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Abstract: The leaf area index (LAI) is a crucial indicator for quantifying forest productivity and
community ecological processes. Satellite remote sensing can achieve large-scale LAI monitoring, but
it needs to be calibrated and validated according to the in situ measurements on the ground. In this
study, we attempted to use different indirect methods to measure LAI in a tropical secondary forest.
These methods included the LAI-2200 plant canopy analyzer (LAI-2200), Digital Hemispherical
Photography (DHP), Tracing Radiation and Architecture of Canopies (TRAC), and Terrestrial Laser
Scanning (TLS) (using single-station and multi-station measurements, respectively). Additionally,
we tried to correct the measured LAI by obtaining indicators of woody components and clumping
effects. The results showed that the LAI of this forest was large, with estimated values of 5.27 ± 1.16,
3.69 ± 0.74, 5.86 ± 1.09, 4.93 ± 1.33, and 3.87 ± 0.89 for LAI-2200, DHP, TRAC, TLS multi-station, and
TLS single-station, respectively. There was a significant correlation between the different methods.
LAI-2200 was significantly correlated with all other methods (p < 0.01), with the strongest correlation
with DHP (r = 0.684). TRAC was significantly correlated with TLS single-station (p < 0.01, r = 0.283).
TLS multi-station was significantly correlated with TLS single-station (p < 0.05, r = 0.266). With
the multi-station measurement method, TLS could maximize the compensation for measurement
bias due to the shadowing effects. In general, the clumping index of this forest was 0.94 ± 0.05,
the woody-to-total area ratio was 3.23 ± 2.22%, and the total correction coefficient was 1.03 ± 0.07.
After correction, the LAI estimates for all methods were slightly higher than before, but there was no
significant difference among them. Based on the performance assessment of existing ground-based
methods, we hope to enhance the inter-calibration between methods to improve their estimation
accuracy under complex forest conditions and advance the validation of remote sensing inversion
of the LAI. Moreover, this study also provided a practical reference to promote the application of
LiDAR technology in tropical forests.

Keywords: effective leaf area index; secondary forests; optical instruments; terrestrial laser scanning

1. Introduction

As the most structurally complex forest ecosystem on land, tropical forests cover about
10% of the Earth’s surface and about 45% of the total global forest area [1]. They contain
more than 50% of the world’s known species, and their carbon stocks are about half of
the global vegetation carbon stocks, which play a key role in maintaining biodiversity, the
global carbon cycle, and climate change mitigation [2,3]. With anthropogenic disturbances,
more and more primary tropical forests are disappearing and transforming into secondary
forests in different stages, whose canopy structure and species composition have changed
significantly [4]. The canopy is the most dominant and active site of forest interaction with
the external environment. As the core element, the leaf is the main carrier of its physiological
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processes with the atmosphere, such as energy and water exchange, which controls carbon
uptake and plant productivity [5,6]. The leaf area index (LAI) is usually defined as half
the total intercepting area per unit ground surface area and is a dimensionless variable [7].
It describes the intercepted area of photosynthetically active radiation by plants and is
a key indicator for effectively quantifying forest productivity and community ecological
processes, which is considered an indispensable input parameter in regional or global
vegetation dynamics models [8]. Therefore, it is important to accurately estimate tropical
forest LAI to understand tropical ecosystem processes [9,10].

Traditional passive remote sensing techniques can achieve landscape and regional-
scale LAI estimation, but they need to be calibrated and validated according to the in situ
measurements on the ground [11]. LAI field measurement methods are mainly divided
into direct and indirect methods. Direct methods commonly include destructive sampling,
leaf-litter collection, and allometric relationship methods [8,12]. The destructive sampling
method is harmful to trees and can only be used in small areas, while the leaf-litter collection
and allometric relationship methods are easily influenced by location, species, and season,
with many uncertainties in the measurement process [13,14]. Indirect methods characterize
forest canopy structure mainly through gap fraction to achieve LAI inversion [15]. Due to
the advantages of fast and non-destructive measurements, traditional optical instruments
have been widely used to estimate LAI at the plot-scale, such as the LAI-2200 plant canopy
analyzer (LAI-2200), Tracing Radiation and Architecture of Canopies (TRAC), DEMON,
CI-110 plant canopy imager, Digital Hemispherical Photography (DHP) [5,16]. Terrestrial
laser scanning (TLS) opens new paths for measuring LAI by launching and recycling laser
signals to form massive 3D data, providing more details on the forest canopy’s vertical
structure and terrain [17]. With the direct method as a control, some studies have shown
that there was a strong correlation between LAI-2200, DHP, TRAC, and TLS for the LAI
estimation, with differences of about 10–50% for each [5,8,18,19]. The LAI-2000 (the base
version of the LAI-2200) and TRAC underestimated, on average, 30% when measuring
LAI [20,21], but could achieve 80% accuracy with careful handling [22]. Zou et al. [23]
conducted a comprehensive validation assessment of DHP using a sampling method
and found that it mostly underestimated by about 20%. The TLS was able to maintain a
consistent correlation with the LAI-2200, and its estimation was well within the range of
possible bias of the LAI-2000 [24,25]. It would be hard to draw definite conclusions from
method comparisons if the uncertainty of the control values was relatively large.

