optimization 
(SGHIE). Other studies have proposed methods such as exposure fusion [25], a robust 
retinex model [26], robust exposure correction [27], deep local parametric filters [28], deep 
illumination estimation [29], and a simple yet effective network [30]. Additionally, Guo et 
al. [31] used a method of dark image enhancement using deep curve estimation, Xu et al. 
[32] used decomposition and enhancement for training to restore dark low-light images, 
Yang et al. [33] introduced a technique of dark image enhancement that uses a semi-su-
pervised approach, Haris et al. [34] presented a space-time-aware multi-resolution video 
enhancement, and Zeng et al. [35] suggested a method of real-time photo enhancement 
by learning 3D lookup tables. These are just some examples of recent studies that aim to 
address the problem of enhancing dark images. 
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In addition to these studies, there is also recent research that proposes methods for 
enhancing dark images using different techniques such as retinex-inspired unrolling [36], 
no-flash pairs and deep denoising of flash [37], image denoising [38], temporal consistency 
learning [39], and nighttime visibility enhancement [40]. Fuzzy type 2 and fuzzy cluster-
ing have also been used in image enhancement. In the study of Ngo et al. [41], a combina-
tion of fuzzy type 2 and fuzzy clustering was used to segment satellite images. In research 
conducted by Son and Tuan [42], semi-supervised fuzzy clustering was used to segment 
dental X-ray images. Singh et al. [43] introduced a new method of satellite image enhance-
ment (known as PGCFDM), and the author also suggested another approach for the visi-
bility enhancement of remotely sensed images in another study [44]. These studies 
demonstrate that there is a growing interest in developing methods for enhancing dark 
images, but there is still a need for new techniques that can effectively improve the visi-
bility of these images while preserving their details. 

This study proposes a novel algorithm called RSIECE, which utilizes fuzzy semi-su-
pervised clustering and enhancement operators to effectively enhance the contrast of dark 
satellite imagery. The target of the proposed algorithm is to enhance the visibility of dark 
objects within the input image, making it easier to distinguish them in the post-enhance-
ment image. Additionally, this algorithm aims to preserve the structural and textural fea-
tures of the input image while improving its overall contrast. The proposed method uti-
lizes a sub-component for image contrast enhancement using cluster ICEC and a dark 
image enhancement operator. The significant contributions of this article are: 
• Introducing a new enhancement operator designed explicitly for dark remote sensing 

images. 
• Providing a new algorithm for modifying the gray level of an image based on clus-

tering. 
The remaining sections are presented in this article as follows: in Section 2, relevant 

works are discussed, and an overview of the many techniques used to improve photo-
graphs with low contrast is given. Section 3 details the proposed algorithm, including its 
implementation and how it addresses the problem of enhancing dark objects in images. 
Section 4 presents the results of tests and assessments, and Section 5 concludes with a 
summary of the findings and future research directions. 

2. Methodology 
2.1. Principle of Using Fuzzy Logic for Image Enhancement 

Assume image size I is M × N and L is the number of gray levels that can be consid-
ered as a fuzzy array. Each element is a value indicating the degree of brightness relative 
to the fuzzy set, which corresponds to the brightness levels. In order to enhance the image 
with fuzzy logic, the picture needs to be mapped from the gray level plane into a fuzzy 
plane by using a membership function [6,45]. For a picture, I can be written in the fuzzy 
set notation: 𝐼 ⋃ 𝜇 /𝑔  here m = 1,2,…,M and n = 1,2,…,N (1)

where 𝜇  is the membership value and 𝑔  is the intensity of (m, n)th pixel. The mem-
bership value represents a suitable property of the image. Recently, the concept of fuzzi-
ness has been applied to develop novel algorithms. Figure 1 illustrates the principle of 
fuzzy enhancement. 

