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Abstract: Hawkweeds (Pilosella spp.) have become a severe and rapidly invading weed in pasture
lands and forest meadows of New Zealand. Detection of hawkweed infestations is essential for
eradication and resource management at private and government levels. This study explores the po-
tential of machine learning (ML) algorithms for detecting mouse-ear hawkweed (Pilosella officinarum)
foliage and flowers from Unmanned Aerial Vehicle (UAV)-acquired multispectral (MS) images at
various spatial resolutions. The performances of different ML algorithms, namely eXtreme Gradient
Boosting (XGB), Support Vector Machine (SVM), Random Forest (RF), and K-nearest neighbours
(KNN), were analysed in their capacity to detect hawkweed foliage and flowers using MS imagery.
The imagery was obtained at numerous spatial resolutions from a highly infested study site located
in the McKenzie Region of the South Island of New Zealand in January 2021. The spatial resolution of
0.65 cm/pixel (acquired at a flying height of 15 m above ground level) produced the highest overall
testing and validation accuracy of 100% using the RF, KNN, and XGB models for detecting hawkweed
flowers. In hawkweed foliage detection at the same resolution, the RF and XGB models achieved
highest testing accuracy of 97%, while other models (KNN and SVM) achieved an overall model
testing accuracy of 96% and 72%, respectively. The XGB model achieved the highest overall validation
accuracy of 98%, while the other models (RF, KNN, and SVM) produced validation accuracies of 97%,
97%, and 80%, respectively. This proposed methodology may facilitate non-invasive detection efforts
of mouse-ear hawkweed flowers and foliage in other naturalised areas, enabling land managers to
optimise the use of UAV remote sensing technologies for better resource allocation.

Keywords: artificial intelligence; drone; hawkweed; remote sensing; weed detection

1. Introduction

Weed control is essential for protecting biodiversity and for limiting impacts on yield
loss and product quality in crops and pastures [1–4]. Conventional surveillance methods
(e.g., field surveys) for invasive plant species are typically time-consuming, risky, and costly,
resulting in a paucity of quantitative data regarding weed distribution in Australia [5].
Surveillance is a crucial aspect of biosecurity since it enables the early discovery of invasive
species and develops an understanding of the spread of pests, weeds, and diseases. Remote
sensing can efficiently and cost-effectively acquire geospatial data over expansive areas [6].
The combination of remote sensing and airborne imaging to assess weed populations is a
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technology that is expanding globally but remains in its infancy in many countries. Specif-
ically, images acquired via the use of Unmanned Aerial Vehicles (UAVs) in recent years
have proven their suitability for weed detection in different crops [5,7–9]. Most UAV-based
remote sensing studies use Red, Green, Blue (RGB) sensors, which capture reflected light
within the visible red, green, blue section of the electromagnetic spectrum for different
applications. These sensors offer many advantages, including low cost, light weight, high
spatial resolution, ease of use, simplicity of data processing, and reasonably low specifi-
cations for the working environment [10,11]. However, they are unable to capture light
energy reflected in the non-visible segments of the electromagnetic spectrum, reducing the
ability to discriminate between objects that appear similar to the human eye. Multispectral
(MS) sensors offer a solution to this challenge, since they are capable of sensing radiation
from both of invisible (red-edge and near-infrared) and visible segments of the spectrum,
a region of four to six bands [12,13]. MS sensors have typically facilitated the accurate
detection of crop health and diversity aiding decision making [14–19]. Despite the lower
economic cost of imagery acquisition, RGB image processing tends to be insufficient for
detecting weeds in their vegetative stages, when spectral signatures are less distinguishable
from other green vegetation [10,20].

Mounting an UAV platform with a MS sensor is a very useful tool for performing
crop and weed monitoring field studies at early phenological stages [21–26]. Further,
the application of machine learning (ML) techniques and analysis to remotely sensed
multispectral imaging has been identified as a potentially cost-effective strategy for locating
diverse weed species [27] and has been typically used for remote vegetation mapping in
different landscapes [28]. ML techniques have made it possible to extract the visible and
invisible electromagnetic spectrum regions that can be employed for discrimination of
different vegetation and non-vegetation [29]. The Vegetation Index (VI) is used to improve
the accuracy of comparisons of plant growth and changes in canopy structure over time and
in different regions by emphasizing the role of vegetation characteristics [30]. Combining
ML techniques with a VI is a relatively new and advanced practice [31] that may be used to
identify target weeds from surrounding vegetation at earlier phenological stages [32].

1.1. Hawkweed

Hawkweeds (Pilosella spp.) are perennial herbs that are serious environmental and
agricultural weeds invading many temperate and subalpine areas of the world [33]. Hawk-
weeds are native to Europe and Asia [34] and have become major weeds in the United States
of America, Canada, Japan, Australia, and New Zealand [35]. In New Zealand, hawkweeds
have invaded more than 6 million ha of the South Island, particularly on the Canterbury
Plains. Hawkweeds can spread quickly by seeds that are typically wind-dispersed and
from stolon and root fragments [36]. Water, fodder, garden waste, and garden tools are
also common hawkweed dispersal agents [37]. Hawkweeds have a unique appearance,
featuring leaves up to 150 mm long that are green, arranged in a circular pattern near the
ground and covered in delicate, long hairs. The stems have a milky sap and are covered
in numerous short, rough bristly hairs [38]. Mouse-ear hawkweed (Pilosella officinarum)
is a species characterised by a yellow flower with square-ended petals of up to 30 mm
across, with a solitary flower on each stem. The species can quickly form dense mats,
outcompeting neighbouring native and desirable species. It is also highly allelopathic,
preventing the germination and growth of other plants by producing and secreting bio-
chemicals into the surrounding soil [34]. Mouse-ear hawkweed poses a major threat to
southeast Australia [34], and the lack of aerial detection techniques available currently
severely limits de-limitation efforts. Small infestations exist in alpine areas of both Victoria
and New South Wales and are eradication targets. Mouse-ear hawkweed has the potential
to expand significantly beyond these regions under forecast climate scenarios [34,39]. The
first step in any weed eradication program is to find the plant and delimit the infestation.
In the case of mouse-ear hawkweed in NSW, the infestation exists in rugged and remote
areas of Kosciuszko NP where ground survey is difficult and costly.