The reasons for the estimation bias of these ground-based indirect methods originate,
in large part, from their assumptions. (1) Leaves are assumed to be black (impervious
to light) and cannot effectively distinguish between leaf and non-leaf elements, such as
trunks and branches, and measurements will include woody component contributions;
(2) leaves are assumed to be randomly distributed in most of the methods, except TRAC. In
fact, leaves tend to be clumped, and LAI is easily underestimated, especially in compound
forests [26,27]. The output of these methods should be called the effective Plant Area
Index (PAI) or effective LAI [28]. To address the above issues, scholars commonly quantify
the woody components and clumping effect by using the woody-to-total area ratio and
clumping index, respectively. At present, methods for measuring the woody-to-total area
ratio can be classified into three types: the destructive sampling method, the background
method, and the Photoshop method [29,30]. The clumping index can be calculated by the
LX method (based on the logarithmic gap fraction averaging method), the CC method
(based on the logarithmic gap size averaging method), and the CLX method (combined
with the LX and CC methods) [27]. It can be obtained quickly by TRAC (based on the
CC method).

In general, natural forests in the tropics have high species richness and complex
canopy structures, which are considered to have a high LAI [9,31]. In tropical humid
evergreen forests, measuring LAI relies almost completely on indirect methods and is
extremely difficult through direct methods [32]: (1) Due to forest protection policies, it
is difficult to obtain leaves by the destructive sampling method; (2) evergreen forests
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lack a significant deciduous period, so the leaf-litter collection method is not applicable;
(3) the diversity of tree species makes it difficult to obtain the optimal allometric equation,
and it is also necessary to calculate the specific leaf area for each tree species rather than
calculating the average of multiple species. Some studies have compared the suitability
of one or more traditional optical instruments for measuring LAI in tropical deciduous
and tropical humid evergreen forests and proposed corresponding correction schemes
based on instrument characteristics [18,19]. Some studies have also attempted to measure
tropical forest LAI using the TLS technique, but the results were not very satisfactory due
to the shadowing effect [33,34]. Compared to temperate and boreal zones, LAI data are
less available in the tropics, with only 8% of observations in the global LAI database from
tropical biomes [35,36]. This indicates the complexity of the LAI field measurements and
product validation in tropical forests.

Even though the LAI field measurement is limited to a small scale, it still forms the
basis of all LAI validation studies. For complex tropical forests, the more difficult it is to
obtain the true LAI by direct methods, the more important it is to pay attention to the
differences in the estimation of ground-based indirect methods, because it is a prerequisite
for calibrating these methods and establishing uniform measurement protocols. Only if
these methods can provide more accurate ground verification data will inversion of LAI at
a larger scale become possible. In China, tropical rainforests and monsoon forests reach
the northernmost limits of the world and are typical and representative [37,38]. However,
there is still a great lack of LAI studies in tropical monsoon rain forests. In view of this, this
study carried out field measurements in the southern foothills of the Shiwan Mountains in
Guangxi, China, and attempted to compare the differences in LAI estimation by LAI-2200,
DHP, TRAC, and TLS in a northern tropical secondary monsoon rainforest at the plot scale.
Considering the effects of woody components and clumping effects, this study compared
the differences before and after correction by obtaining the corresponding parameters. We
hoped to promote their application in similar stand environments and provide a practical
example for tropical forests.