 
Figure 1. The main principles of fuzzy image enhancement 
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2.2. The Algorithm of Fuzzy Semi-Supervised Grouping 
In this study, the algorithm of fuzzy semi-supervised grouping is based on fuzzy 

grouping with additional information. Additional information [31], in the cannot-link and 
must-link constraints type, is used to guide the clustering process and achieve a more 
accurate segmentation of the input image. This approach is similar to that introduced by 
Ghosh et al. [11], in which they proposed an algorithm of fuzzy semi-supervised cluster-
ing with additional information. They suggested adding the membership values to the 
objective function of fuzzy clustering to improve the efficiency of clustering. The follow-
ing is a definition of this objective function: 

𝐽(𝑈,𝑉) = |𝑢 − �̄� | ||𝑋 − 𝑉 || → 𝑚𝑖𝑛 (2)

where: 
• m: the fuzzy parameter 
• C: the number of groups 
• N: the number of all data points 
• µkj: membership value of the kth pixel of jth cluster 
• Xk: the kth data point 
• Vj: the center of group j 

The binding conditions are as follows: 𝑢 = 1;       𝑢 ∈ 0,1 ;    ∀𝑘 = 1,𝑁 

𝑈 = 𝑢 |𝑢 ∈ 0,1 , 𝑗 = 1,𝐶, 𝑘 = 1,𝑁 , ∑ 𝑢 ≤ 1, ∀𝑘 = 1,𝑁  

(3)

From condition (3) and objective function (2), we have: 

𝑉 = ∑ 𝑢 − �̄� 𝑋∑ 𝑢 − �̄� , 𝑗 = 1,𝐶 (4)

The values 𝑢  are determined by two cases, as follows: 
• 𝑚 > 1: 

𝑢 = 𝑢 + 1 −∑ 𝑢 ∑ , 𝑗 = 1,𝐶, 𝑘 = 1,𝑁. (5)

• 𝑚 = 1: 

𝑢 = 𝑢 + 1 − ∑ 𝑢 ,𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝑋 − 𝑉 ‖𝑢 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. , 𝑗 = 1,𝐶, 𝑘 = 1,𝑁. (6)

Table 1 shows the steps of the standard fuzzy semi-supervised grouping (SFSSG) al-
gorithm below. 

Table 1. The standard fuzzy semi-supervised grouping algorithm. 

Input Dataset X has group number C, N elements, threshold 𝜀, the maximum number of 
loops maxStep > 0, and the matrix of adding membership 𝑈.  

Output Matrix U and group centers V. 
SFSSG 

1: t = 0 
2: Randomized initialization 𝑉 ( );  (𝑗 = 1,𝐶)  
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3: Loop 
4:    ++t 
5: Calculate 𝑢  (𝑘 = 1,𝑁;𝑗 = 1,𝐶) by Formula (5) with 𝑚 > 1 or Formula (6) with 𝑚 = 1. 
6: Calculate 𝑉 ( )(𝑗 = 1,𝐶) by Formula (4) 
7: Until t > maxStep or 𝑉( ) − 𝑉( ) ≤ 𝜀 

This approach is effective in improving the clustering accuracy and enhances the 
quality of the output image by using these membership values for the cluster enhance-
ment sub-algorithm. The membership values are used as weights for the aggregation of 
output gray-level values, which further improves the accuracy of the enhancement oper-
ator. This method also allows for a more fine-tuned enhancement, particularly in the dark 
regions of the image. 

3. Proposed Method 
In this section, a novel algorithm for image enhancement is described, which is re-

ferred to as the remote sensing image enhancement based on cluster enhancement 
(RSIECE). The RSIECE algorithm is illustrated in Figure 2, which provides a visual repre-
sentation of the main steps involved in the algorithm. 

 
Figure 2. Diagram of the RSIECE proposed algorithm. 

From the graph that was just presented, the algorithm comprises the following steps: 
• Step 1: Transforming 𝑅, 𝐺, 𝐵 according to the operator of the dark image object en-

hancement (ODIOE) (details in Section 3.1): 𝑔 = 𝑓 (𝑔) = ODIOE(g) (7)

Therefore: 𝑅 ,𝐺 ,𝐵 = 𝑓 (𝑅 ), 𝑓 (𝐺 ), 𝑓 (𝐵 ) (8)

• Step 2: Clustering SSSFG with the image (𝑅 , 𝐺 , 𝐵 ) to obtain c clusters with centers 
Vi (i=1,..,c) and the member matrix μ . 