Remote Sens. 2023, 15, 1633 3 of 26

1.2. Machine Learning Models for Weed Detection

Recent research highlights several methods used to create weed maps from UAV
images. The random forest (RF) classifier is gaining popularity in remote sensing due
to its versatility, speed, and efficiency, making it a desirable choice for classifying high-
resolution drone images and mapping agriculture [40]. The support vector machine (SVM)
is another popular ML classifier which has been used for the classification of weeds [40]
and is among the most prominent of ML techniques utilised for pattern recognition and
regression. It has been characterised as unique and faster than other ML techniques [41]
and can effectively handle large volumes of data [33]. eXtreme Gradient Boosting (XGB) is
a class of ensemble ML classification techniques that can be used as an effective gradient-
boosting implementation for predictive regression modelling [42]. K-nearest neighbours
(KNN) is also a prevalent ML algorithm that performs well in supervised learning scenarios
and simple recognition issues [41,42].

Several studies have successfully reported the use of these models for the detec-
tion of weed species (Table 1). In one study, three ML models, namely RF, SVM, and
KNN, were employed to detect weeds in chili farms, resulting in an overall accuracy of
RF—96%, KNN—63%, and SVM—94% [43]. Back-propagation neural networks (BPNNs),
a specific type of Artificial Neural Network (ANN), and SVMs were utilised in weed de-
tection in soybean fields in another study, resulting in an accuracy of BPNN—96.6% and
SVM—95.7% [44]. Real-time weed detection was performed using RF with an accuracy of
95% in another study [45]. The classification of weeds was carried out using SVM with
an overall accuracy of 97% in a different study [46]. Similarly, the detection of weeds in
sugar beet fields was performed using ANN and SVM with an accuracy of ANN—92.9%
and SVM—95% [47]. Weed mapping was also carried out using both Supervised Kohonen
Network (SKN) and ANN with an overall accuracy of SKN—99% and ANN—99% [48].
Another study, conducted in Morocco, used ML and multispectral UAV data to detect
weeds in a citrus farm. The study found that the RF classifier was more robust than KNN
in classifying the weeds [49]. Another study utilised ML and UAV multispectral imagery
to conduct spectral analysis and map blackgrass weed, achieving high accuracy rates using
the RF classifier of 94%, 94%, and 93% [50]. Most of the above studies obtained good overall
accuracy in detecting different weeds. Therefore, this study focuses on frequently used ML
models for detecting hawkweed.

Table 1. Application of machine learning techniques for weed detection.

No Application ML Model Overall Accuracy References

01 Weed detection in chili farm RF, SVM, KNN
RF—96%

KNN—63%
SVM—94%

[43]

02 Weed detection in a soybean field BPNN,
SVM

BPNN—96.6%
SVM—95.7% [44]

03 Real-time weed detection RF 95% [45]
04 Classification of weeds SVM 97% [46]

05 Detection of weeds in sugar beet field ANN, SVM ANN—92.9%
SVM—95% [47]

06 Weed mapping SKN,
ANN

SKN—98.6%
ANN—98.8% [48]

07 Weed detection in citrus farm RF, KNN RF—97%
KNN—94%

[49]

08 Mapping of blackgrass weed RF 93% [50]
09 Detection of yellow hawkweed supervised, unsupervised 20% to 90% [51]

RF: Random Forest, KNN: K-nearest neighbors, BPNN: Back-propagation neural network, SVM: Support Vector
Machine. SKN: Supervised Kohonen Network, ANN: Artificial Neural Network.

To date, several studies associated with the analysis of imagery to detect hawk-
weeds have been undertaken around the globe. A program to detect orange hawkweed
(Pilosella aurantiaca) flowers by manually viewing and logging pixel values was recently
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developed, but no ML model was used in the study [26]. Other studies have compared the
detection of yellow hawkweed (Pilosella caespitosa) with high-resolution multispectral digi-
tal imagery to using supervised and unsupervised classification techniques [51]. However,
classification methods exhibited low accuracy for detecting yellow hawkweed at lower
ground cover percentages, possibly due to mixing with other grasses, making detection
difficult. Calvin and Salah (2015) [52] also conducted research on surveillance systems for
orange hawkweed detection using different spatial resolutions. Results showed that at
30 m above ground level (AGL), the flowers were represented by a small number of pixels
and significant pixel mixing occurred, reducing the performance of the detection algorithm.
Other studies have developed a spectral library for weed species in alpine vegetation
communities, highlighting the potential to map orange and mouse-ear hawkweed based
on their spectral characteristics [53].

Recently, remote sensing methods (i.e., RGB sensors mounted on aerial platforms)
have been successfully utilised to detect orange hawkweed flowers in Kosciuszko National
Park, Australia [54]. However, there is a need to determine an effective ML approach for
the detection of mouse ear hawkweed, due to the significant threat this species poses on
Australian alpine regions into the future. This study thus proposes an optimal technique for
detecting mouse-ear hawkweed flowers (model 1) and foliage (model 2) in UAV acquired
MS imagery and compares different ML classification algorithms at different spatial resolu-
tions. The reason for developing two separate models for detecting mouse-ear hawkweed,
one for flowers (model 1) and the other for foliage (model 2), is to ensure year-round
applicability. A single model for detecting both flower and foliage may not be suitable for
non-flowering seasons, leading to lower detection accuracy. Therefore, two models were
developed to address this limitation. By having separate models for flowers and foliage,
our approach allows for accurate detection of mouse-ear hawkweed at any time of the
year. The specific objectives of this study were to: (1) correlate the vegetation indices with
the hawkweed diversity; (2) evaluate the performance of different ML models to detect
mouse ear hawkweed foliage and flowers; and (3) compare the accuracy of models in
different spatial resolutions. The outcomes of this study may ultimately support effective
weed biosecurity and management in regions invaded by this species within Australia and
across the world by providing a mechanism to greatly enhance surveillance and facilitate
accelerated eradication.