2. Materials and Methods
2.1. Study Area

The study area is located in the Fangcheng Golden Camellia National Nature Re-
serve in Guangxi, China (Figure 1). The reserve aims to protect the rare and endangered
Golden Camellia and the northern tropical forest ecosystem on which they depend for
survival. It belongs to the Lanshan branch of the Shiwan Mountains, with coordinates of
21.7511◦N–21.7541◦N, 108.1177◦E–108.1236◦E and a total area of 9195.1 hm2. The area has
a tropical monsoon climate. Due to its close proximity to the coast of the Beibu Gulf, ocean
winds prevail, and the average annual precipitation can reach more than 2900 mm. The
average annual temperature is 21.9 ◦C, and ≥10 ◦C accumulated temperature is 8100 ◦C.
The regional zonal vegetation is the northern tropical monsoon rainforest and distinctive
valley rainforest, which are both evergreen broad-leaved forests. The monsoon rainforest is
dominated by trees such as Madhuca pasqueri, Machilus chinensis, Sloanea sinensis, and Stercu-
lia lanceolata, while the valley rainforest is dominated by Hopea chinensis as the signature
species. Because of the long history of human activities, the area of primary forests has
been seriously reduced and mostly exists in the form of secondary forests.
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Figure 1. Location of the study area. 
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Figure 1. Location of the study area.

2.2. Measurement Principle

In essence, the LAI inversion based on the gap fraction is implemented by following
the Beer–Lambert law, which simulates the process of solar rays passing through the tree
canopy. The principle is as follows:

T(θ) = e−
G(θ,α)LAI

cos (θ) (1)

where T(θ) is the gap fraction, G(θ, α) is the projection function, θ is the solar incidence
angle, and α is the average leaf angle.

The measurement of traditional optical instruments is a process based on the solar
rays (visible light) being sensed by the sensors. The sensor of the LAI-2200 is a fisheye
lens with a field of view of 148◦, which includes five rings with central zenith angles of
7◦, 23◦, 38◦, 53◦, and 68◦. Additionally, its optical filter restricts the radiation incoming
to the 320–490 nm wavelength band (blue light). The sensor of the DHP is a fisheye lens
with a field of view of 180◦, and it images the entire hemispherical space projected on the
image level by a digital camera (the wavelength band range is not limited). TRAC consists
of three photosynthetically active radiation (PAR, 400–700 nm) sensors, which measure
the transmitted direct light in the sun’s direction [26,39]. The TLS regards the launched
laser signal (light beam) as a solar ray, and the LAI inversion is achieved by classifying and
counting the recycled point cloud data [40]. In this study, the estimated LAI by TLS is based
on the contact frequency method, calculated as the probability of a beam penetrating the
canopy and encountering a vegetative element [17]. The contact frequency N(θ) between a
light beam and vegetation element in the direction (θ) is given by:

N(θ) = G(θ)
LAI

cos(θ)
(2)

For the contact frequency of the layer, it can be calculated by:

N(s) =
nI(s)

nI(s) + np(s)
(3)
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where N(s) is the contact frequency of light beams in the sth layer, nI(s) is the number of
light beams intercepted by the sth layer, np(s) is the number of light beams passing through
the sth layer, and nI(s) + np(s) is the total number reach the sth layer.

The LAI of the sth horizontal layer within the canopy can be calculated by:

LAI(s) = N(s)
cos(θ)
G(θ)

(4)

where LAI(s) is the LAI of the sth horizontal layer within the canopy.
Thus, the LAI of the entire tree is calculated by sum of LAI(s) as follows:

LAItotal =
s

∑
s=1

LAI(s) (5)

2.3. Sample Plot Selection

To maintain biodiversity and promote long-term observation of rare plants such as
Golden camellia and Hopea chinensis, two 100 m × 100 m sample plots, six 30 m × 40 m
sample plots, and three 10 m × 150 m sample strips were set in the reserve. In this study,
based on the five-point sampling method, five sub-sample plots of 20 m × 20 m size were
selected in the 100 m × 100 m sample plots, and five sub-sample plots of 10 m × 10 m
size were selected in the 30 m × 40 m sample plots. Based on the equidistant sampling
method, five sub-sample plots of 10 m × 10 m size were selected in the sample strips
(Figure 1). The naming of the sample plots was based on Chinese abbreviations and was
intended to distinguish them. For example, “YDA” indicated “Yangdai A”, “DSP” and
“MZT” were named based on the place names “Dashiping” and “Meizaitian”, and the
rest of the sample plots were distinguished by adding the letters “S”, “X”, “L”, and “ST”
according to their relative positions to “DSP” and “MZT”. With the size of 10 m × 10 m
as the measurement unit, a total of 85 samples were obtained. Differential GPS signals
were received by HyperGIS (HowayGIS, Shanghai, China) at the four boundary points of
each sample plot to locate its coordinates and obtain altitudes. The average value of the
altitude of the boundary points was considered the sample plot altitude. From this, we
could obtain the elevation difference between the two sets of top and bottom points, and
combined with the sample plot size (projected distance), the slope degree (average of two
sets of data) could be calculated. The slope aspect was obtained by the operator standing
at the top of the plot, facing the bottom, keeping parallel to the boundary, and measuring
with a hand-held compass.