• Step 3: Calculating upper bound, lower bound 𝑢𝑝 ,  𝑙𝑜𝑤  according to each cluster 
(details in Section 3.2) 

• Step 4: Aggregate gray levels from all clusters according to the formula: 

𝑓 (𝑔) = μ ∗ ICEC(𝑔,𝑉 ,𝑢𝑝 , 𝑙𝑜𝑤 ) (9)

𝑅 ,𝐺 ,𝐵 = 𝑓 (𝑅 ), 𝑓 (𝐺 ), 𝑓 (𝐵 ) (10)

wherein ICEC is the algorithm of cluster-based gray-level transformation (details in 
Section 3.3) 



Remote Sens. 2023, 15, 1645 6 of 28 
 

 

• Step 5: Transforming (𝑅 ,𝐺 ,𝐵 ) according to the operator ODIOE (details in Section 
3.1): 𝑓 (𝑔) = ODIOE(g) (11)

Therefore: 𝑅 ,𝐺 ,𝐵 = 𝑓 (𝑅 ), 𝑓 (𝐺 ), 𝑓 (𝐵 ) (12)

This algorithm is specifically designed to enhance the contrast in remote sensing im-
ages, which often have dark and light objects. The algorithm begins by using fuzzy semi-
supervised clustering to segment the input image into different clusters. Next, the upper 
and lower bounds of each cluster are calculated. These bounds are then used to determine 
the gray-level transformation for each pixel. Finally, a sub-algorithm for clustering en-
hancement using an enhancement operator is implemented. This sub-algorithm trans-
forms the gray levels for each channel (R, G, B) to generate new corresponding gray levels. 
The output gray-level value is then aggregated from the enhanced gray levels by the sub-
algorithm with the weight of the corresponding cluster membership value. This unique 
approach of using clustering before enhancement allows for a more fine-tuned and precise 
enhancement, specifically in the dark areas of the scene, while preserving the image�s fea-
tures. 

3.1. The Operator of Dark Image Object Enhancement (ODIOE) 
This operator is denoted as follows: 

• Step 1: Gray level transformation to domain [0, 1] according to the ODIOE as follows: 𝑓 (𝑔) = 𝑔255 (13)

Therefore: 𝑅 ,𝐺 ,𝐵 = 𝑓 (R),𝑓 (G),𝑓 (B) (14)

• Step 2: Transforming 𝑅 , 𝐺 , 𝐵  according to the formula: 𝑓 (g) = 𝑔 + (1 − 𝑔) 𝑔 (15)

wherein: 𝑔 ∈ [0, 1] 
From Formula (14), it can be seen that: 

 If g approaches 0, then f(g) approaches 2∗g. 
 If g approaches 1, then f(g) approaches g. 
 So, if considering the domain [0, 255], it can be seen that: 
 If g approaches 0, then f(g) approaches 2∗g. 
 If g approaches 255, then f(g) approaches g. 

Therefore: 𝑅 ,𝐺 ,𝐵 = 𝑓 (𝑅 ), 𝑓 (𝐺 ),𝑓 (𝐵 ) (16)

 Step 3: Transforming 𝑅 , 𝐺 , 𝐵  to domain [0, 255] according to the formula: 𝑓 (𝑔) = 255 ∗ 𝑔 (17)

Therefore: 𝑅 ,𝐺 ,𝐵 = 𝑓 (𝑅 ),𝑓 (𝐺 ),𝑓 (𝐵 ) (18)
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3.2. Calculating Upper Bound and Lower Bound according to Group 
Suppose 𝑓(𝑔) is the histogram function of the gray values within each group. Figure 

3 shows 𝑓(𝑔) and 𝑉 , 𝑢𝑝 , 𝑙𝑜𝑤 . The thresholds 𝑢𝑝 , 𝑙𝑜𝑤  are determined by select-
ing an area of the crossover bar subregion greater than or equal to 99.5% of area of the 
region that is determined by the horizontal axis and function f(g). 

 
Figure 3. The histogram function. 

3.3. The Algorithm Based on the Cluster for Enhancing the Image Contrast 
In this section, the authors introduced a novel algorithm for enhancing the image 

contrast based on the cluster (ICEC). 
Input: 𝑔, 𝑉 , 𝑢𝑝 , 𝑙𝑜𝑤 . 
Output: 𝑔 . 
Therein: 

• 𝑢𝑝 : upper bound of the cluster ith, called up here. 
• 𝑢𝑝 : upper bound of the cluster ith, called low here. 
• 𝑉 : centroid of the cluster ith, called V here. 