2. Materials and Methods
2.1. Site Description

Due to a paucity of mouse-ear hawkweed present in Australia and it being under
active eradication, a large hawkweed infestation in New Zealand was chosen as the study
site, thereby providing a sufficient quantity of data. All imagery was obtained at Sawdon
Station in the McKenzie Region, south of Lake Tekapo, New Zealand (44◦8′39.17′ ′S and
170◦18′30.80′ ′E) in January 2021, as shown in Figure 1. Sawdon Station is a 7500 ha high
country property, consisting of pastures used for sheep grazing. All imagery was captured
in three 1–2 ha areas which included a high, medium, and low density level of mouse-
ear hawkweed. The capture area was a floristically simple grassland where mouse-ear
hawkweed was co-dominant with several grass species.

2.2. Ground Truthing

To assist in the confirmation of mouse-ear hawkweed captured in the imagery, blue
ropes were positioned across the site to demarcate areas of varying hawkweed density,
providing regions of known species location (Figure 2). Botanical descriptions of mouse-ear
hawkweed and other vegetation and the degree of ground disturbance within each section
were recorded. High resolution ground photos were also taken to assist reliably identify
hawkweed in the aerial imagery. Ground truth locations from 3, 4, 6, 10, and 11 (large
patches) were selected for training and ground truth locations from 1, 2, 5, 7, 8, 9, 12, and 13
(small patches) were selected for validating the model. In addition, weather data, including
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cloud cover, wind velocity, humidity, temperature, and altitude were also recorded prior to
imagery acquisition.

Figure 1. Study site location at Sawdon Station, New Zealand (EPSG:4326—WGS 84).

Figure 2. Images 1 to 13 show each of the sectioned areas used for ground truth data collection at the
study site.

2.3. Collection of Multispectral UAV Images

The UAV flight missions were conducted using a Micasense Altum multispectral
camera (MicaSense, Inc., Washington, DC, USA) mounted on a DJI Matrice 600 (Da-Jiang
Innovations (DJI), Shenzhen, Guangdong, China) UAV between 12:00 and 14:00 NZ local
time on 30 January 2021 under sunny conditions. The Altum camera captures five radiance
bands in the visible and near infrared regions (i.e., Blue, Green, Red, Red Edge, and
Near Infrared) comprising wavelengths of 475.0 nm, 560.0 nm, 668.0 nm, 717.0 nm, and
842.0 nm, respectively. The Altum has a horizontal resolution of 2064 pixels, a vertical
resolution of 1544 pixels, a sensor width of 7.12 mm, and a sensor height of 5.33 mm.
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The focal length of the camera is 8.0 mm, and the shutter interval is of 1 s. In order to
obtain multispectral images in reflectance, sample images before and after each flight were
taken by pointing the camera to a calibrated reflectance panel (CRP), which is provided by
the sensor manufacturer. Calibration coefficients to convert the images from radiance to
reflectance were obtained from the resulting images using Mica sense’s CRP processing
tool, and these coefficients were applied to the target area images to ensure accurate and
consistent reflectance measurements. The flight missions were conducted and recorded
at the altitudes, resolutions, flight speeds, and take-off times, shown in Table 2, (AGL:
15–45 m, GSD: 0.65 to 1.95 cm/pixel, drone speed: 2 to 5 m/s, front overlap: 75%, take-off
times: 12.10 to 13.35) to determine the ideal resolution for the detection of mouse-ear
hawkweed, being cognizant that lower-resolution imagery is cheaper to collect and allows
greater areas to be surveyed. Flight planning enabled the UAV to capture data using lawn
mower patterns as illustrated in Figure 3.

Table 2. Summary of multispectral flight mission data acquired at Sawdon Station hawkweed study
site on 30 January 2021.

Flight Mission No AGL (m) GSD (cm/pixel) Speed (ms−1) Overlap Take-off Time

1 15 0.65 2 75% 12.10
2 20 0.86 2.2 75% 12.47
3 25 1.10 2.8 75% 13.17
4 30 1.30 3.3 75% 13.32
5 35 1.50 4 75% 13.35
6 40 1.73 4.5 75% 13.06
7 45 1.95 5 75% 12.37

AGL: Above Ground level; GSD: Ground Sampling Distance; Take-off time: NZ local time.

Figure 3. Lawn mower pattern of UAV mission (EPSG:4326—WGS 84).

2.4. Software and Python Libraries

Several software applications and Python libraries were used to manage the ac-quired
data. For multispectral image analysis, Agisoft Metashape 1.6.6 (Agisoft LLC, Petersburg,
Russia) was used to process, filter, and orthorectify images. A collection of images was
recovered from cropped sections and then labelled using QGIS (Version 3.2.0; Open-Source,
Geospatial Foundation, Chicago, IL, USA). ENVI 5.5.1 (Environment for Visualizing Im-
agery, 2018, L3Harris Geospatial Solutions Inc, Broomfield, CO, USA) was used to apply
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different filters to reduce the noise in the multispectral image. Visual Studio Code (VS Code
1.70.0, Microsoft Corporation, Washington, DC, USA) was utilised as the source code editor
for the development of ML algorithms using Python software (version 3.8.10, Python Soft-
ware Foundation, Wilmington, DE, USA). Several libraries were utilised for data processing
and ML, including Geospatial Data Abstraction Library (GDAL) 3.0.2, eXtreme Gradient
Boosting (XGBoost) 1.5.0, Scikit-learn 0.24.2, OpenCV 4.6.0.66, and Matplotlib 3.0.

2.5. Orthomosaics and Raster Alignment

Initial image processing consisted of the development of different orthomosaics at
all flight missions for same site. Orthomosaics resulting from various flight missions,
namely GSD at 0.86, 1.10, 1.30, 1.50, 1.73, and 1.95 cm/pixel, were georeferenced with the
highest resolution raster image (0.65 cm/pixel) by the pixel-level alignment technique. This
technique was important to avoid manual image annotation for all flight missions and is
described in Section 2.7. The georeferencing technique was utilised to save time during the
labelling process.

2.6. Region of Interest (ROI) for Training and Validation

In accordance with the ground truth locations depicted in Figure 2, the orthomosaic was
cropped into thirteen (13) ROIs for labelling the training dataset and the validation dataset.

2.7. Raster Labelling

QGIS was utilised to label both the training and validation datasets. For developing
the hawkweed flower detection model (model 1), a mask for each image was built to
conduct image labelling by assigning integer values to each highlighted pixel including
1 = Hawkweed flower, 2 = Non hawkweed flowers or background (including hawkweed
foliage, other vegetation, and non-vegetation). Another model for detecting hawkweed
foliage (model 2) was also developed using 3 classes (1 = hawkweed foliage (target veg-
etation), 2 = other vegetation, 3 = non vegetation). Using the toggling/editing function
and adding polygon tools in QGIS, a new shapefile was generated to label each class with
polygons drawn on the MS orthomosaic image. Figure 4 depicts an example of labelled
hawkweed foliage in the ground truth location (ROI) number 11.