According to the data of the previous plant survey of the reserve, the area had suffered
from mountain fire deforestation. Most of the trees in all sample plots belonged to the
small diameter class, with a high number of individuals less than 5 cm in diameter at breast
height and a limited number of mature individuals. Tree heights were mainly concentrated
between 4–7 m. The stands were similar in age between different plots, all at a young stage
(about 20–30 years). The canopy density ranged from 0.38 to 0.56 (Table 1). The shrub layer
in the sample plots was not developed, but mixed with a variety of tree seedlings. The
herbaceous layer was sparse, with a cover of 8–10% and an average height of about 0.35 m.
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Table 1. The basis information of sample plots.

Name Size
(m)

Number of
Sub-Sample

Plots

Altitude
(m)

Slope
Aspect

(◦)

Slope
Degree

(◦)

Mean DBH
(cm)

Mean Tree
Height

(m)

Canopy
Density

YDA 10 × 150 5 92 150 10 4.45 5.62 0.40
YDB 10 × 150 5 117 260 25 7.17 6.69 0.50
YDC 10 × 150 5 209 70 15 5.68 6.63 0.38
DSPS 30 × 40 5 169 210 28 6.13 6.35 0.47
DSPX 30 × 40 5 124 200 18 6.03 6.17 0.56
MZTL 30 × 40 5 132 20 15 6.45 6.33 0.53
MZTX 30 × 40 5 147 60 23 5.73 6.31 0.48
MZTST 30 × 40 5 278 35 22 5.02 6.06 0.43
MZTS 30 × 40 5 210 29 24 5.95 6.69 0.45
DSP 100 × 100 20 139 135 23 6.42 6.55 0.50
MZT 100 × 100 20 190 60 34 7.28 6.31 0.55

Note: DBH indicates diameter at breast height. The slope aspect is expressed as a positive number between 0◦

and 360◦. North, East, South, and West are 0◦ (360◦), 90◦, 180◦, and 270◦, respectively.

2.4. Field Measurements

Considering the large uncertainty in results when measured at the beginning and end
of forest growth [41], the data collection time for this study was chosen to be conducted
in the summer (August 2021). This was during the peak growing season of the forest,
when the leaves were fully extended. To enhance the comparability of the data, we strictly
followed the instructions of each measurement method to ensure that they were applied
under ideal sky conditions and that the data were acquired at the same height (1.5 m) on
the ground. Instead of measuring the LAI of individual trees, we measured the LAI of the
forests (plot scale). Considering the measurement characteristics of the different methods,
we used sub-sample plots as the basic unit. This configuration allowed maximum coverage
with each method with a minimum overlap and ensured that the estimated LAI was from
the trees within the plot. Since the requirements of the different methods were different,
the measurements were not always carried out at exactly the same locations, but the final
measurements could all be compared on a scale of 10 m × 10 m. The measurement schemes
for the different methods were as follows:

2.4.1. LAI-2200

Measurements were taken synchronously using two LAI-2200 instruments (LI-COR,
Lincoln, NE, USA) under a stable cloudy condition (no direct light). Before the measure-
ment, the two instruments were time-synchronized, and matching files were created to
achieve uniform measurement standards. One of them was placed in the open space
outside the forest to automatically record the A-values (considered as measured values
above the canopy) at a 30 s frequency, with the instrument facing the same direction as the
sample plot. The other one was taken inside the forest to measure five B-values (measured
values below the canopy) along the Z-shaped route (Figure 2a), keeping the height at about
1.5 m. This ensured that the B-values were evenly distributed among the sub-sample plots
and that the measurement results were more representative. A 90◦ view cap was placed
on both instruments to eliminate the effects of residual direct light and the operator itself.
After the measurement, the software FV2200 v2.1 was used to match the time series of
A-values and B-values and insert the A-values of the adjacent time into the corresponding
B-values. The average value of LAI for the five measurement points was calculated as the
result of this plot.
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2.4.2. DHP