The steps of this following algorithm: 
• Step 1: If g < low then g = low  
• Step 2: If g > up then g = up  
• Step 3: Calculating d: 𝑑 =  .  with e = 2 (19)

1. Step 4: Calculating b: 𝑏 = (1 + 𝑢𝑝 − 𝑉𝑑 )  (20)

2. Step 5: Calculating 𝜇: 𝜇 = (1 + 𝑢𝑝 − 𝑔𝑑 )  (21)

3. Step 6: Calculating 𝜇 : 

⎩⎨
⎧ 𝜇 = 𝜇𝑏 ,                 𝑖𝑓  0 ≤ 𝜇 ≤ 𝑏𝜇 = 1 − (1 − 𝜇)1 − 𝑏 , 𝑖𝑓  𝑏 < 𝜇 ≤ 1 (22)

4. Step 7: Calculating gray output level: 𝑔 = 𝑢𝑝 − 𝑑 ∗ ((𝜇 ) − 1) (23)
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𝑔 = 255 ∗ 𝑔 − 𝑙𝑜𝑤𝑢𝑝 − 𝑙𝑜𝑤 (24)

3.4. Main Contributions and Meaning of the Algorithm 
In this proposed algorithm, several improvements are proposed to improve the con-

trast of the remote-sensing images. It does this through several improvements, including 
introducing a new schema for remote sensing image enhancement called RSIECE. This 
algorithm is better able to differentiate between dark and bright objects in images, im-
proving the overall contrast of objects in photos. The new RSIECE schema uses clustering 
techniques to improve the segmentation of the photo, resulting in a more precise and fine-
tuned approach to image enhancement. The RSIECE algorithm has two sub-components. 
The first is the cluster ICEC method, which partitions the input image into clusters to per-
form contrast enhancement within each cluster. The second sub-component is the dark 
image enhancement operator, which improves the overall contrast of the image.  

The novelty of the RSIECE algorithm lies in the combination of these two sub-com-
ponents and the use of fuzzy semi-supervised clustering to guide the image enhancement 
process. In contrast to existing methods that rely on global or local histogram equalization, 
the RSIECE method aims to preserve the structural and textural features of the input im-
age while improving its overall contrast. This is achieved through the use of fuzzy clus-
tering, which provides a more flexible and adaptive approach to image enhancement. The 
proposed dark image enhancement operator is specifically designed to handle the prob-
lem of low-contrast satellite images, enhancing the effectiveness of the overall algorithm. 

4. Results and Discussion 
In this article, recent methods are used for comparison, such as PGCFDM introduced 

by Singh et al. [43] (PGCFDM method) and the method of Ying et al. [25] (Ying method). 
These methods have been chosen, as they are among the most recent and relevant ap-
proaches to remote sensing image enhancement. The PGCFDM method uses histogram 
equalization by gamma parameter optimization for dark image enhancement, while the 
method of Ying uses exposure fusion for image enhancement. These methods provide a 
useful benchmark for assessing the effectiveness of the proposed technique and its suita-
bility for dark images. 

The experimental dataset used in this study is composed of Landsat ETM+ images 
taken in various regions and environments that can be encountered in Vietnam, which 
makes the dataset ideal for testing the efficacy of the method. The Landsat ETM+ sensor 
is a multi-spectral sensor that is capable of capturing images with a 30 m resolution. Land-
sat ETM+ image includes seven channels: Indigo, Green-red, Red, Near infrared, Medium 
infrared, Heat infrared, and Medium infrared. Because of the limited scope of the article, 
only ten satellite images are processed. These images are taken in the HoaBinh and SonLa 
provinces, including ten districts in this area. These locations are CaoPhong, DaBac, Kim-
Boi, KySon, LacSon, LacThuy, LuongSon, MaiChau, TXHB (HoaBinh City), and YenThuy. 
Information on the dimensions of these images is described in Table 2. The choice of this 
dataset allows us to evaluate the proposed algorithm, RSIECE, using real-world satellite 
images, which can be helpful for various remote sensing applications. Due to the scope of 
the article, only a selection of the experimental results are presented and illustrated in 
Table 2; however, this dataset offers a wide range of test cases. Enlarged images are shown 
in Tables A1–A10 in Appendix A. 
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Table 2. Brief information on experimental images from this study. 