Figure 4. Ground truth labelling for hawkweed foliage detection model: (a) Actual multispectral
image, (b) Polygon labelling over hawkweed foliage (EPSG:4326—WGS 84).

2.8. Statistical Analysis for Algorithm Development

Two statistical analyses of multicollinearity testing, and normality testing were con-
ducted to develop the ML models before loading the input features (five bands and VIs).
Initially, sixteen vegetation indices (VIs) were considered for building machine learning
models, but only six were chosen after conducting a multicollinearity test using the variable
inflation factors (VIF) to prevent overfitting. The VIF was applied to assess the increase in
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variance of the estimated regression coefficient if the independent variables were correlated.
A normality test was performed to confirm that the sample data came from a normally
distributed population for developing the ML models.

2.9. Development of Classification Algorithms and Prediction

Numerous processes are involved in constructing algorithms, including loading,
pre-processing especially annotation, fitting the classifier to the data, prediction, and
validation. The processing phase transforms the read input into a set of features, which
the classifier subsequently analyses. MS images (with five reflectance bands) were applied
to a low pass filter for image smoothing through decreasing the disparity between pixel
values by averaging nearby pixels using ENVI for accurate detection before importing
into the algorithm. The different VIs were estimated to develop and improve the models
in this study. Only six vegetation indices were chosen to develop the ML models for
detecting hawkweed foliage and flowers based on the outcomes of multicollinearity testing
to overcome the overfitting of the model. Then, five reflectance bands were loaded into
the algorithm to increase detection rates by calculating spectral vegetation indices (VI).
The Normalised Difference Vegetation Index (NDVI), Green Normalised Vegetation Index
(GNDVI), Normalised Difference Red Edge Index (NDRE), Green Chlorophyll Index (GCI),
Modified Soil-Adjusted Vegetation Index (MSAVI), and Excess Green (ExG) were selected
and calculated to improve the input features and accuracy of the models, as shown in
Table 3 and Figure 5.

Table 3. Estimation of vegetation indices for model development.

Vegetation Indices Formula References

NDVI NIR – R
NIR+R [55–57]

GNDVI NIR – G
NIR+G [58,59]

NDRE NIR – Red Edge
NIR+Red Edge

[58–60]

GCI NIR
G − 1 [61]

MSAVI (2 ∗ NIR+1 – sqrt ((2 ∗ NIR+1)2 – 8 ∗ (NIR−R)))
2

[62]

ExG 2G – R – B
R+G+B [63]

NDVI: Normalised Difference Vegetation Index; GNDVI: Green Normalised Difference Vegetation Index;
NDRE: Normalised Difference Red Edge Index; GCI: Green Chlorophyll Index; MSAVI: Modified Soil-Adjusted
Vegetation Index; ExG: Excess Green.

All five reflectance bands and the computed VIs were used as input features. The
labelled regions were exported from QGIS. The majority class of non-hawkweed flowers
(including hawkweed foliage, other vegetation, and non-vegetation) is more likely to be
over-classified due to its higher prior probability, leading to misclassification of instances
from the minority class (hawkweed flowers) during hawkweed flower detection model
development due to imbalance dataset. Therefore, the data level resampling technique [64]
was performed to modify the training set to make it suitable for a ML algorithm [65].
After resampling, the dataset was placed into an array and filtered pixel-wise data were
randomly divided into a training array (75%) and a testing array (25%). Initially, the highest
resolution raster dataset (15 m) was fitted into many ML classifiers, including XGB, SVM,
RF, and KNN, to detect the hawkweed foliage and flowers at the site. The best ML model
was subsequently chosen based on the highest model accuracy. The selected ML model
was utilised for training all other resolutions, using the same labelled vector file generated
by the highest resolution and using the georeferencing technique. K-fold cross-validation
(K-fold: 10) was then utilised to evaluate the performance of the model. In the prediction
phase, unlabeled pixels were processed using the best performing classifier and displayed
in the same 2D spatial image from the orthorectified multispectral data. The identified
pixels from each image were then assigned different colors and saved in TIF format for
use with Geographic Information Systems (GIS) software. Finally, the predicted map was
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aligned with the actual multispectral raster and the accuracy of the expected outcome
was confirmed by weed specialists using the model validation accuracy and ground truth
verification that were mentioned in Sections 3.1 and 3.2.

Figure 5. Vegetation Indices (EPSG:4326—WGS 84) (a) NDVI; (b) MASVI; (c) GNDVI; (d) ExG;
(e) GCI; (f) NDRE.

2.10. Classification Report

The labelled pixels from the multispectral image were fed into a ML model to detect
the hawkweed foliage and flower and map the spatial distribution of hawkweed diver-
sity in the study site. Overall model accuracy and precision were used to evaluate the
model’s validation performance for detection of mouse-ear hawkweed flowers and foliage.
Confusion matrix and classification reports were established to compare and evaluate the
detection performance of the models. Evaluation descriptors, including true positive (TP),
false positive (FP), true negative (TN), and false-negative (FN), were used to construct
the confusion matrix (Equation (1)) and to determine the overall accuracy (Equation (2)),
precision (Equation (3)), recall (Equation (4)), and F1 score (Equation (5)).

Confusion Matrix =

[
TP FP
FN TN

]
(1)

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(2)
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Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 Score =
2TP

FP + 2TP + FN
(5)

2.11. Data Processing Pipeline

Figure 6 depicts the development of a process pipeline with five components: acquisi-
tion, pre-processing, training, assessment, and prediction. Images are gathered, orthorec-
tified, and pre-processed to obtain training samples with critical properties, which are
subsequently labelled. The information is then forwarded to ML classifiers, trained, and
optimised for detection.

Figure 6. UAV-acquired multispectral imagery processing pipeline for detection models.
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3. Results
3.1. Detection of Hawkweed Flowers (Model 1)

Two accuracy matrices including model testing accuracy generated during the training
process and model validation accuracy generated using best model and ground truth
verification were also conducted to evaluate and verify the prediction results from selected
ML model at selected spatial resolution for the detection of hawkweed flowers.

