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Abstract: Accurately estimating wheat yield is crucial for informed decision making in precision
agriculture (PA) and improving crop management. In recent years, optical satellite-derived vegetation
indices (Vis), such as Sentinel-2 (S2), have become widely used, but the availability of images depends
on the weather conditions. For its part, Sentinel-1 (S1) backscatter data are less used in agriculture
due to its complicated interpretation and processing, but is not impacted by weather. This study
investigates the potential benefits of combining S1 and S2 data and evaluates the performance of
the categorical boosting (CatBoost) algorithm in crop yield estimation. The study was conducted
utilizing dense yield data from a yield monitor, obtained from 39 wheat (Triticum spp. L.) fields. The
study analyzed three S2 images corresponding to different crop growth stages (GS) GS30, GS39-49,
and GS69-75, and 13 Vis commonly used for wheat yield estimation were calculated for each image.
In addition, three S1 images that were temporally close to the S2 images were acquired, and the
vertical-vertical (VV) and vertical-horizontal (VH) backscatter were calculated. The performance of
the CatBoost algorithm was compared to that of multiple linear regression (MLR), support vector
machine (SVM), and random forest (RF) algorithms in crop yield estimation. The results showed
that the combination of S1 and S2 data with the CatBoost algorithm produced a yield prediction
with a root mean squared error (RMSE) of 0.24 t ha−1, a relative RMSE (rRMSE) 3.46% and an R2 of
0.95. The result indicates a decrease of 30% in RMSE when compared to using S2 alone. However,
when this algorithm was used to estimate the yield of a whole plot, leveraging information from
the surrounding plots, the mean absolute error (MAE) was 0.31 t ha−1 which means a mean error
of 4.38%. Accurate wheat yield estimation with a spatial resolution of 10 m becomes feasible when
utilizing satellite data combined with CatBoost.

Keywords: backscatter; gradient boosting; machine learning; NDVI; precision agriculture

1. Introduction

Agriculture plays a crucial role in the global economy and, as the world’s population
continues to grow, the pressure on agricultural production also increases [1]. Historically,
the primary method for increasing agricultural production was to expand the cultivated
land [2]. This was typically conducted until the early years of the “Green Revolution” (GR),
when cereal production tripled while the area devoted to agriculture increased by just
30% [3]. This improvement was driven by heavy public investments in infrastructure and
research, as well as the implementation of agricultural promotion policies. The GR was
characterized by the widespread use of mechanization, chemical fertilizers, and pesticides,
together with genetic improvements in major crops, aspects that played a significant role
in yield increases from the 1990s onward [4]. Nitrogen, a key component of fertilizers,
is particularly detrimental to the environment when used in excess [5,6]. To address
this issue, the European Union has launched the “Farm to Fork” strategy, which aims to
reduce the use of pesticides and fertilizers. As crop nutrient requirements are related to
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production, reliable yield estimates are essential if fertilizer inputs are to be adjusted and
losses reduced [7].

Recent studies, such as those conducted by Zambon et al. [8], have demonstrated that
technological advances can play a crucial role in achieving sustainable intensification in
agriculture. The development of precision agriculture (PA) began in the late 1990s as a strat-
egy for improving the sustainability of agricultural production through the consideration
of temporal and spatial variability. The utilization of various sensors, including weather
stations [9], multispectral cameras [10], electroconductivity meters [11], and LiDAR [12], is
a common practice within the framework of PA. The implementation of PA allows input
reduction while maintaining yield levels [13] through the targeted distribution of inputs
according to specific crop requirements rather than a uniform application [14]. Despite the
availability of PA technologies, adoption among farmers, particularly smallholders, remains
low [15]. Partially this phenomenon can be attributed to the economic burden associated
with acquiring new technology. Additionally, as technology becomes more sophisticated
and data-intensive, farmers may require expert assistance to validate their decisions [16].

Despite the challenges faced by small- and medium-sized farmers to adopt PA tech-
niques, the recent deployment of the Sentinel-2 (S2) satellite constellation by the European
Space Agency (ESA) has the potential to enhance their utilization. Specifically, the twin satel-
lites of the S2 series (A and B) were engineered to cater to requirements of the agricultural
sector and researchers [17]. These satellites provide high resolution images, with 13 mul-
tispectral bands and a rapid revisit rate, all of which are available free of charge through
ESA’s Copernicus program (https://scihub.copernicus.eu/, accessed on 13 March 2023).
The different bands of the sensor allow the calculation of various vegetation indices (VIs),
which are related to a range of crop parameters, including crop growth [18], crop clas-
sification [19], and soil conditions [20]. For example, Vallentin et al. [21] conducted an
analysis utilizing a time series of 13 years to examine the correlation between crop yield
and different VIs. Comparison of various satellites led to the conclusion that those of higher
resolution, such as the Rapid Eye or S2, performed better when compared to other lower
resolution satellite imagery.

VIs have been widely used in agriculture to estimate crop yield because stressed and
healthy crops emit energy at different wavelengths. For example, the normalized difference
vegetation index (NDVI) is calculated based on the reflectance of vegetation in the red and
near-infrared bands of the electromagnetic spectrum. As plants absorb more red light and
reflect more near-infrared light as they become more vigorous, the NDVI value increases as
the canopy density and biomass increase, and in consequence, the grain yield. Therefore,
NDVI can be used as an indicator of plant health and biomass production. Although the use
of VIs for this purpose dates to the early 1980s [22], it was not until the 1990s that it became
more common [23,24]. With the release of images provided by satellites such as S2 [25],
Landsat [26], MODIS [27], and SPOT [28], the use of VIs has exponentially increased. Recent
studies, such as that proposed by the authors of [29], have utilized VIs derived from S2
in combination with random forest (RF) to estimate yield within individual plots across
multiple wheat fields in England. VIs have also been used to estimate yield across entire
countries [30]. Incorporating satellite-derived information into agrometeorological models
has been shown to improve their accuracy [31,32]. For example, Vicente-Serrano et al. [33]
in Spain combined advanced very high resolution radiometer (AVHRR) and NDVI data
as well as drought indices at different time scales to predict wheat yield in advance. In
other cases, VIs have been used to estimate yield directly [34]. More recently, publications
such as [35,36] have taken a step further by combining machine learning techniques with
satellite information to estimate the yield of specific plots using data from other plots.

However, one major limitation of S2 is cloud cover [37], which can restrict the amount
of usable data available for certain areas and applications. Additionally, while S2 images
have a high spatial resolution, they may not be sufficient for some applications that require
very high resolution data as, for example, field work with vineyards or early disease
detection. Other impediments include misalignment with other remotely sensed data, such
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as Landsat 8, the lack of panchromatic and thermal bands, and variations in the spatial
resolution of the bands [38].