No. Loca. Input Ying Method PGCFDM Method RSIECE Algorithm 

1 

C
ao

Ph
on

g 
(5

98
 ×

 5
05

) 

    

2 

D
aB

ac
 (7

69
 ×

 6
40

) 

   

3 

K
im

Bo
i (

67
2 

× 
64

0)
 

   

4 

K
yS

on
 (3

63
 ×

 6
48

) 
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48
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(6
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 6

47
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7 
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on
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 (6
14

 ×
 6

48
) 

   

8 

M
ai

C
ha

u 
(7

99
 ×

 6
48

) 

  

9 

TX
H

B 
(3

78
 ×

 6
48

) 
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10 

Ye
nT

hu
y 

(4
78

 ×
 6

48
) 

   

Here, loca. represents location. 

In this study, the RSIECE algorithm is examined against two other cutting-edge ap-
proaches, PGCFDM and Ying, regarding the visual results. The comparison is made using 
photos taken from the experimental dataset, which consists of Landsat ETM+ images from 
several regions of Vietnam. Table 2 shows the outcomes of processing these photos using 
the three distinct approaches. Visually, the results of the three methods can be clearly dis-
tinguished. The output image from the PGCFDM method shows almost no significant 
change in brightness and contrast compared to the original image. This means that the 
PGCFDM method fails to increase the contrast of the dark areas of the images, making it 
difficult to distinguish the objects within the image. By comparison, the output image 
from the Ying method is brighter than the original image, but the contrast between areas 
and objects in the image has not been improved. 

In contrast, the output from the RSIECE algorithm is much brighter and clearer than 
the initial image, and the contrast between areas and objects is also enhanced. The im-
proved contrast makes the later analysis process much easier, as objects in the image can 
be more easily distinguished. Thus, it can be concluded that the suggested RSIECE algo-
rithm provides a better visual outcome than the other two approaches in regards to both 
image brightness and contrast enhancement. The RSIECE technique is able to successfully 
improve the contrast of dark areas of the image, making it a more efficient method for 
remote sensing image enhancement. 

Additionally, mean, standard deviation, and entropy measures are employed to as-
sess the image quality of the improved images. They are common image quality assess-
ment metrics used to evaluate the effectiveness of image enhancement techniques. The 
mean index is calculated by taking the average of the pixel values in the enhanced image 
and comparing it to the average of the pixel values in the input image. A higher mean 
index value indicates that the enhanced image has a higher overall brightness and contrast 
than the input image. The entropy index is a measure of the randomness or unpredicta-
bility of the pixel values in an image. It is calculated using information theory and pro-
vides a measure of the amount of information contained in the image. A higher entropy 
value indicates a greater level of detail and complexity in the image. The equations for the 
mean index and entropy index are as follows: 

𝜇 =  1𝑀 × 𝑁 𝐼( , ) (25)

𝐸 = − 𝑝 ∗ 𝑙𝑜𝑔 𝑝  (26)
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where M, N are the total number of rows and columns of the matrix, respectively; I(u,v) is 
pixel value row u, column v of the matrix I; pi is the probability of occurrence of ith inten-
sity level, and L is the maximum intensity value present in the image; and 𝐼(u, v) is pixel 
value row u, column v of the matrix I. 

The results are collected by comparing the original image and the enhanced images 
from the proposed algorithm and compared methods. These statistical results are pre-
sented in Tables 3–5 and Figures 4–6. 

Table 3. Mean index of enhanced images by the RSIECE algorithm compared to the Ying and 
PGCFDM methods. 

No. Location Input Ying Method PGCFDM 
Method 

RSIECE  
Algorithm 

1 CaoPhong 149.52 175.52 159.74 186.39 
2 DaBac 155.61 176.41 163.30 187.17 
3 KimBoi 125.20 158.29 138.76 167.90 
4 KySon 146.77 169.95 154.09 188.18 
5 LacSon 126.81 160.77 137.10 170.85 
6 LacThuy 157.11 176.30 167.42 181.34 
7 LuongSon 171.82 191.05 180.83 194.48 
8 MaiChau 129.48 153.59 140.62 156.71 
9 TXHB 148.63 172.59 158.46 174.14 

10 YenThuy 160.94 172.81 171.10 171.84 

Table 4. Standard deviation index of enhanced images by the RSIECE algorithm compared to the 
Ying and PGCFDM methods. 