3.1.1. Model Testing Accuracy

Results of the analysis showed an overall model testing accuracy of 100% was attained
with XGB, RF, and KNN to detect mouse-ear hawkweed flower at the study site. However,
SVM, obtaining an overall accuracy of 99%, as shown in Table 4. All four models performed
well in classifying instances into the hawkweed flowers and background (non-hawkweed
flowers) classes, with perfect precision, recall, and F1 score (Table 5). Based on the confusion
matrices (Figure 7), it appears that all four models displayed high accuracy in classifying
instances into two classes: hawkweed flowers and background. Indeed, all models achieved
a high number of true positives and true negatives, and the number of false positives and
false negatives were minimal. It is worth noting that the SVM model had slightly more
false positives than the other models, but the overall performance of all models was strong
during testing.

Table 4. Overall testing accuracy of different machine learning models for detection of hawkweed
flowers at 0.65 cm/pixel.

XGB SVM RF KNN

100% 99% 100% 100%
XGB: eXtreme Gradient Boosting; SVM: Support Vector Machine; RF: Random Forest; and KNN: K-nearest neighbors.

Table 5. Classification report (testing) of different machine learning models for detection of hawkweed
flowers at 0.65 cm/pixel.

Matrix RF SVM KNN XGB

Hawkweed flowers
Precision (%) 100 100 100 100

Recall (%) 100 98 100 100
F1 score (%) 100 99 100 100

Background (Non
hawkweed flowers)

Precision (%) 100 98 100 100
Recall (%) 100 100 100 100

F1 score (%) 100 99 100 100
XGB: eXtreme Gradient Boosting; SVM: Support Vector Machine; RF: Random Forest; and KNN: K-nearest neighbors.

Finally, the XGB model was selected as the best model to train the other resolution
imagery for detection of hawkweed flowers as shown in Table 6, since XGB took the shortest
training time in comparison to other models. As expected, the 0.65 cm/pixel (15 m AGL)
mission obtained the highest overall accuracy (100%) for detection of hawkweed flowers
than any other ground sampling distance in the study site. Different region of interests
(ROIs) at the ground truth location number 11 were used to train the model for detection of
hawkweed flowers in the study site due to the high density of hawkweed flowers in this
location. Figure 8 shows the XGB model prediction results during training. Hawkweed
flowers are predicted as a yellow highlight and black background depicts the other regions
in the training site not containing hawkweed flowers.
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Figure 7. Confusion matrix for training of different machine learning models for flower detection.

Table 6. Overall testing accuracy report of XGB for different spatial resolutions at the study site.

Flight No GSD * (cm/pixel) Overall Testing Accuracy (%)

1 0.65 100
2 0.86 100
3 1.10 99
4 1.30 99
5 1.50 99
6 1.73 98
7 1.95 97

* GSD: Ground Sampling Distance.

3.1.2. Model Validation Accuracy

Different ROIs at the ground truth location number 11 (at 0.65 cm/pixel) were used
to validate the model for detection of hawkweed flowers in the study site. Results of
the analysis show an overall model validation accuracy of 100% using the XGB, RF, and
KNN model to detect mouse-ear hawkweed flowers at the study site (Table 7). All models
achieved high precision and F1 score for both classes. However, RF, KNN, and XGB models
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achieved 100% of precision, recall and F1 score for detection of hawkweed flowers. While
the SVM model achieved slightly lower recall and F1 score for the hawkweed flowers
and background class (Table 8). In general, all models performed well and achieved high
accuracy in classifying the hawkweed flowers and background pixels.

Figure 8. Training at ground truth location number 11 (ROI-1, 2) using XGB model (EPSG:4326—WGS 84).

Table 7. Overall validation accuracy of different machine learning models for detection of hawkweed
flowers at 0.65 cm/pixel.

XGB SVM RF KNN

100% 98% 100% 100%
XGB: eXtreme Gradient Boosting; SVM: Support Vector Machine; RF: Random Forest; and KNN: K-nearest neighbors.

Table 8. Classification report (validation) of different machine learning models for detection of
hawkweed flowers at 0.65 cm/pixel.

Matrix RF SVM KNN XGB

Hawkweed flowers
Precision (%) 100 100 100 100

Recall (%) 100 98 100 100
F1 score (%) 100 99 100 100

Background
Precision (%) 100 98 100 100

Recall (%) 100 100 100 100
F1 score (%) 100 99 100 100

XGB: eXtreme Gradient Boosting; SVM: Support Vector Machine; RF: Random Forest; and KNN: K-nearest neighbors.

Based on the confusion matrices (Figure 9), it appears that all four models had high
accuracy in classifying instances into two classes: hawkweed flowers and background.
In fact, all models achieved a high number of true positives and true negatives, and the
number of false positives and false negatives were minimal. It is worth noting that the SVM
model had slightly more false positives than the other models, but the overall performance
of all models was strong. These findings suggest that any of these four models may be
effective in classifying instances of hawkweed flowers and background. Figure 10 shows
the prediction results at the validation site and most of the hawkweed flowers were detected
using this model during the validation process.
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Figure 9. Confusion matrix for validation of different machine learning models for flower detection.

Figure 10. Validation at ground truth location number 11 (a) Actual multispectral image; (b) Predic-
tion result; (c) Prediction results are overlayed with actual image (EPSG:4326—WGS 84).
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3.1.3. Ground Truth Verification

After completing the model validation, verification was conducted by weed special-
ists by comparing the ground truth ROIs extracted from multispectral orthomosaic and
pixelwise prediction results to verify the model performance (Figure 11).

Figure 11. Prediction results (EPSG:4326—WGS 84) (d–f) of XGB model within a large area of the
study site for (a), (b), and (c) respectively.

3.2. Detection of Hawkweed Foliage (Model 2)

Just as in Section 3.1, model testing accuracy, model validation accuracy, and ground
truth verification were applied to verify the prediction results from selected ML model at
selected spatial resolution for the detection of hawkweed foliage.