Sentinel-1 (S1) data are also available for free through the Copernicus program.
S1 is a synthetic aperture radar (SAR) designed for radar imaging and can provide data
in various modes and polarizations (VV, HH, VH or HV), depending on the emission
and acquisition signal mode. S1 operates in the C polarimetric band, which ranges from
5.405 to 5.625 GHz and has a wavelength of 5.6 cm. S1 provides information about objects
after being impacted by microwaves (C-band). Importantly, radar data are not affected
by atmospheric conditions such as clouds and can also be acquired at night. The spatial
resolution of S1 is 10 m, similar to the maximum resolution of S2, and it typically has a
revisit period of 6 days [39]. However, the interpretation of the signal from S1 is complex
and requires specialized analysis. For example, for a vegetated surface, the C-band signal is
a combination of contributions from the soil, canopy, volume scattering within the canopy,
and interactions between the soil and vegetation [40]. As a result, its use in agriculture is
not as widespread as that of S2.

The computational development and utilization of machine learning techniques have
become increasingly important in the field of PA [41]. These technologies allow for the
processing and analysis of large amounts of data collected from various sources, includ-
ing satellite imagery, drones, and Internet of Things (IoT) sensors, to generate accurate
and detailed predictions [42]. Different types of machine learning algorithms can be em-
ployed in this process, including supervised and unsupervised algorithms. Supervised
learning algorithms, such as decision trees, RF, and support vector machines (SVMs),
can be used to classify different crops, predict crop yields or detect patterns in crop
growth [43–45]. Unsupervised learning algorithms, such as k-means and principal compo-
nent analysis (PCA), can be utilized to identify patterns or delineate site-specific manage-
ment zones (SSMZs) [46].

Over the past few years, a variety of algorithms have been tested to estimate wheat
yield. Tang et al. [47] utilized multiple linear regression (MLR) to estimate yield, with
root mean squared error (RMSE) values ranging from 0.54 to 1.02. In the same study, the
backpropagation neural network (BPNN) was also tested, obtaining better results with
RMSE values ranging from 0.30 to 0.68. Hunt et al. [29] used the RF algorithm to estimate
wheat yield in different plots. These results were compared with those obtained from MLR.
The RF algorithm consistently obtained superior results for all the considered scenarios.
Support vector machine (SVM) is another commonly used algorithm for this purpose.
In the study published by Bebbie et al. [25], the coefficient of determination (R2) value
obtained was always greater than 0.80. Meraj et al. [48] compared the ability of SVM
and RF to estimate the area of wheat cultivation in large areas of India, obtaining better
results with RF. Finally, deep learning algorithms such as the long short-term memory
(LSTM) also produced adequate results, with an RMSE of 0.64 t ha−1 when estimating
wheat grain yield [49]. Srivastava et al. [50] compared the performance of eight different
algorithms using a 20-year time series and found that the convolutional neural network
(CNN) produced the best results. Finally, Cao et al. [51] compared the performance of
MLR, SVM, RF, and XgBoost to estimate winter wheat yield in northern China combining
machine learning with a global dynamical atmospheric prediction system.

Recently, in the latter part of the 1990s, a new type of supervised algorithm involving
gradient boosting emerged. Gradient boosting is a machine learning technique that aims to
enhance the accuracy of predictive models. The method operates by repeatedly training
a sequence of base models and assigning increased weights to examples previously mis-
classified by prior models with the purpose of focusing on the most challenging samples.
These algorithms involve the combination of multiple simple models with the goal of
creating a robust ensemble model. The first of these algorithms to be developed was the
adaptive boosting (AdaBoost) algorithm, published by Yoav Freund and Robert Schapire
in [52]. The gradient boosting machine (GBM), proposed by Jerome Friedman in [53], is an
extension of AdaBoost, but instead of assigning weights to examples, it utilizes gradient
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descent to optimize the parameters of the base model. GBM is an iterative algorithm that
generates a series of decision trees, with each tree being intended to correct the errors made
by the preceding tree. Another gradient boosting algorithm, the extreme gradient boosting
(XGBoost) algorithm, was developed by Tianqi Chen in [54] and is optimized for working
with large datasets. In 2017, the categorical boosting (CatBoost) algorithm was released by
Prokhorenkova et al. [55], which is optimized to handle categorical variables. Currently,
CatBoost is considered a powerful algorithm and is widely used owing to its ability to
process categorical data and its high capacity to generalize. However, its application in
agriculture is not yet widespread.

The challenge of yield estimation in modern agriculture presents numerous opportu-
nities for decision making at both farmer and institutional level, including future action
planning, the modulation of input supply according to crop needs, and harvest storage. In
this regard, it should be noted that several global-scale works, in addition to satellite and
yield information, use weather data [56] and soil information [57] in their yield estimation
models. However, it is difficult to have weather and soil information at a sufficient level of
detail when making yield estimation at intra-plot level.

Remote sensing technologies also offer new possibilities for improving yield estimation
through the use of more advanced algorithms. Taking these considerations into account,
the aim of the present study is to conduct a comprehensive analysis of the potential of
remote sensing and machine learning techniques for yield estimation. More specifically, the
study aims to determine whether the utilization of information obtained from S1 and S2
satellite imagery on different days enhances the accuracy of yield predictions. The study
also evaluates the potential benefits of combining S1 and S2 data and, finally, aims to
determine the effectiveness of the CatBoost algorithm in comparison to other commonly
used methods such as MLR, SVM, and RF.

The analyses are conducted with a practical approach that applies to agriculture.
High resolution wheat yield data from 39 plots, obtained with a yield monitor during
the 2021 season, are used. Additionally, three cloud-free S2 images representing different
phenological stages of wheat are analyzed, from which 13 VIs are calculated. A total
of three S1 images, acquired on dates close to those of S2, are also examined for their
backscattering values in vertical-vertical (VV) and vertical-horizontal (VH) polarizations.

2. Materials and Methods
2.1. Study Area

This study was carried out with data collected in the 2021 season in 39 wheat (Triticum
aestivum L.) plots located in the Llanada Alavesa region, situated in the center of the
province of Araba/Álava in northern Spain (Figure 1). This region is characterized by
agricultural fields growing mainly winter cereals (wheat and barley), potatoes, colza,
legumes, forage maize, and sugar beet. Wheat sowing was carried out at a density
of 230 kg ha−1 with Filón variety seeds between 20 and 30 November 2020. All fields
were fertilized with chemical fertilizers, averaging 53 kg ha−1 of N, 36 kg ha−1 of P, and
102 kg ha−1 of K in the growth stage (GS) GS21 that corresponds to tillering [58]. For the
top-dressing fertilization, 117 kg ha−1 N was applied in the stem elongation phase (GS30).

According to the Köppen classification, the Llanada Alavesa region has a temperate
oceanic climate (Cfb) [59] characterized by an average annual air temperature of 11.7 ◦C.
During the summer months, the average temperature reaches 20 ◦C, while the winter
months are relatively mild with an average temperature of 6 ◦C. Average annual rainfall
was 750 mm, with July and August being the driest months with less than 50 mm of
precipitation. The study plots were established over two distinct soil types developed on
two different lithologies. Thus, soils on the lithology from the Cretaceous geological era are
characterized by steep and irregular terrain, are relatively shallow (20–70 cm), and have a
high concentration of calcium carbonate (CaCO3) of over 50%. The dominant soil fraction
is silt, which has a concentration exceeding 40%. The second type of soil, sourced from
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Quaternary material, is deeper (over 120 cm), has a lower concentration of CaCO3 (<25%)
and a loamier texture, and the stone content is higher [60].
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Figure 1. Upper left-hand side of the image shows the general location of the study area within Spain.
Upper right-hand side shows detail of the study area with the average yield of each plot (right part).
Below, wheat phenological stage and dates when satellite images were acquired. Red squares
represent S1 and blue squares represent S2.