No. Location Input Ying Method PGCFDM 
Method 

RSIECE  
Algorithm 

1 CaoPhong 112.14 85.13 101.90 76.81 
2 DaBac 115.03 91.29 106.43 84.86 
3 KimBoi 112.19 84.34 101.07 79.36 
4 KySon 115.19 90.83 107.82 76.02 
5 LacSon 111.12 82.85 103.28 79.02 
6 LacThuy 114.81 92.68 103.16 93.74 
7 LuongSon 101.09 78.26 90.62 82.29 
8 MaiChau 115.43 94.77 105.37 94.30 
9 TXHB 114.81 89.49 104.66 90.00 

10 YenThuy 106.41 97.45 97.62 97.61 

Table 5. Entropy index of enhanced images by the RSIECE algorithm compared to the Ying and 
PGCFDM methods. 

No. Location Input Ying Method 
PGCFDM 
Method 

RSIECE  
Algorithm 

1 CaoPhong 2.50 3.01 2.68 3.03 
2 DaBac 2.16 2.63 2.35 2.83 
3 KimBoi 2.82 3.40 3.06 3.48 
4 KySon 2.36 2.94 2.49 3.04 
5 LacSon 2.95 3.48 3.11 3.60 
6 LacThuy 2.19 2.70 2.39 2.86 
7 LuongSon 2.39 2.78 2.47 2.85 
8 MaiChau 2.94 3.35 3.32 3.44 
9 TXHB 2.40 2.97 2.59 2.87 
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10 YenThuy 3.32 3.66 3.73 3.42 

 
Figure 4. Comparison of the quality of the enhanced images by the RSIECE algorithm with that of 
the Ying and PGCFDM methods in terms of the mean criteria. 

 
Figure 5. Comparison of the quality of the enhanced images by the RSIECE algorithm with that of 
the Ying and PGCFDM methods in terms of the standard deviation criteria. 

The number in Table 3 provides information on the comparison of the enhanced im-
age quality based on the mean index for ten different locations in Vietnam. The mean 
value of the input images for each location varies, ranging from 125.20 to 171.82. This im-
plies that the original images have diverse contrasts. The highest value is recorded in Lu-
ongSon, while the lowest is in KimBoi. The enhanced images produced by the Ying 
method show an improvement in the mean metric as compared to the input images, with 
an average increase of 23.54. The biggest improvement is seen in LacSon, where this metric 
increased by 3.96, while the least improvement is observed in YenThuy, where the mean 



Remote Sens. 2023, 15, 1645 14 of 28 
 

 

value increased by only 11.87. Similarly, the PGCFDM approach demonstrates an en-
hancement with a 9.95 average increase. The largest improvement is shown in KimBoi, 
where the mean value improved by 13.56 from 125.20, and the smallest gain is seen in 
KySon, where this metric climbed by just 7.32. The suggested RSIECE approach, on the 
other hand, shows a considerable improvement in the mean index, with an average in-
crease of 30.71. The greatest increase is observed in LacSon, where this value grew by 
44.04, while the lowest improvement is found in YenThuy, where the mean value im-
proved by just 10.90. 

Table 4 shows the comparison of the standard deviation index for the input images 
and the enhanced images obtained using the Ying, PGCFDM, and RSIECE methods. The 
standard deviation values range from 106.41 to 115.43 for the input images. This indicates 
that the variability of the pixel intensity values in the original images differs across loca-
tions. The location of LuongSon has the lowest standard deviation value, while the loca-
tion of MaiChau has the highest. When evaluating the standard deviation criteria of the 
enhanced images, the RSIECE method proves to be the most effective among the three 
methods, outperforming both the Ying and the PGCFDM methods. On average, the 
RSIECE approach decreases the standard deviation value by 26.42, with the highest re-
duction observed in KySon (39.17) and the lowest in YenThuy (8.80). The Ying technique, 
on the other hand, shows an average decrease of 23.13, with LacSon having the biggest 
reduction (28.27) and YenThuy having the lowest (8.96). The PGCFDM approach achieves 
an average decrease of 9.63, with LacThuy having the biggest decrease (11.65) and KySon 
having the smallest (21.13). 