Measurement was carried out using HemiView (Delta-T, Cambridge, UK). The instru-
ment was composed of a digital camera (Canon EOS 70D), a fisheye lens (Sigma EX-DC
4.5 mm), and an SLM8 auto-balancing bracket. The measurement time and sky condition
were consistent with the LAI-2200. The camera was installed on the balance bracket with
the fisheye lens facing upwards vertically (about 1.5 m above the ground), the exposure
mode was set to auto, the shutter speed was set to 1/125 s, and the resolution was set to
“High” (size = 5472 × 3648, about 20 mega pixels). It was placed in the center of the sample
plot to take images of the canopy (Figure 2b). Data pre-processing was performed by the
software Sidelook v1.1.01 (http://www.appleco.ch, accessed on 18 January 2022) to obtain
classification thresholds for the sky and canopy. The LAI calculation was completed in the
software HemiView v2.1.1.

2.4.3. TRAC

TRAC-III (Wave Engineering, Nepean, ON, Canada) was chosen to be used for mea-
suring, in a clear and sunny condition. For the measurement, it was placed horizontally
(about 1.5 m above the ground) and moved at a uniform speed of 0.33 m/s, keeping the
direction perpendicular to the direction of sunlight incidence (Figure 2c). When an obstacle
was encountered, the operator pressed the control key once, briefly, to insert a time label
and start recording a new data segment. Once the obstacle was crossed, a time label was
inserted again so that useless data segments could be discarded during the calculation.
Each sampling line was measured reciprocally, with a time label inserted at 10 m intervals.
The average of the two results was taken as the final LAI value. The data were processed
by the software TRAC Win v5.9.0.

2.4.4. TLS

The Scanning System S-3180 laser scanner (PENTAX, Saitama, Japan) was used for
field data acquisition (Figure 2d). To analyze the influence of shadowing effects on TLS,

http://www.appleco.ch
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single-station and multi-station measurements were used. The boundary points and the
inside of the sample were placed with some target balls, aiming to ensure that more than
three target balls could be seen simultaneously between any two scanning stations, which
facilitated data cropping and merging. The instrument scan quality was set to “Normal”
(duration of scan: ca. 3 min. 22 s.), and the resolution was set to “High” (6.3 mm within
10 m) to ensure that the scan covered the entire plot area. The point cloud data was acquired
by setting up stations at different locations (Figure 2e). The data acquired at the center
(TLS single-station) and the merged multi-station data (TLS multi-station) were processed,
respectively. Pre-processing work, such as denoising, was completed by the software Z + F
Laser Control v8.8.0 (Zoller+Fröhlich GmbH, Wangen im Allgäu, Germany). Registration,
merging, ground point filtering (the height threshold was set to 1.5 m), normalization, and
calculation of LAI were completed in the software LiDAR 360 v4.0 (Green Valley, Beijing,
China). Except for the merging, the consistency of the data processing process between
TLS multi-station and TLS single-station was maintained, including steps and parameter
settings, etc.

2.5. Correction Methods

The correction was applied using the formula proposed by Chen et al. [42], as follows:

LAIc =
(1 − α)

Ω
LAIe (6)

Let λ = (1−α)
Ω , then LAIc = λLAIe.

where LAIc is the corrected LAI, LAIe is the effective LAI (uncorrected), and λ is the total
correction coefficient, which consists of the woody-to-total area ratio (α) and the clumping
index (Ω). If λ > 1, it means that an “upward” correction is needed, where the degree of
overestimation caused by the woody component is less than the degree of underestimation
caused by the clumping effect. Ω could be obtained simultaneously when the effective LAI
was measured by TRAC. Referring to the PS method proposed by Qi et al. [29], the clone
stamp tool in Photoshop was used to remove the woody components from the images
taken by DHP to calculate α:

α = (L1 − L2)/L1 (7)

where L1 is the LAI calculated by HemiView software when the wood component was not
removed, and L2 is the LAI calculated again after removal.

2.6. Data Analysis

Based on the software IBM SPSS Statistics v22, the one-way ANOVA was performed
on the LAI measured by different methods, and the correction indices were obtained from
different plots, using the LSD method to test the significance of differences. A Pearson
correlation analysis was performed for LAI before and after correction for different methods.
The corresponding figure plotting was completed in the software Sigmapolt v14.0 and
Minitab v21.0.