The average grain yield of the studied plots (Figure 1) ranged from 4.76 t ha−1 for
the G32 plot to 8.91 for the G7 plot, with an average value for all plots of 7.01 t ha−1. Plot
size ranged from 0.72 to 9.42 ha, with 2.46 ha being the average, representing well Llanada
Alaves’s plot diversity.

2.2. Sentinel-2 Data and Derived Vegetation Indices

The S2 mission, operated by the European Space Agency (ESA), consists of two twin
satellites launched in June 2015 and March 2017. These satellites provide multispectral im-
agery with 13 bands (https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-
2-msi/resolutions/spatial, accessed on 13 March 2023). In this study, four spectral bands
were utilized: blue (B2, centered at 492.4 nm), green (B3, centered at 559.8 nm), red (B4, cen-
tered at 664.6 nm), and near-infrared (B8, centered at 832.8 nm) with a spatial resolution of
10 m. In theory, the combined use of both satellites provides an image of the study area
every five days. However, in reality, the availability of cloud-free images is much lower.
For this study, three cloud-free images of the study area were selected. The first image
(Day 1) was obtained on 24 March 2021, when the crop was in the initial stage of stem
elongation (GS30 according to Zadocks [58]). On the second date (Day 2), 23 April 2021,
the crop was between GS39 (flag leaf ligule just visible) and GS49 (first awns visible).

The final image, taken on 5 June 2021, (Day 3), depicts the crop between complete
anthesis and medium milk stage (GS69-75). The satellite data were downloaded from the
Copernicus Open Access Hub (https://scihub.copernicus.eu/, accessed on 13 March 2023)
in the form of Level 2A products (Bottom-of-Atmosphere reflectance images), which have
undergone atmospheric correction [61]. The tile 30 TWN of satellite S2 fully covered the
study area.

https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial
https://scihub.copernicus.eu/
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In this study, the SNAP software was used to calculate the 13 VIs (Table 1) used for
wheat or barley (Hordeum vulgare L.) grain yield estimation.

Table 1. Vegetation indices calculated in this study with their formulae according to the S2 bands used.

Vegetation Index Abbreviation Formula Reference

Normalized Difference
Vegetation Index NDVI (B8 − B4)/(B8 + B4) [62]

Green Ratio
Vegetation Index GRVI B8/B3 [63]

Green Normalized
Difference

Vegetation Index
GNDVI (B8 − B3)/(B8 + B3) [64]

Green Difference
Vegetation Index GDVI B8 − B3 [65]

Enhanced
Vegetation Index 2 EVI2 2.4 × ((B8 − B4)/(B8 + B4 + 1)) [66]

Chlorophyll Vegetation
Index CVI B8 × (B4/(B3 × B3)) [67]

Color Index CI (B4 − B2)/B4 [68]
Wide Dynamic Range

Vegetation Index WDRVI ((0.1 × B8) − B4)/((0.1 × B8) + B4) [69]

Transformed Vegetation
Index TVI

√
((B8− B4)/(B8 + B4) + 0.5) [70]

Soil Adjusted Vegetation
Index SAVI ((B8 − B4)/(B8 + B4 + 0.5)) × (1 + 0.5) [71]

Simple Ratio 800/670
Ratio Vegetation Index RVI B8/B4 [72]

Optimized Soil Adjusted
Vegetation Index OSAVI (1 + 0.16) × ((B8 − B4)/(B8 + B4 + 0.16)) [73]

Nonlinear
Vegetation Index NLI ((B8 × B8) − B4)/((B8 × B8) + B4) [74]

2.3. Wheat Grain Yield Acquisition, Preprocessing, and Connection with Sentinel Data

Spatially dense wheat grain yield data were obtained by installing a yield monitor
and a GPS receiver on a John Deere T560 harvester. The GPS receiver could receive RX
corrections, enabling it to be spatially positioned with an error lower than 15 cm, making
it suitable for PA. Yield data were collected between 19 and 25 July 2021. To prepare the
yield data for further analysis, they were pre-processed to eliminate anomalous measure-
ments that can greatly affect the results [75]. Firstly, data with incorrect latitude/longitude
measurements were removed. In the pre-processing steps, data with moisture concentra-
tions below 8%, or values recorded when the harvester was operating at an inadequate
speed, were removed to ensure the accuracy of the data. Afterwards, some steps of the
methodology described by Taylor et al. [76] were applied. In the first step, yield values
that exceeded or did not reach the established threshold were eliminated. In the next step,
data points that were more than 2.5 standard deviations above and below the plot mean
were removed. In the following step, the local Moran’s I test [77] was applied to eliminate
spatial outliers in our case, high yield measures surrounded by low yield measures or vice
versa. In addition, to ensure that every S2 pixel was entirely within the study plot, a safety
buffer of 15 m was established in each plot to minimize the distortion produced by the
edge effect. Pixels located out of the buffer were removed. Data were then interpolated by
ordinary kriging to a continuous yield map by selecting the semivariogram that best fit to
the yield data for each plot. The most frequently used semi-variograms were exponential,
spheric or rational quadratic. The maps were re-sampled to a resolution of 10 × 10 m and
aligned with S1 and S2 pixels. Finally, a grid of points was generated in vector format
(ESRI shapefile) and the information from the different rasters was transferred to the vector
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layer using the ‘extract values’ function in ArcGIS 10.8. This process resulted in a dataset
composed by 6219 yield measures.

2.4. Sentinel-1 Data and Retro Dispersion Calculation

S1 ground range detected (GRD) images [78] were used in this study. These images
are synthetic aperture radar (SAR) data acquired by the S1 satellite with a resolution of
5 × 20 m and a swath width of 250 km. The interferometric wide (IW) mode of acquisition
was used, resulting in the acquisition of two polarization types: VV and VH. The images
provide backscatter intensity information and are pre-processed at Level 1, resulting in
geolocated, radiometrically calibrated, and terrain-corrected complex data in the slant
range. Three images (27 March 2021, 20 April 2021, and 7 June 2021) acquired on days
close to those acquired for S2 were downloaded from the Copernicus Open Access Hub
(https://scihub.copernicus.eu/, accessed on 13 March 2023). To make the acquired images
useful, they were processed using the SNAP software following the procedure outlined
in Figure 2. This processing included adjusting the image tile size to the study area and
calculating accurate orbits, as the metadata provided with the radar products is not always
sufficiently accurate. Precise orbit information was obtained by using the ‘apply orbit file’
function, which is available a few days after image capture. Other necessary steps included
improving image quality through the removal of thermal noise and radiometric artifacts
from image edges, image calibration to obtain radiometrically calibrated backscatter images,
and the elimination of granular noise caused by backscatter from certain elements (salt and
pepper effect). The Lee Sigma filter was used in this process. Geographical coordinates
were subsequently added to the images and, in the last step, backscatter values were
finally converted to decibels (Figure 2). VV and VH backscatter information were extracted
using the same georeferenced grid used to extract the information from S2 VI data. In total,
two variables (VV and VH polarization backscatter information) were obtained for
each date.
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2.5. Machine Learning Algorithms

Selecting the appropriate algorithm for a specific task is a crucial step in machine
learning. The literature suggests that no single algorithm is the best, and the selection
should be based on data characteristics and the desired outcome [79]. Therefore, it is
imperative to evaluate the suitability of different algorithms for a given task to obtain
optimal results.

https://scihub.copernicus.eu/
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In this study, the performance of four supervised machine learning algorithms was
evaluated for a specific task: MLR [80], SVM [81], RF [82], and CatBoost [55]. Their election
was based on their popularity and versatility in the modern agriculture literature [83].