3.2.1. Model Testing Accuracy

Table 9 displays the overall testing accuracy of four different machine learning models
for detecting mouse ear hawkweed foliage (XGB, SVM, RF, and KNN) at a resolution of
0.65 cm/pixel at the study site. XGB and RF achieved the highest accuracy rates of 97%,
while KNN achieved a slightly lower accuracy rate of 96%. SVM had the lowest accuracy
rate of 72%. Table 10 presents the classification report of different machine learning models
for the detection of hawkweed flowers at a resolution of 0.65 cm/pixel during validation.
In relation to the detection of hawkweed class, RF, KNN, and XGB all achieved perfect
precision, indicating that all the predicted hawkweeds were true positives. The models also
had high recall rates, with values ranging from 94% to 100%, indicating that they were able
to identify most of the actual hawkweeds present in the predicted image. All the models
achieved F1 scores of 97% or above, indicating high overall performance. For the detection
of other vegetation, all the models achieved relatively high precision rates ranging from
91% to 91%. However, the recall rates were lower, ranging from 41% to 100%, indicating
that the models had some difficulty in correctly identifying all the other vegetation in the
image. As a result, the F1 scores for this class ranged from 52% to 95%. For non-vegetation
areas, all models achieved perfect precision and recall rates of 100% and 96%, respectively,
indicating that they were able to accurately identify all non-vegetation areas in the image.
The F1 scores for this class ranged from 98% to 89%.
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Table 9. Overall testing accuracy of different machine learning models for detection of mouse ear
hawk-weed foliage at 0.65 cm/pixel at the study site.

XGB SVM RF KNN

97% 72% 97% 96%
XGB: eXtreme Gradient Boosting; SVM: Support Vector Machine; RF: Random Forest; and KNN: K-nearest neighbors.

Table 10. Classification report (testing) of different machine learning models for detection of hawk-
weed foliage at 0.65 cm/pixel.

Matrix RF SVM KNN XGB

Hawkweed Foliage
(Target Vegetation)

Precision (%) 100 63 100 100
Recall (%) 94 79 94 94

F1 score (%) 97 70 97 97

Other Vegetation
Precision (%) 91 73 91 91

Recall (%) 100 41 100 100
F1 score (%) 95 52 95 95

Non-Vegetation
Precision (%) 100 81 100 100

Recall (%) 96 98 96 96
F1 score (%) 98 89 98 98

XGB: eXtreme Gradient Boosting; SVM: Support Vector Machine; RF: Random Forest; and KNN: K-nearest neighbors.

Table 11 displays the overall testing accuracy report obtained using the XGB model to
detect hawkweed foliage at different spatial resolutions at a particular study site. The table
lists the flight numbers, Ground Sampling Distance (GSD) in cm/pixel, and overall testing
accuracy percentage for each flight. The table indicates that the XGB model performed
well across all flight numbers and GSDs, achieving high overall testing accuracy percent-
ages ranging from 91% to 97%. Flights 1 and 2, which had GSDs of 0.65 cm/pixel and
0.86 cm/pixel, respectively, achieved the highest overall testing accuracy percentages of
97%. Flight 3, which had a GSD of 1.10 cm/pixel, had a slightly lower accuracy rate of 95%,
followed by flights 4 and 5 with GSDs of 1.30 cm/pixel and 1.50 cm/pixel, respectively,
which both achieved overall testing accuracy percentages of 94%. Flights 6 and 7, which
had larger GSDs of 1.73 cm/pixel and 1.95 cm/pixel, respectively, had lower overall testing
accuracy percentages of 92% and 91%, respectively.

Table 11. Overall testing accuracy report arising from the use of the XGB model to detect hawkweed
foliage at different spatial resolutions at the study site.

Flight No GSD * (cm/pixel) Overall Testing Accuracy (%)

1 0.65 97
2 0.86 97
3 1.10 95
4 1.30 94
5 1.50 94
6 1.73 92
7 1.95 91

* GSD: Ground Sampling Distance.

The set of confusion matrices (as shown in Figure 12) displays the performance of four
ML models, namely RF, SVM, XGB, and KNN, in classifying data into three classes. The
numbers in each cell of the matrix represent the number of samples that were classified
as a particular class. For example, in the RF confusion matrix, the number 7662 in the
top-left cell indicates that 7662 samples were correctly classified as belonging to the target
vegetation of hawkweed foliage. The number 516 in the second cell of the first row
indicates that 516 samples that belong to the hawkweed foliage class were incorrectly
classified as belonging to the other vegetation class. By analyzing the confusion matrices
of the different models, one can determine which model has the highest accuracy rate
in correctly classifying the samples into their respective classes. For example, in the RF
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and XGB models, the confusion matrices are identical, indicating that they have the same
performance. Both models have high accuracy rates for all three classes, with very few
incorrectly classified samples. The KNN model has a similar performance to the RF and
XGB models but has slightly more incorrectly classified samples in the first class. The SVM
model has the lowest accuracy rate among the four models, with more incorrectly classified
samples in all three classes.

Figure 12. Confusion matrix for training of different machine learning models for foliage detection.

Figure 13 illustrates the prediction results from different ML models in different ROIs
(3, 4, 6, 10, 11) in the field and their respective masks. It clearly shows that RF, XGB, and
KNN accurately detected the hawkweed foliage in the ROIs, while SVM predictions were
poorer than those of the other models during training.

3.2.2. Model Validation Accuracy

Different ground truth location numbers (ROI-1,2,5,7,8,9,12,13 at 0.65 cm/pixel) were
used to validate the models for detection of hawkweed foliage in the study site. Table 12
provides information on the overall validation accuracy of four different ML models for
detecting mouse ear hawk-weed foliage at 0.65 cm/pixel at the study site. The models
compared are XGB, SVM, RF, and KNN. The accuracy values for the models are as follows:
XGB-98%, SVM-80%, RF-97%, and KNN-97%. Table 13 provides a detailed classification
report for the different machine learning models used to detect hawkweed flowers at a
resolution of 0.65 cm/pixel during validation. The report includes precision, recall, and F1
score values for hawkweed, other vegetation, and non-vegetation, calculated as percentages.
For hawkweed detection, the highest precision of 95% was achieved by the XGB model,
followed by RF and KNN with 94%, and SVM with 54%. The highest recall of 96% was
achieved by XGB and KNN, followed by RF and SVM with 94% and 81%, respectively. The
highest F1 score of 95% was achieved by XGB and KNN, followed by RF and SVM with
94% and 65%, respectively. For other vegetation detection, the highest precision of 97% was
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achieved by RF and KNN, followed by XGB and SVM with 96% and 77%, respectively. The
highest recall of 97% was achieved by all four models. The highest F1 score of 97% was
achieved by RF and XGB, followed by KNN and SVM with 96% and 63%, respectively. For
non-vegetation detection, all models achieved perfect precision, recall, and F1 score values
of 100%. This indicates that all models correctly identified non-vegetation pixels without
any false positives or false negatives.