3. Results
3.1. Effective LAI

The results of the effective LAI estimated by different methods were shown in Figure 3.
The effective LAI estimated by all methods was larger than 2, and the maximum values esti-
mated by LAI-2200, TRAC, and TLS multi-station were larger than 8. The data distributions
of LAI-2200 and TLS multi-station were similar, with effective LAI mainly concentrated
between 3 and 7. The data distributions of DHP and TLS single-station were similar, with
effective LAI mainly concentrated between 3 and 5. The effective LAI estimated by TRAC
was mainly concentrated between 5 and 7.
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A certain number of outliers existed in the effective LAI estimated by all methods
(Figure 4a). The DHP and TLS single-station estimation results were significantly skewed
from the mean (midway between the upper and lower box boundaries), showing a skew
towards the lower boundary (25% quantile). It indicated that the observations of these two
methods were generally concentrated in a low range. The observations of LAI-2200, TLS
multi-station, and TRAC were in the high range and symmetrically distributed with the
mean as the boundary. As shown in Figure 4b, the average effective LAI was 5.27 ± 1.16
(LAI-2200), 3.69 ± 0.74 (DHP), 5.86 ± 1.09 (TRAC), 4.93 ± 1.33 (TLS multi-station), and
3.87 ± 0.89 (TLS single-station). For the estimation of effective LAI, there was no significant
difference between LAI-2200 and TLS multi-station, and no significant difference between
DHP and TLS single-station. LAI-2200 was significantly different from DHP and TLS single
station, respectively (p < 0.05), and TLS multi-station was significantly different from DHP
and TLS single station, respectively (p < 0.05). There was a significant difference between
TRAC and other methods (p < 0.05).

There was a significant correlation between the different methods (Table 2). LAI-2200
was significantly correlated with all other methods at the 0.01 level, with the strongest
correlation with DHP (r = 0.684). DHP was significantly correlated with TRAC and TLS
multi-station at the 0.05 level, respectively, and with TLS single-station at the 0.01 level
(r = 0.328). TRAC was significantly correlated with TLS multi-station at the 0.05 level and
with TLS single-station at the 0.01 level (r = 0.283). TLS multi-station was significantly
correlated with TLS single-station at the 0.05 level (r = 0.266).
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Table 2. Correlation coefficients of estimating the effective LAI by different indirect methods.

Method LAI-2200 DHP TRAC TLS Multi-Station TLS Single-Station

LAI-2200 1
DHP 0.684 ** 1

TRAC 0.508 ** 0.245 * 1
TLS multi-station 0.599 ** 0.254 * 0.249 * 1
TLS single-station 0.493 ** 0.328 ** 0.283 ** 0.266 * 1

*, p < 0.05; **, p < 0.01.

3.2. Correction Coefficient

The distribution of the correction coefficients for different sample plots was shown
in Figure 5. The clumping index ranged from 0.73 to 1.00 with an average of 0.94 ± 0.05,
and the data were relatively stable (the coefficient of variation was 5.32%). The woody-
to-total area ratio ranged from 0.08% to 9.99%, with an average of 3.23 ± 2.22% and the
data fluctuating (the coefficient of variation was 10.81%). The total correction coefficient
ranged from 0.90 to 1.31, with an average of 1.03 ± 0.07. Therefore, if only the clumping
effect and the wood component effect on the measurement were considered, the correct
direction should be “upward”. This indicated that “underestimation” occurred in the
measurements of different methods. The degree of overestimation caused by the woody
component was less than the degree of underestimation caused by the clumping effect. The
clumping index was concentrated in the range of 0.92 to 1.00, accounting for 84.71% of the
total number of samples. The woody-to-total area ratio was concentrated in the range of
0.08% to 5.00%, accounting for 82.35% of the total number of samples. The total correction
coefficient was concentrated in the range of 0.90 to 1.10, accounting for 92.94% of the total
number of samples. It was tested and found that there was no significant difference in
the clumping index between the different sample plots (Figure 5a). Except for MZTX and
MZTS, there was also no significant difference in woody proportions between the sample
plots (Figure 5b). In general, it showed that the clumping intensity of leaves and canopy
structure remained consistent between the different sample plots (Figure 5c).
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Figure 5. Correction coefficients for different sample plots. (a) Clumping Index; (b) The woody-to-
total area ratio; (c) The total correction coefficient. Different lowercase letters (a, b) indicate significant
differences between the correction coefficients of different sample plots (p < 0.05).