Hyperparameter optimization for the SVM, RF, and CatBoost algorithms was per-
formed using the GridsearchCV method implemented in the Scikit-learn library [84]. The
MLR algorithm does not require hyperparameter optimization.

In this study, the MLR algorithm was implemented with Lasso regularization to
reduce the complexity of the model and mitigate the effects of collinearity present between
some of the variables. Collinearity is a phenomenon where two or more predictors in a
multiple regression are highly correlated and can inflate the regression coefficients [85].
The Lasso function addresses this issue by limiting the sum of the absolute values of the
model coefficients.

For its part, SVMs can be used for classification and regression tasks. One of the key
advantages of using SVMs is their ability to identify the optimal boundary or decision
surface that separates different classes in a dataset. The main idea behind SVMs is to find
the best boundary or decision surface that separates different classes in a dataset. This is
achieved by maximizing the margin, which is the distance between the boundary and the
closest data points from each class [81]. Additionally, SVMs possess the ability to handle
high-dimensional and non-linearly separable data by utilizing kernel functions to map the
input data into a higher-dimensional space where a linear boundary can be found. This
enables SVMs to perform well on complex and non-linear datasets. In this study, the kernel
parameter was changed from ‘linear’ to ‘RBF’ to achieve this purpose. However, it should
be noted that SVMs are less resistant to overfitting than other algorithms. Overfitting is a
prevalent issue in machine learning, where a model performs well on the training data but
poorly on unseen data. This is due to the margin maximization technique employed by
SVMs being susceptible to overfitting [86]. To mitigate this risk, effective optimization of
the ‘C’ hyperparameter is required. A large value of C results in the generation of a complex
model, which minimizes training errors but also increases the likelihood of overfitting.
Conversely, a small value of C leads to the production of a simpler model, which is less
susceptible to overfitting but may not be as effective in fitting the training data [87]. In the
present study, various values (1, 10, 100, 1000) of the C hyperparameter were experimentally
evaluated to determine the optimal value that strikes a balance between predictive accuracy
and model overfitting. Among all the tests carried out, the best results were obtained with
C = 10. The gamma parameter was modified to 0.1.

The third algorithm used in the study is an ensemble algorithm that combines multiple
decision trees to make predictions and is known as RF. The principle of RF is to construct
a large number of decision trees and combine their predictions through methods such as
majority voting or averaging [82]. It works by randomly selecting a subset of features to
split the decision trees. This approach reduces the overfitting and variance issues commonly
associated with single decision tree models. Additionally, RF can handle high-dimensional
and correlated features, and can be used for both classification and regression tasks [88].
Moreover, the algorithm provides an estimate of feature importance, which can be useful
for feature selection and understanding the underlying relationships in the data. Despite
its advantages, RF is sensitive to noise in the dataset and can be computationally expensive
for large datasets. Additionally, the algorithm can be sensitive to the number of trees used
in the ensemble, requiring proper tuning to achieve optimal performance. Therefore, one
of the hyperparameters optimized using the Gridsearch.cv function was the number of
trees used in the ensemble, with the best results achieved with 300 trees. In addition, the
maximum number of features parameter was determined using the ‘auto’ function. This
function allows to use all features in each split. After tests with different combinations of
tree depth (4, 5, 6, 7, 8, 10, 45, 50), the best result was obtained with 45 nodes.

CatBoost is a gradient boosting algorithm for decision trees that is specifically designed
to handle datasets with many categorical variables [55]. The algorithm uses the gradient
descent to optimize the parameters of the decision trees, which helps to improve the
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performance of the model [89]. The algorithm works by building and combining multiple
decision trees. It uses a subset of the data to build each decision tree and then combines
the predictions of all the decision trees to make the final prediction. The algorithm also
utilizes a technique called ‘permutation feature importance’ to determine the importance of
variables in the model. This technique is based on measuring the impact of each feature on
the model’s performance by randomly shuffling the values of a single feature. The feature
with the largest impact on the model’s performance is considered the most important [55].
Additionally, CatBoost is able to handle missing values in the data without the need for
imputation techniques.

The CatBoost configuration that yielded the best results consisted of 18,000 iterations
with an early stopping value of 200, which was implemented to prevent overfitting of the
algorithm. The depth of the trees was set to six, and the ‘MultiRMSE’ loss function was
selected, with a learning rate of 0.015. The parameter ‘leaf_estimation_iteration’ was set to
10. As the dataset was not excessively large, it was trained on the computer’s CPU, but
CatBoost has the option to train on a GPU if needed.

In addition to utilizing supervised algorithms, the present study incorporated the
iterative self-organizing data analysis technique (ISODATA) unsupervised algorithm for
data classification. This iterative algorithm begins by assigning an arbitrary mean to each
class, and subsequently reassigns pixels based on minimizing the Euclidean distance to
the mean value of their assigned class. The iteration process continues until either the final
iteration is reached or the threshold for the maximum number of pixels changing class is
not exceeded.

In this study, a data partitioning strategy was implemented with the purpose of train-
ing and validating the algorithms. The strategy entailed the random selection of 70% of
the data for training and 30% for testing. This nearly ensures that testing is performed
with data from all plots. However, in Section 3.6, the authors deviated from the standard
data partitioning strategy and adopted an alternative approach. Except for data belong-
ing to one plot, the rest were utilized for testing while the data from the excluded plot
was reserved for testing. Iteratively the same process was performed for all plots. This
methodology aimed to evaluate the algorithm’s ability to predict the yield of a particular
plot without utilizing information from that plot. Algorithms were trained and tested using
functions provided by the Scikit-learn library over our datasets. The performance of the
regression algorithms was evaluated using R2, RMSE, and the percentage of mean absolute
error (%MAE).

Obtaining an accurate estimated yield map is the first step towards creating a fertilizer
prescription map based on yield data in cases where a yield monitor is not available. With
this in mind, in Section 3.6, the G15 plot was selected to demonstrate the possibilities
offered by the estimated yield map for creating prescription maps. Since prescription maps
usually consist of two or three zones, the unsupervised ISODATA algorithm was selected
to divide the datasets into two classes. This procedure was applied to the actual yield data
and the estimated yield data. The similarity between the classified estimated yield map
and the classified real yield map was measured using the ‘accuracy’ and Kappa Index (KI)
metrics, both widely used to assess the performance of classification algorithms.