Figure 13. Prediction results from training in different ground truth locations (ROIs) using different
machine learning models.

Table 12. Overall validation accuracy of different machine learning models for detection of mouse
ear hawkweed foliage at 0.65 cm/pixel at the study site.

XGB SVM RF KNN

98% 80% 97% 97%
XGB: eXtreme Gradient Boosting; SVM: Support Vector Machine; RF: Random Forest; and KNN: K-nearest neighbors.

Table 13. Classification report (validation) of different machine learning models for detection of
hawkweed foliage at 0.65 cm/pixel.

Matrix RF SVM KNN XGB

Hawkweed Foliage
(Target Vegetation)

Precision (%) 93 54 94 95
Recall (%) 94 81 94 96

F1 score (%) 94 65 94 95

Other Vegetation
Precision (%) 96 77 96 97

Recall (%) 95 52 96 97
F1 score (%) 96 63 96 97

Non-Vegetation
Precision (%) 100 100 100 100

Recall (%) 100 98 100 100
F1 score (%) 100 99 100 100

XGB: eXtreme Gradient Boosting; SVM: Support Vector Machine; RF: Random Forest; and KNN: K-nearest neighbors.
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This confusion matrix (Figure 14) shows the results of the four different ML models
used for the detection of target vegetation (hawkweed foliage), other vegetation, and
non-vegetation. For the hawkweed foliage class, all models had high true positive values,
with RF having the highest number of true positives (23,035) and SVM having the lowest
number (19,805). SVM had the highest false positive value for this class (4655), which means
that it incorrectly classified some other vegetation or non-vegetation pixels as hawkweed
foliage. RF had the lowest false positive value for this class (1431). For the other vegetation
class, all models had high true positive values, with XGB having the highest number of
true positives (23,661) and SVM having the lowest number (12,848). SVM had the highest
false positive value for this class (420), which means that it incorrectly classified some
hawkweed or non-vegetation pixels as other vegetation. RF had the lowest false positive
value for this class (1133). For the non-vegetation class, all models had perfect true positive
values, meaning they correctly classified all non-vegetation pixels. SVM had the highest
false positive value for this class (6), which means that it incorrectly classified a small
number of other vegetation or hawkweed pixels as non-vegetation. In terms of overall
performance, RF and XGB had the highest number of true positives for all classes, while
SVM had the highest number of false positives for hawkweed and other vegetation classes.
KNN had similar performance to RF for all classes, with slightly lower true positive values
for hawkweed and other vegetation.

Figure 14. Confusion matrix for validation of different machine learning models for foliage detection.

Figure 15 demonstrates how various ML models predicted hawkweed foliage in dis-
tinct regions of interest (ROIs 1, 2, 5, 7, 8, 9) in the field during validation, along with
their corresponding masks. The results indicate that RF, XGB, and KNN accurately iden-
tified hawkweed foliage in the training ROIs, while SVM exhibited poorer predictive
performance compared to the other models. After completing the model validation, verifi-
cation was conducted by weed specialists to confirm the model performance and pixelwise
prediction results.
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Figure 15. Prediction results from validation in different ground truth locations (ROIs) using different
machine learning models.

3.2.3. Prediction Results for Different Region of Interests at the Study Site

Figure 16 represents the model segmentation results with classes of hawkweed foliage,
other vegetation, and non-vegetation at different GSD at a resolution of 0.65 cm/pixel using
the XGB model. According to the prediction results as shown in Figure 16, hawkweeds
were truly predicted in the pastureland (Figure 16d–f). Further, most of the pixels from
hawkweed foliage were accurately predicted in Figure 16d,g because of limited mixing
of hawkweed foliage and other vegetation. Hence, hawkweed foliage can be accurately
detected where hawkweeds were grown in non-vegetation sites.

Figure 16. Prediction results at different region of interest (EPSG:4326—WGS 84) (a,d,g)—Different
region of study sites; (b,e,h)—Prediction result of hawkweed foliage; (c,f,i)—Prediction results of all
classes (Hawkweed foliage, other vegetation, and non-vegetation.
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4. Discussion

The results of this study show that MS sensors installed on UAVs are highly effective
for detecting mouse-ear hawkweeds in their flowering stage in the grazing landscape.
When applying ML models to remotely sensed data, the results further demonstrate the
importance of spatial image resolution to image clarity and detection accuracy. Due to the
expensive nature of high-resolution data acquisition, it remains necessary to identify models
capable of enhancing image quality and recognizing species in lower-resolution imaging.
The preliminary model accuracy matrix for the ML model in this study highlights the need
for further validation regarding the prediction accuracy of models for detecting mouse ear
hawkweed inhabiting a broader range of vegetation. This could be achieved by trialing
the model within a different natural context in Australia (where mouse-ear hawkweed is
present at lower densities). VIs have been shown to be useful in discriminating between
different vegetation types because VIs are significantly correlated with different pigment
concentrations in different vegetation. VIs represent a promising development towards
automating the analysis of remote sensing images and the development of weed maps.