3.3. Corrected LAI

On the whole, the average of corrected LAI for LAI-2200, DHP, TRAC, TLS multi-
station, and TLS single-station were 5.40 ± 1.19, 3.78 ± 0.75, 6.02 ± 1.14, 5.06 ± 1.39
and 3.97 ± 0.90, respectively. The data distributions for each method before and after
correction were roughly the same. Although there was a corresponding increase in LAI
after correction, there was no significant difference from that before correction (Figure 6).
This was mainly because the clumping effect and the woody component had a similar
degree of influence on the measurements.
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Figure 6. The estimated LAI before and after correction by different indirect methods (Mean ± SD).
(a) LAI-2200; (b) DHP; (c) TRAC; (d) TLS1; (e) TLS2; (f) Total. TLS1 indicates TLS multi-station, and
TLS2 indicates TLS single-station.

Compared to before correction, the correlations of the corrected LAI were enhanced
for most methods (Table 3). For example, the correlation coefficients of LAI-2200 and TRAC,
DHP and TLS multi-station, TRAC and TLS multi-station, and TLS multi-station and TLS
single-station were improved. Especially, the significance level of TRAC and TLS multi-
station was enhanced from 0.05 to 0.01 level. Therefore, the removal of clumping effects
and woody components was still important to reduce measurement bias and uncertainty.
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Table 3. Correlation coefficients of estimating the corrected LAI by different indirect methods.

Method LAI-2200 DHP TRAC TLS Multi-Station TLS Single-Station

LAI-2200 1
DHP 0.682 ** 1

TRAC 0.511 ** 0.249 * 1
TLS multi-station 0.609 ** 0.275 * 0.286 ** 1
TLS single-station 0.468 ** 0.300 ** 0.280 ** 0.268 * 1

*, p < 0.05; **, p < 0.01.

4. Discussion
4.1. The LAI of the Tropical Forest

Although the true LAI was not obtained by the direct method for comparison in this
study, and there were some differences in the effective LAI estimated by different methods,
the results were in the range of 2 to 8, with the average value greater than 3.5. It confirmed
that the tropical forest had a high LAI. Similarly, Behera et al. [9] reported a maximum
LAI of 6.9 for tropical evergreen broad-leaved forests. Asner et al. [35] found that the LAI
of tropical deciduous broad-leaved forests was 3.9 ± 2.5 on average and could reach a
maximum LAI of 8.9. Wirth et al. [43] found that the LAI of tropical moist semideciduous
forests ranged from 3 to 8, with an average LAI of 5.41 ± 0.82. Luo et al. [37] found that
the LAI of Chinese forests was generally greater than 6 through modeling, especially in
tropical rainforests and subtropical evergreen broad-leaved forests, with an average LAI of
6.29 in tropical evergreen broad-leaved forests. Clark et al. [44] and Qu et al. [45] concluded
that the LAI of tropical forests had an average value of 6.0 at the regional scale and that
the maximum LAI could reach 12.0. The results of this study were like the ones mentioned
above, indicating that the LAI estimated by these methods was still effective. It was feasible
to apply them to the northern tropical secondary monsoon rainforest.

4.2. Correction Effect

In this study, the woody component and clumping effect on the indirect method mea-
surements were considered, and it was found that the corrected LAI was not significantly
different from the effective LAI. Similarly, some studies also found that for broad-leaved
forests, the effective PAI obtained by optical instruments was similar to the true LAI. On
the one hand, correcting for woody components would remove the corresponding overes-
timation bias. On the other hand, correcting for clumping effects would also remove the
corresponding underestimation bias, so these biases would compensate for each other in
the correction process [46,47]. Many studies have shown that optical instruments that rely
on gap fraction were prone to underestimate, especially in tropical dense forests where the
optical band signal tended to saturate [8]. The overall direction of correction in this study
was “upward”, which justified the correction.

In addition, the accuracy of these correction coefficients needs to be ensured to obtain
the desired correction results. On the one hand, there is still a large degree of uncertainty
in determining the clumping index by using passive optical measurements [27,48]. The
structure of leaf distribution in tropical forests is extremely complex, with multi-layered
leaf alignment forms. Although the clumping index obtained by TRAC has been validated
in many studies, most of them have been conducted in boreal forests and temperate
forests [42,49], and measurements for tropical forests still need to be further tested. The
average clumping index in this study was 0.94, slightly higher than the results measured in
tropical forests by Padalia et al. [50] (0.82) and Tanaka et al. [51] (0.93), and future attempts
could be made to select a more ideal condition for multiple replicate measurements.