2.6. Accuracy Assessment
2.6.1. Root Mean Squared Error (RMSE)

The RMSE is a commonly used statistic that measures the difference between predicted
values and observed values in a regression problem. It is defined as the square root of
the mean of the squared differences between the predicted and observed values. A lower
RMSE value indicates a better fit of the model to the data. It is widely used in regression
problems to evaluate the performance of a model (Equation (1)):

RMSE =

√√√√ N

∑
i=1

(Ei−Oi)2

n
(1)
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where O represents the observed value, E the estimated value, and n represents the number
of samples.

2.6.2. Relative RMSE (rRMSE)

The relative RMSE is the ratio of the RMSE to the mean values of field measurements
(yield (t ha−1)):

rRMSE =
RMSE
∑N

i=i Oi
N

(2)

where O represents the observed value and N represents the number of samples.

2.6.3. Coefficient of Determination (R2)

The coefficient of determination is a statistical metric used in the context of predictive
modeling. The primary goal is to quantify the proportion of variance in the dependent
variable that is predictable from the independent variable(s) in a statistical model. It is
calculated as the ratio of the explained variation to the total variation of the dependent
variable [90]. Equation (3) shows the R2 formula:

R2 = 1− σ2
r

σ2 (3)

where σ2
r is the sum of the squared differences between the predicted values (from the

model) and the actual values, and σ2 is the sum of the squared differences between the
actual values and the mean of the actual values.

2.6.4. Percentage of Mean Absolute Error (%MAE)

This is a statistical metric that quantifies the magnitude of the difference between
two continuous variables. It is commonly used to evaluate the accuracy of a predictive
model by comparing the predicted values to the actual values of the dataset. It is calculated
as the average of the absolute differences between the predicted and actual values. Its
mathematical formulation is represented in Equation (4):

%MAE =

(
1
n ∑n

i=1|yi − xi|
P

)
× 100 (4)

where yi is the value of the prediction, xi represents the observed value, n the total number
of observations, and P the mean observed yield of each plot.

2.6.5. Accuracy

The accuracy error metric is a metric to evaluate the performance of a model with
categorical data. Accuracy is calculated as the ratio of the number of correct predictions
made by the model to the total number of predictions. The accuracy was expressed as a
percentage, with values closer to 100% indicating a higher degree of accuracy:

Accuracy =

(
Cp
Tp

)
× 100 (5)

where Cp are correct predictions and Tp are total predictions.

2.6.6. Kappa Index (KI)

The Kappa index (KI) is a measure of accuracy when comparing actual and predicted
yield maps. KI is a widely used statistical metric that quantifies the agreement between



Remote Sens. 2023, 15, 1640 11 of 25

two categorical classifications, considering the possibility of agreement by chance. The KI
was calculated using the formula:

KI =
(Oa− Ea)
(1− Ea)

(6)

where Oa is the observed agreement and Ea is the expected agreement.

3. Results
3.1. Relationship between Vegetation Indices and Wheat Yield Using Sentinel-2 Imagery

Figure 3 shows correlation matrices for the three different dates of VIs derived from
S2 and yield. A high degree of collinearity among the different VIs was observed on the
three dates, with Day 2 (GS39-49) showing the strongest correlation between indices with
r values above 0.9. In addition to the negative correlation, when compared to the other
VI results, the CI index obtained lower r values, ranging from −0.59 to −0.76 (Figure 3,
Day 2). Correlations between the VIs of Day 1 (GS30) were slightly lower but remained
above 0.8. Furthermore, the correlation between different VIs for Day 3 is not homogeneous
(as indicated by the broader color palette of the matrix), and r values varied from 0.97 to 0.58.
Given the high degree of collinearity observed among the VIs, some measures were taken
to address this issue during the implementation of the different algorithms. One such
measure employed was the Lasso correction of the MLR method.
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shows the correlation with the wheat grain yield.

In terms of the relationship between the different VIs and yield, the highest values
were measured for Day 2 (GS39-49). Except for the negative correlation of CI (−0.65), the
values ranged from 0.81 for GRVI to 0.73 for GDVI. In comparison, for Day 3 (GS69-75),
the correlations ranged from 0.72 for GNDVI to 0.54 for GDVI. Although the increase in
correlation is not significant (−0.66 compared to −0.65), CI was the only VI that increased
the correlation. The lowest correlations were found with the VIs of Day 1 (Figure 3), with
values ranging from 0.51 (RVI and GRVI) to 0.26 for GDVI. The correlation of CI was inverse
(−0.45). Overall, the highest value was obtained with GRVI for all three dates, whereas
GDVI exhibited the lowest values.

3.2. Exploring the Impact of Date Selection on Wheat Yield Prediction Using VIs Derived
from Sentinel-2

In this study, the effect of adding different VIs derived from S2 corresponding to the
three dates and its combination on the prediction of wheat grain yield was investigated
using four different algorithms: CatBoost, SVM, RF, and MLR. All results (RMSE and R2)
(Figure 4) were obtained from the testing dataset. A consistent pattern was observed for all
dates, with the best results obtained using CatBoost and the worst using MLR. When using
the data from a single day, the R2 and RMSE values varied greatly depending on the date.
The worst results were always obtained when using VIs from Day 1. Thus, RMSE oscillated
between 1.20 for CatBoost and 1.45 for MLR while R2 ranged between 0.45 and 0.33. In
contrast, the best results for a single day were obtained with Day 2 and CatBoost, reducing
the RMSE to 0.56 and increasing the R2 to 0.74.

When considering the predictive ability of the model using two different dates,
the performance was better than when using each day separately. The R2 of CatBoost
ranged between 0.81 for the Day 1–2 dataset and 0.82 for the Day 2–3 dataset (Figure 4),
while the R2 value of MLR ranged between 0.65 for the Day 1–2 dataset and 0.69 for the
Day 2–3 dataset. This result suggests that the best predictions were obtained with the dates
corresponding to GS39-49 and GS69-75.

Nonetheless, the results indicate that all algorithms obtained the best results when
they were trained with a dataset composed of the three dates (corresponding to GS30,
GS39-49, and GS69-75 phenological stages). The R2 values ranged from 0.859 for the
CatBoost algorithm to 0.77 for MLR, while RMSE ranged from 0.32 for CatBoost to 0.50
for MLR.
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Figure 4. R2 and RMSE of the four tested algorithms (MLR, Multiple Linear Model; RF, Random For-
est; SVM, Support Vector Machine; CatBoost) when trained with VIs derived from S2 corresponding
to different dates. It also shows accuracy metrics of the combination of different days.

3.3. Exploring the Impact of Date Selection on Wheat Yield Prediction Using Backscatter
Information Derived from Sentinel-1

In this study, the feasibility of using backscatter information obtained from S1 at
various dates to train and test machine learning models was evaluated. The results,
represented in terms of R2 and RMSE, obtained during the testing process are presented
in Figure 5.
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Figure 5. R2 and RMSE of the four algorithms (MLR, Multiple Linear Model; RF, Random Forest;
SVM, Support Vector Machine; CatBoost) when trained with VV and VH polarization backscatter
information derived from S1 corresponding to three different dates. It also shows their combined use.