In the hawkweed flower detection model (Model 1), the XGB, RF, and KNN models
achieved 100% accuracy, and thereby correctly classified all flower images in the validation
dataset. The Support Vector Machine (SVM) model achieved an accuracy of 98% and
incorrectly classified 2% of the flower images. The variation in accuracy values may be due
to algorithm and parameter differences, as well as the quality and quantity of the training
data available. For example, the XGB and RF models are ensemble models that combine
multiple decision trees to improve accuracy, while the SVM and KNN models are based on
different classification approaches. Additionally, the choice of hyperparameters, such as
the number of trees in a RF or the number of neighbours in KNN, can affect the accuracy of
the model. SVM is a sensitive model that requires careful tuning of its hyperparameters to
achieve good performance. This is intuitive given the small size of the flowers relative to
the pixel size. Therefore, UAV flight missions are recommended to capture minimum 0.65
to 0.86 cm/pixel GSD imagery for the detection of hawkweed flowers using the XGB model.
In this study, the model accuracy was verified by a hawkweed specialist. They found only a
few definitive false positives, but true verification was limited as only the very small areas
covered by ground photos (quadrats) could be accurately verified. The aerial imagery was
not of sufficient resolution to identify mouse-ear hawkweed flowers with high certainty. In
the hawkweed foliage detection model (Model 2), XGB and RF seem to be the most suitable
models for the given problem with the highest validation accuracy. Similarly, to model 1, it
is evident that the greater number and smaller pixels (more detail) allows better definition
of the hawkweed foliage against surrounding plants and features. The validation ROIs,
as mentioned in Figure 15, were also verified by hawkweed specialists. According to the
ground truth verification, most of the hawkweed foliage pixels were accurately detected.
However, some were showing pixelwise misclassification due to overlapping of other
vegetation with hawkweed foliage due to insufficient pixel size relative to the hawkweed
plant and possibly the similarity of spectral values of other vegetation. Overall, the results
suggest that the XGB and RF models will be the most accurate for detecting hawkweed
foliage from multispectral imagery.

This study investigating the detection of mouse-ear hawkweed foliage and flowers in
New Zealand from UAV-acquired multispectral imagery and ML algorithms makes a novel
contribution to this field. Although other studies have also demonstrated the potential of
ML algorithms in accurately detecting and classifying hawkweeds in Australia, several
limitations still exist. One of these includes the absence of a ML model for detecting orange
hawkweed flowers, which may make detection efforts of new infestations sub-optimal.
Additionally, some classification methods employed in previous studies showed low
accuracy in detecting yellow hawkweed, particularly at lower ground cover percentages,
possibly due to the mixing of other grasses, which made detection difficult. Moreover,
significant pixel mixing resulted from the use of different spatial resolutions in some studies,
reducing, thus, the performance of the detection algorithm. Although a spectral library for
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weed species has been developed in Australian alpine vegetation communities, this method
may not be feasible in other ecosystems or for different types of hawkweeds. In contrast,
this study specifically focuses on the use of ML to detect hawkweed foliage and flowers,
highlighting the advantages of this approach, such as achieving higher accuracy and the
ability to automate the detection process. The study also provides detailed information
on the specific ML techniques used. By using the RF, KNN, and XGB models, this study
achieved a high overall testing and validation accuracy of 100% and 97%, respectively, in
detecting hawkweed flowers at a spatial resolution of 0.65 cm/pixel. This high level of
accuracy is a significant improvement compared to previous works [26,51–53].

This proposed methodology will provide opportunities for remote weed detection,
with the ultimate goal of enabling land managers to target investment and optimise the
use of available technologies to detect weeds in the landscape. The model can be used
to detect hawkweed foliage and flowers in different flight missions and sites, supported
effective weed biosecurity and management focused on building capacity and capability in
remote weed detection, and provided learning opportunities on remote weed detection
current practices and methods. There were a few limitations in this study. The unavail-
ability of high-resolution RGB images for accurate labelling and the time and expertise
required to label images accurately is a major hindrance. For small plants like mouse-ear
hawkweed, accurate image tagging is difficult without high-resolution RGB imagery or
paired ground photos. Although ground photos were available in the current study, they
only covered a small portion of the aerial imagery capture, limiting certainty of image
tagging and possibility of introducing errors at the outset. Another limitation included
the colour or texture similarity of neighbouring species, presenting challenges for accurate
labelling. This can lead to further time delays in workflow, presenting a problem with
larger datasets. Furthermore, detection accuracy is influenced by the relatively simple
floristics of the sampling area, e.g., in the current study, it was unknown if there were any
other similar-coloured (yellow) flowers in the dataset and this created uncertainty as to the
accuracy of labelling.

Ongoing work in the detection of hawkweeds is focused on overcoming existing ML
model limitations via the application of DL techniques including object detection and
semantic segmentation using convolutional neural networks (CNN). Since DL techniques
offer considerable promise in this regard and are progressively being applied to weed
detection due to their speed and accuracy, they are superior to those of conventional algo-
rithms [66–70]. The tremendous success of DL methods used in image processing studies
in recent years intersects with contemporary developments in UAV photogrammetry [21]
with various DL techniques, showing great promise for the detection of a variety of weed
species in different landscapes [70–72]. Future project work will continue to investigate
remote sensing technologies and their application to additional environments, including;
(1) Using handheld spectrophotometers to retrieve spectral information for each class in
the field for more accurate labelling; (2) Collecting imagery encompassing a greater variety
of habitat types (e.g., natural settings) to create a more robust model applicable to a broader
range of mouse-ear hawkweed habitats; (3) Collecting temporal imagery to determine
any reflectance differences of hawkweed relative to surrounding vegetation and possible
increased accuracy, facilitating the ability to increase application of models in different
contexts; and (4) Collection of hyperspectral imagery to improve model performance and
more effectively differentiate between similar vegetative features. The use of UAVs for
remote sensing purposes is still constrained by limitations in areas such as performance,
cost, technology, and application scenarios. As a result, their contribution to practical
grassland management decision-making processes is not yet satisfactory [66].

5. Conclusions

In summary, detecting and managing hawkweed infestations is critical for the con-
servation of pasture lands and forest meadows in New Zealand. This research explored
the potential of classical ML algorithms to detect hawkweed foliage and flowers using
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multispectral imagery from UAVs at various spatial resolutions. The different VIs were
estimated to develop and improve the models in this study. The study found that the RF,
KNN, and XGB models could detect hawkweed flowers with high accuracy at a spatial
resolution of 0.65 cm/pixel during training and validation. For hawkweed foliage detec-
tion, the RF and XGB models achieved the highest testing accuracy, while the XGB model
achieved the highest overall validation accuracy. These findings highlight the potential of
remote sensing and ML techniques in detecting hawkweeds in large areas, which could
ultimately support effective weed biosecurity and management, enhancing surveillance
and facilitating accelerated eradication. The proposed methodology could be implemented
in other areas to facilitate the detection of hawkweed infestations, leading to better resource
allocation and more efficient management.
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