In general, the RSIECE method outperforms both the Ying and PGCFDM methods in 
terms of the mean index and is more effective in reducing the variability of pixel intensity 
values and enhancing the homogeneity of the images. This highlights the potential of 
RSIECE as a valuable tool for improving the quality of satellite images, especially in ap-
plications where homogeneity is a critical factor. 

 
Figure 6. Comparison of the quality of the enhanced images by the RSIECE algorithm with that of 
the Ying and PGCFDM methods in terms of the entropy index. 

Table 5 provides a comparison of the enhanced image quality based on the entropy 
index, which measures the degree of randomness and complexity of pixel intensity values. 
The results show that, in general, the RSIECE algorithm outperforms both the Ying and 
the PGCFDM methods in terms of the entropy index. The RSIECE approach produces an 
increase in the entropy criteria that is 0.54 on average when compared to the input images. 
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In comparison, the Ying method produces an increase of 0.49 on average, while the 
PGCFDM approach produces an increase of 0.22 on average. The entropy value for the 
site of KimBoi improved the most, with an increase of 0.66 for the RSIECE technique, 0.58 
for the Ying method, and 0.24 for the PGCFDM method. This is the most improvement 
seen for any location. The location of YenThuy shows the least amount of improvement, 
with the RSIECE technique showing an increase of 0.10, the Ying approach indicating an 
increase of 0.34, and the PGCFDM method indicating an increase of 0.41. The improved 
entropy index for the RSIECE method indicates that the method is more effective in in-
creasing the randomness and complexity of the pixel intensity values compared to the 
Ying and PGCFDM methods. This is a desirable property in satellite image processing, as 
it can help reveal more information that may be hidden in the original images due to low 
entropy. 

In addition to evaluating images enhanced by the above statistical indicators, this 
study was also interested in the IL-NIQE index (integrated local natural image quality 
evaluator). IL-NIQE is a metric utilized to evaluate the quality of blurry images and was 
suggested in 2015 by Zhang et al. [46]. The IL-NIQE index reflects the visual quality of an 
image by evaluating its naturalness, noise, and sharpness. The assessment results of the 
IL-NIQE criteria are presented in Table 6. 

Table 6. IL-NIQE index of enhanced images by the RSIECE algorithm compared to the Ying and 
PGCFDM methods. 

No. Location Input Ying Method PGCFDM 
Method 

RSIECE  
Algorithm 

1 CaoPhong 37.10 33.83 34.16 27.04 
2 DaBac 37.06 30.54 30.82 26.14 
3 KimBoi 35.33 29.76 32.80 27.50 
4 KySon 41.08 37.24 38.04 36.95 
5 LacSon 34.62 30.43 31.25 27.32 
6 LacThuy 34.19 30.59 33.44 28.90 
7 LuongSon 32.69 30.38 32.24 29.53 
8 MaiChau 24.84 24.87 24.87 22.69 
9 TXHB 38.65 32.90 34.52 31.25 

10 YenThuy 37.19 34.03 34.09 34.03 

From Table 6, it can be seen that for all locations, the RSIECE algorithm outperformed 
the other two methods in terms of enhancing the quality of the input images, as the IL-
NIQE index values are significantly lower than those using the Ying and PGCFDM meth-
ods. This means that the enhanced images generated by the RSIECE algorithm are of 
higher quality and are more natural-looking. In terms of specific locations, the input im-
ages from Mai Chau had the lowest quality, with an IL-NIQE index value of 24.84. How-
ever, the RSIECE algorithm was still able to significantly enhance the quality of the image, 
achieving an IL-NIQE index value of 22.69. Additionally, the RSIECE algorithm was able 
to increase the quality of the input images from all locations, despite the fact that input 
images from different locations exhibited varying IL-NIQE index values, which can be 
attributed to the differences in lighting conditions or weather. 