The pattern observed with S2 is repeated with the S1 data, where the best results were
obtained using CatBoost and the worst using MLR. In the case of employing single days,
the results showed notable variations depending on the selected day. For example, the
R2 value for Day 2 was 0.36, while for Day 3, it decreased to 0.08 when using CatBoost.

For the S1 data, the combination of multiple dates improved the results compared
to a single date. The highest R2 values were obtained when using information from the
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three days (Days 1–3). Among the algorithms tested, CatBoost showed the best results
with an R2 of 0.69, while the lowest R2 value of 0.20 was obtained with the MLR model
(Figure 5). The RF and SVM models showed similar results, with the latter showing a
slightly better performance.

It is noteworthy that combining data from multiple dates did not always result in
better performance compared to using data from a single date. For example, the RMSE for
Day 2 was 1.34, while the combination of Days 1–3 was 1.59 with the CatBoost algorithm.

Additionally, the greatest differences in the RMSE and R2 were observed between the
algorithms that can analyze non-linear relationships (RF, SVM, and CatBoost) and the one
that only analyzes linear relationships (MLR) when compared to the information of S2. In
all cases, the non-linear algorithms showed better results (Figure 5).

3.4. Comparison of Machine Learning Algorithms for Estimating Wheat Yield Using
Multisource Data

The results presented in the previous section indicate that the best results were con-
sistently obtained using the information from Day 1-2-3. Having determined the optimal
date combination, the next objective was to determine which algorithm achieved the best
results for it. For this purpose, the RMSE and rRMSE were used. To capture the variabil-
ity of each algorithm more accurately, the authors trained and validated each algorithm
10 times using different partitions of three datasets (S1, S2, and S1S2), resulting in 30 RMSE
and rRMSE values for each algorithm (Table 2).

Table 2. Mean values of RMSE, SD and rRMSE of the four algorithms (MLR, Multiple Linear
Model; RF, Random Forest; SVM, Support Vector Machine; CatBoost). Three different datasets were
employed: S1 using only data from S1, S2 using data only from S2 and S1S2 using data from S1 and S2.

Algorithm n * Mean RMSE (t ha−1) SD rRMSE (%)

MLR 30 1.1 0.77 15.25
RF 30 0.69 0.35 9.78

SVM 30 0.62 0.34 8.92
CatBoost 30 0.41 0.29 5.91

* Each algorithm was trained and tested with ten different partitions of each dataset (S1, S2 and S1S2).

Table 2 shows the statistics associated to the prediction error obtained after running
each algorithm 10 times with each of the three datasets (S1, S2 and S12). CatBoost produced
the lowest error with an RMSE of 0.41 t ha-1 and a mean rRMSE of 5.91%. The SD of
the RMSE for CatBoost was 0.29, the lowest among the four models. CatBoost not only
produced results that were closest to the actual data, but also had less variability in the
results compared to the other algorithms. RF and SVM performed similarly, with an
average RMSE of 0.69 and 0.62 t ha−1, respectively. The values of rRMSE were 9.78% and
8.92% (Table 2). The SD for both was nearly the same, 0.35 for RF and 0.34 for SVM. Finally,
MLR produces the highest mean RMSE of 1.1 t ha−1, with a mean rRMSE of 15.25% and an
SD of 0.77.

After determining that CatBoost was the algorithm with the lowest RMSE and rRMSE
among the four evaluated algorithms, the subsequent step involved evaluating the per-
formance of CatBoost with each dataset (S1, S2, and S1S2). To this end, CatBoost was
trained and tested with each of the three datasets 10 times with different partitions of data
to train and test. The results presented in Figure 6 show that the RMSE varied depending
on the dataset used for yield estimation. The use of the S1S2 dataset produced the lowest
error, with a mean RMSE of 0.24 t ha−1, which is an rRMSE of 3.46%. The RMSE values
ranged between 0.22 and 0.26 t ha−1. The mean RMSE obtained with S2 was 0.34 t ha−1

and the rRMSE was 4.86%. RMSE values ranged from 0.30 to 0.37 t ha−1 (Figure 6). Finally,
the highest RMSE values were obtained when using only S1 data, with a mean RMSE
of 0.79 t ha−1 and values ranging from 0.55 to 0.83 t ha−1. The rRMSE for the S1 dataset
was 11.34%. Therefore, the use of combined S1 and S2 (S1S2) data reduced the error by 30%
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compared to using S2 data alone. Figure 7 presents the comparison of the predicted values
versus the real values using CatBoost with S1S2. The R2 value was 0.95.
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3.5. Contribution of the Variables to the Defintive Algorithm

Figure 8 shows the 10 variables that made the greatest contribution to the CatBoost
model, explaining 43.05% of the total variability. Of the 45 variables used (13 VIs and
two backscatter variables for each day), the VV polarization variable (VV_Day2) derived
from S1 and corresponding to April 20 (Day 2; GS39-49) contributed most to the model,
with 6.69% of the explained variability. The second highest contributor was the GRVI_Day2
variable, which explained 5.47% of the variability. This variable, derived from S2, corre-
sponds to April 23. The VH_Day1 variable, as shown in Figure 8, explained 2.99% of the
total variability.
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Figure 8. The 10 variables from S1 and S2 that most contributed to the model.

The analysis of the variables derived from S2 revealed a predominance of those
obtained on Day 2 (April 20, GS39-49). However, there was also a representation of those
from Day 3 (June 5, GS69-75), such as RVI. It is notable that the CVI variable is the only
VI represented on two different days. With respect to the variables derived from S1, those
corresponding to Day 2 explained more variability. However, in contrast to those derived
from S2, in the case of S1 Day 1 (GS30) variables explained more variability than Day 3
(GS69-75) variables. Although the acquisition date is deemed more pertinent, polarization
holds significance due to the greater explanatory power of the VV variables compared to
the VH variables.

3.6. The Ability of CatBoost to Predict Yield of Entire Plots Using Data from Other Plots

In this section, the study aimed to evaluate the ability of CatBoost to predict the yield
of an entire plot using information from other plots. Figure 9 shows that the mean %MAE
was 4.38, which is below the acceptable error of 10%. However, plots G1 and G20 exceeded
the 10% MAE threshold (Figure 9). To visually represent the difference between the actual
and predicted yield values, G15 was selected.
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Each dataset (measured and estimated yield data) was classified into two different
classes using the ISODATA algorithm, which automatically set the optimal threshold
for classification. The threshold for the measured data was set at 5.17 t ha−1, while for
the estimated data, it was set at 5.23 t ha−1. To compare the agreement between the
two classified maps, the accuracy and KI metrics were used. The accuracy was found to
be 91.4%, while the KI was 0.77 (Figure 10). The accuracy and KI metrics show that the
two classified maps are similar, indicating that the estimated map has retained the spatial
variability of the original data. For G15 plot, the model predicted an average yield error of
0.190 t ha−1, which is less than the maximum established error.
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Figure 10. On the left, the classified wheat yield map of plot G15 (6.97 ha). On the right, classified
wheat yield map based on the yield data estimated using the CatBoost algorithm with the S1S2
dataset for Days 1–3. The areas with low production are depicted in red, whereas those with high
production are shown in blue. The accuracy and KI metrics were used to compare the two maps.

4. Discussion
4.1. Inclusion of Sentinel-1 and Sentinel-2 in the Yield Estimation Model

In this study, an analysis was conducted to examine the impact of incorporating
multiple variables derived from S2 bands (VIs) and S1 backscatter information with VV and
VH polarization obtained from various dates on yield prediction. The results revealed a
consistent pattern in which the most favorable outcomes were consistently achieved when
utilizing data from all three specified dates that corresponded to the GS30, GS39-49, and
GS69-75 phenological stages.

In this study, the results obtained from VIs were consistent with those reported in prior
research by Hunt et al. [29], since the inclusion of data from various dates improved model
accuracy. In their study, the RF model was tested using VIs obtained from December to July,
and the best results were obtained when using the VIs from all months together. According
to the literature, the best grain yield estimation results are typically obtained after the end
of the stem elongation phase (>GS39) [91,92], with the strongest relationship occurring
during the anthesis or milky grain phase [93]. However, the analysis of VI information
using data from only one day revealed that the optimal results were obtained using data
corresponding to Day 2 (GS39-49) (Figure 3), which corresponds to the period from the end
of stem elongation until the first awns’ visible growth stage (24 April). This correlation
was slightly higher than that achieved with data from Day 3 when wheat is between
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complete anthesis and medium milk phase GS69-75 (5 June). Despite the moderate to high
collinearity among the VIs on the three dates (Figure 3), the results presented in Section 3.1
suggest that it is beneficial to use all the indices and multiple dates to obtain the best results.
Furthermore, it is evident that the use of any model is superior to the use of only one index
when predicting wheat yield.

Hunt et al. [29] found that the greatest improvement in the model occurred between
December and April for wheat fields in the UK, with the improvement thereafter being
less significant. In this study, the mean correlation coefficient between VI and yield on
Day 1 (GS30) was 0.36, while on Day 2 (GS39-49), it increased to 0.78 (Figure 3). Additionally,
other authors such as Segarra et al. [35] have reported that the best results (R2 = 0.89) were
obtained with the leaf area index (LAI) corresponding to the stem elongation/heading
stage, and the results with VIs were similar (R2 = 0.88). This is not surprising since LAI
and some VIs are related [69]. Correlation between grain yield and VIs and LAI at this
phase is logical since the phases encompassing stem elongation to ear growth phases are
crucial in the vegetative growth of wheat [94] and greatly determine the final grain yield.
The models demonstrated a high degree of efficiency in their ability to estimate yield at the
end of April (GS39-49). Although it may be late to make decisions that improve yield in
rainfed conditions, it could be useful for the planning of future fertilizer decisions within
the framework of precision fertilization.

Analysis of the S1 backscatter information revealed that the best results were obtained
using data from Day 2, corresponding to 20 April. However, in contrast to the results
obtained with S2, the data from Day 1 explained more variability than Day 3 data (as seen
in Figure 5). Previous research has reported a positive correlation between wheat yield
and the backscattering coefficient from S1 [95]. This correlation can be attributed to the fact
that backscattering is sensitive to changes in crop growth, biomass, and soil water content,
all crucial factors in determining wheat yield [96]. In the early growth stages, stronger
correlations were reported when backscatter information was used [96]. During these
stages, the crop is more sensitive to variations in water and nutrient availability [97], and
variations in backscattering can indicate crop health and potential yield. Furthermore, the
correlation between the backscattering coefficient and wheat yield is more robust in areas
where wheat is grown in monoculture. This is because the crop canopy in monoculture
is more homogenous, and the backscattering signal can be more directly linked to crop
growth and yield.

For the three S1 images, the VV polarization was found to contribute more to the model,
in contrast to the results reported by Mandal et al. [98] who found higher correlations with
VH polarization. The reason behind this is that VH polarization is more sensitive to changes
in surface roughness, which is an indicator of crop growth, whereas VV polarization
captures better changes in soil water content and soil moisture [99]. This seems to indicate
that soil water content in the crop early stages affects the final yield in a relevant way. It
is noteworthy that the correlation between backscattering and wheat yield is not simple,
thus it is understandable that a higher R2 value was obtained when using S2 data than S1
(Figures 4 and 5).

4.2. Reasons Why the Combination of Information from Sentienel-1 and Sentinel-2 Enhances the
Yield Estimation Model

Previous studies, such as those published by Mercier et al. [100], have utilized data
from S1 to predict the phenological stage of wheat. Other investigations have employed
the combined information from S1 and S2 for the same purpose [101]. For example,
Chaucha et al. [102] used the combined data from both satellites to determine wheat lodging
in specific plots. Thus, there are previous studies in which the combined information from
S1 and S2 has been utilized to estimate properties that can impact wheat yield or monitor
crop development. However, to date, no studies have been identified in the literature that
employ the combined information from both satellites to directly estimate wheat yield.
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The findings of this study indicate that the utilization of data from both satellites
improves the RMSE when compared to results obtained using only data from S2 (Figure 6).
Establishing a relationship between wheat grain yield and S1 backscatter is not straight-
forward as the correlation is not linear, as shown by the performance of MLR (Figure 5).
The backscatter is associated with crop canopy and soil roughness, which is related to
crop development, LAI, biomass, and grain yield [103]. On the other hand, VIs derived
from S2 data are relatively simple to calculate, are not computationally intensive, and are
usually related to the biophysical properties of crops, such as greenness and health [104].
However, multicollinearity is a problem when using multiple VIs (Figure 3), as it reduces
model accuracy [105]. The analysis of variable contribution showed that, among the top
ten most representative variables, variables from both sources of information were present
(Figure 8). Despite the unexpected nature of this finding, the variable that demonstrated the
greatest contribution in the model was VV_Day2. This is particularly surprising because
VH polarization is usually more sensitive to crop changes than VV [98]. By using data
from both S1 and S2 satellite sources together, a more comprehensive understanding of the
crop can be obtained, which can lead to more accurate wheat yield predictions. This study
demonstrates the potential of using combined S1 and S2 data for crop monitoring and yield
prediction and highlights the importance of considering multiple data sources for more
accurate crop assessment.