The data presented in Tables 3–6, as well as Figures 4–6, clearly demonstrate that the 
effectiveness of the RSIECE method is superior to previous techniques in terms of picture 
quality. In every test, the output image produced by the RSIECE algorithm exhibited 
higher mean and entropy scores, indicating that the contrast of the image had been signif-
icantly enhanced. The method�s ability to improve the randomness and complexity of the 
pixel intensity values while also reducing the variability of the pixel intensity values high-
lights its potential for a wide range of satellite image processing applications. This is a 
strong indication that the RSIECE method is more effective in improving the contrast of 



Remote Sens. 2023, 15, 1645 16 of 28 
 

 

dark images and that it is able to better distinguish objects in the image compared to other 
methods.  

5. Conclusions 
This work presented a novel algorithm, the RSIECE, which effectively improves the 

contrast of dark satellite images and improves the homogeneity of the enhanced images. 
The contributions of this work include: 
1. The development of a novel algorithm that combines fuzzy semi-supervised cluster-

ing and an enhancement operator to improve the contrast of dark satellite images. 
2. The utilization of group enhancement techniques, reducing the variability of pixel 

intensity values and improving the homogeneity of the enhanced images. 
3. The development of the RSIECE method, which outperforms the other two ap-

proaches (Ying and PGCFDM) in terms of various image quality indices, including 
the mean index, the standard deviation index, the entropy index, and the IL-NIQE 
index. 

4. The development of a method (RSIECE) that also improves the homogeneity of the 
enhanced images compared to the results of the Ying and PGCFDM methods. 

5. The demonstration of the potential of the RSIECE algorithm as a valuable tool for 
improving the quality of satellite images. 
The proposed technique enhances the information content of the images, which is 

important in various applications, such as environmental monitoring and resource man-
agement. In future work, we aim to focus on evaluating the RSIECE method on a larger 
dataset to further validate its effectiveness and explore its potential for use in different 
scenarios. 
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Appendix A 
Here “Loca.” represents “location”.  
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Table A1. Enlargement of the experimental results for CaoPhong. 

No. Loca. Satellite Images 

1 

C
ao

Ph
on

g 
(5

98
 ×

 5
05

) 

Input Ying method 

  
PGCFDM method RSIECE algorithm 
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Table A2. Enlargement of the experimental results for DaBac. 

No. Loca. Satellite Images 

2 

D
aB

ac
 (7

69
 ×

 6
40

) 

Input Ying method 

  
PGCFDM method RSIECE algorithm 
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Table A3. Enlargement of the experimental results for KimBoi. 

No. Loca. Satellite Images 

3 

K
im

Bo
i (

67
2 

× 
64

0)
 

Input Ying method 

  
PGCFDM method RSIECE algorithm 
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Table A4. Enlargement of the experimental results for KySon. 

No. Loca. Satellite Images 

4 

K
yS

on
 (3

63
 ×

 6
48

) 

Input Ying method 

  
PGCFDM method RSIECE algorithm 

  
  



Remote Sens. 2023, 15, 1645 21 of 28 
 

 

Table A5. Enlargement of the experimental results for LacSon. 

No. Loca. Satellite Images 

5 

La
cS

on
 (7

03
 ×

 6
48

) 

Input Ying method 

  
PGCFDM method RSIECE algorithm 
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Table A6. Enlargement of the experimental results for LacThuy. 

No. Loca. Satellite Images 

6 

La
cT

hu
y 

(6
33

 ×
 6

47
) 

Input Ying method 

  
PGCFDM method RSIECE algorithm 
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Table A7. Enlargement of the experimental results for LuongSon. 

No. Loca. Satellite Images 

7 

Lu
on

gS
on

 (6
14

 ×
 6

48
) 

Input Ying method 

  
PGCFDM method RSIECE algorithm 
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Table A8. Enlargement of the experimental results for MaiChau. 

No. Loca. Satellite Images 

8 

M
ai

C
ha

u 
(7

99
 ×

 6
48

) 

Input Ying method 

  
PGCFDM method RSIECE algorithm 
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Table A9. Enlargement of the experimental results for TXHB. 

No. Loca. Satellite Images 

9 

TX
H

B 
(3

78
 ×

 6
48

) 

Input Ying method 

 
PGCFDM method RSIECE algorithm 
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Table A10. Enlargement of the experimental results for YenThuy. 

No. Loca. Satellite Images 

10 

Ye
nT

hu
y 

(4
78

 ×
 6

48
) 

Input Ying method 

PGCFDM method RSIECE algorithm 
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