4.3. Algorithm Analysis

The results obtained through the utilization of RF, SVM, and CatBoost algorithms
surpassed those obtained through the utilization of MLR in all scenarios. The greatest
error measured with RMSE was observed when the model was trained with S1 data, as
depicted in Figure 5. The reason for this is that the connection between backscatter and
yield is not linear, and MLR is not able to handle non-linear relationships. Although
the relationship between VIs and wheat yield is primarily linear, it possesses enough
non-linearity for other algorithms to yield superior results [106]. The capacity to handle
non-linear relationships is a key advantage of some algorithms (SVM, RF, CatBoost), as it
enables the analysis of complex multivariate relationships between different types of data,
which is not feasible with MLR. The results obtained through the utilization of RF and
SVM are comparable, with those obtained using the SVM model being slightly superior,
which is in contrast to those reported by other authors [35,107] in the field of wheat yield
prediction. Although RF generally outperforms SVM, in some areas of PA such as disease
detection, SVM has performed better than RF [108]. However, in this study, the best results
were achieved using the CatBoost algorithm, which is a member of the boosting algorithm
family. The algorithms belonging to this family have produced inconsistent outcomes
within the domain of PA. For example, Bebie et al. [25] reported the worst results when the
boosting regression (BR) algorithm was used, while Heremans et al. [108] obtained the best
outputs with the same algorithms. CatBoost, like Xtreme Gradient Boosting (XGBoost), is
a gradient boosting algorithm that belongs to the next generation of boosting algorithms,
and XGBoost has been used successfully in PA to predict monthly NDVI evolution [109].
However, the use of this group of algorithms is not as prevalent in PA as RF or SVM. As
an example, the Scopus database revealed a limited number of articles, only seven, that
employ CatBoost within any field of PA. In contrast, it is widely utilized in other areas such
as industries, finance, healthcare, and online advertising.

Although in this case it has not been used because all the variables are quantitative,
one of the main advantages of CatBoost over other algorithms is its ability to handle
categorical variables because it can automatically deal with them without any additional
pre-processing, such as ‘one hot encoding’ reducing considerably matrix dimensions.
Moreover, CatBoost is specifically engineered to handle large datasets, as it facilitates
training on graphics processing units (GPUs), thereby significantly decreasing computation
time. In terms of performance, CatBoost has been shown to have high performance and
generalization ability, outperforming other algorithms such as RF and the generalized
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regression neural network (GRNN) algorithm [110]. Additionally, CatBoost has a built-in
mechanism for handling overfitting, which can be a problem with other algorithms like
deep neural networks (DNNs) [111] and missing values. Finally, CatBoost also has a built-in
feature importance mechanism that allows users to understand the importance of each
feature in the dataset.

4.4. CatBoost Algorithm as a Tool for Processing Heterogeneous Data in Precision Agriculture

Use of the CatBoost algorithm in PA can provide significant advantages in terms of
scaling up results. This algorithm is based on gradient boosting and is specifically designed
to handle both numerical and categorical variables. This characteristic makes it suitable
for PA, where a large amount of heterogeneous data are generated.

Compared to traditional machine learning algorithms such as RF, CatBoost has demon-
strated improved performance in terms of accuracy and speed. The algorithm utilizes
decision trees as weak learners and combines them in an iterative manner to make a strong
prediction model. This results in a model that can generalize well to new data and is able
to handle large amounts of data more efficiently than traditional algorithms.

In PA, the use of remote sensing data is increasingly common. This technology allows
the acquisition of information on the physical, chemical, and biological characteristics of
crops. Integration of the CatBoost algorithm with remote sensing data can provide valuable
insights into crop growth. Another advantage of CatBoost is its ability to operate effectively
even in the presence of missing records in a database. This is a common challenge faced
when utilizing information from multiple sensors, as failures of individual sensors can
occur at any point in time. The application of techniques to address such situations is not
ideal, as it involves the addition of estimated information, which does not enhance the
model. Furthermore, CatBoost data does not require scaling, leading to reduced time and
effort in data preprocessing.

4.5. Potential of S1 Backscatter and VIs for Precise Yield Mapping in Rainfed Areas Using the
CatBoost Algorithm

VIs have been widely utilized in PA for various purposes such as yield estimation,
SSMZ delimitation, and water stress estimation. For its part, S1 backscatter information has
been used for crop classification or for measuring land transformation changes. However,
its use for yield estimation is not common. As previously mentioned, its relationship with
growth is not direct, but it has been associated with key factors such as soil moisture,
roughness or crop height. Therefore, it is imperative to conduct new studies to understand
the underlying relationship between wheat yield and the S1 backscatter signal.

This study represents a preliminary step towards the goal of modulating fertilizer
application according to crop needs. The underlying theoretical basis of this approach is
that in rainfed areas, the fertilizer needs of the crop are generally associated to the potential
yield. The high resolution of this study allowed for the estimation of precise yield maps.
In this sense and according to Figure 9, the average %MAE was 4.38%, equivalent to an
error of 0.31 t ha−1. This level of precision would enable farmers to adjust fertilizer rates at
the plot level with an acceptable margin of error. Figure 10 takes this approach one step
further by comparing the yield maps generated from the yield monitor data with those
generated using the proposed methodology. The classification of pixels was found to be
consistent between the two maps in 91.4% of cases, suggesting that this approach captures
intra-plot yield spatial variability. Therefore, this would enable farmers who do not have a
yield monitor installed on their harvesters but have a variable rate fertilizer applicator to
create and employ intra-plot prescription maps based on estimated yield maps. In addition,
thanks to the auxiliary information source used (VI and backscatter derived from satellites),
this methodology can be scalable and applicable to larger areas. The results, however,
were obtained using satellite images acquired between Day 1 (GS30) and Day 3 (GS69-75),
with the latter date being too late to increase yield by fertilizing. Considering this, the
authors believe that future works should be directed at studying the combined capability
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of CatBoost with remote sensing data at early phenological stages of the crop to vary the
fertilization strategy during the growing cycle.

Finally, it is worth noting that the results presented in this study are promising, but
only correspond to one year. Thus, future works should encompass data from several years
to verify that the results remain consistent across all campaigns. Furthermore, it would be
interesting in future studies to incorporate high resolution climate and soil information in
order to better understand the reasons behind yield spatial variability.

5. Conclusions

The models developed to estimate yield using information from S1 and S2 satellites
showed better results than the correlation analysis. Among the evaluated models, CatBoost,
which is still relatively underutilized in agriculture, provided the best results. Furthermore,
using all available images that correspond to the GS30, GS39-49 and GS69-75 wheat pheno-
logical phases improved the performance of the models. Additionally, combining images
from S1 and S2 substantially improved predictions, providing a level of precision sufficient
to consider yield maps for fertilizer adjustment. This is an important aspect because most
farmers in the area do not have yield monitors.

Despite its potential, the methodology proposed in this article has some limitations.
Operationally, the biggest challenge lies in the clouds that impact the usability of the
S2 images. While, theoretically, S2 provides an image every five days, in reality only three
images were obtained throughout the whole crop growing cycle which were free of clouds
and hence suitable for analysis. Moreover, to effectively train the algorithm, it is imperative
to have access to high resolution yield data, such as that provided by yield monitors,
although the use of such equipment is not yet widespread.

Combining the backscatter information of S1 with that of S2 resulted in improved
outcomes of only using data from S2. However, further research is necessary to gain a
better understanding of the relationship between backscattering and crop yield. In addition,
this study focused solely on VIs and backscattering as they provide information on crop
status. Future research could benefit from incorporating high resolution meteorological
and edaphic variables, such as temperature, precipitation, and soil moisture, to better
comprehend the factors influencing crop yield.
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