On the other hand, the woody-to-total area ratio in humid tropical broadleaf forests
was small, mainly because the leaf area was generally much larger than the branch area,
most of the branches would be shaded by leaves, and the proportion of some stems and
shoots was relatively small and negligible [52]. Olivas et al. [53] found that the woody-to-
total area ratio in tropical rainforests was about 11%, while this study obtained an average
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result of 3.23%, which was smaller overall. Besides the differences in forest structure, this
was most likely related to the method of acquisition. In the evergreen forest, it was difficult
to find a suitable season to apply the background method to directly obtain the wood area
index [19]. In this study, woody components were manually removed from the images
by the PS method, and the removal process was both tedious and somewhat subjective.
The canopy leaves were dense and most of the trunk would also be shadowed by multiple
layers of leaves (Figure 7); therefore, the use of a device that could quickly distinguish
between green and non-green vegetation elements, such as a digital camera with several
wavebands of imaging, would be a good direction for application. Such a device would
further improve the applicability to various forest types.
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Meanwhile, we also found that the correlation of TLS single-station with LAI-2200,
DHP, and TRAC was reduced after correction. The reason for this phenomenon may be
related to the distribution from the original data of the different methods (Figure 4). On
the one hand, the correction results of the different methods were obtained by multiplying
the original data by the corresponding total correction coefficient (with an average of
1.03 ± 0.07). The original data of LAI-2200 and TRAC were much higher than the TLS
single station, and the correction would expand their difference from the TLS single station.
For example, the original data of one of the measurement points were 6.19 (LAI-2200),
5.82 (TRAC), and 3.10 (TLS single-station), with a total correction coefficient of 1.07, and
the corrected results were 6.62 (LAI-2200), 6.23 (TRAC), and 3.32 (TLS single-station).
On the other hand, the estimated value of the TLS single station was closer to the DHP,
but the TLS single station had more outliers distributed in the range of 5–6, which also
increased the difference between them after correction. The estimated results of the TLS
multi-station were higher than the TLS single-station. Still, the TLS multi-station had more
outliers distributed in the lower range (2–3), which greatly weakened the extreme bias of
the correction. Therefore, the correlation between the corrected TLS multi-station and the
TLS single-station was not reduced.

4.3. Measurement Comparisons and Problems

To make the obtained results more comparable, we let each method measure under
a more ideal condition and kept almost the same position and measurement height. Al-
though we took great care in the measurement scheme and operational steps and the
different methods all rely on the gap fraction to achieve LAI inversion, there were still
significant differences in the measurement results. It could be because the gap fraction was
exponentially related to the LAI (Equation (1)), which could lead to large differences in
LAI even if the deviations of the gap fraction obtained by different methods were small. In
addition, this may also be related to differences in instrumental sensors and the sensitivity
of the sensors to a complex canopy [13,26].

The sensors of the LAI-2200 and TRAC are linear (based on radiation). Because of
the relatively small area measured, they were required to make multiple measurements at



Remote Sens. 2023, 15, 1621 14 of 18

different locations to adequately estimate canopy closure [54]. Even in a stable condition,
the LAI-2200 is still susceptible to multiple reflections. When the LAI is greater than 2.5,
specular reflection is more evident, resulting in the collected optical signal containing this
“contribution” (overestimation of the gap fraction), which leads to an underestimation
of the LAI (error of 20–25%) [24,55]. Nevertheless, compared to other traditional optical
instruments, the LAI-2200 has shown that its estimated LAI is closest to the results obtained
by the direct method [8,35]. It has 16-bit precision and keeps the sensitivity of light in a
reasonable range by controlling the negative impact of direct light on the measurement.
At the same time, the operator can also choose different view caps to adapt to the current
measurement condition, making the operation more flexible. In contrast, TRAC is very
dependent on direct sunlight when measuring LAI, but the direction of sunlight incidence
is constantly changing at different times of the day. To obtain a relatively accurate LAI,
it is necessary to ensure that a wide range of zenith angles is covered to receive the light
signal [5,39]. In this study, the LAI estimated by TRAC was relatively high. This was
most likely due to the large number of vines winding around the trees, which caused the
direct light to be transformed into scattered light by different degrees of blockage during
transmission and eventually underestimated the gap fraction.

The sensor of the DHP is an imaging sensor with a wide view angle (180◦). Compared
to the radiation sensor, it provides more detailed canopy information, but there are large
deficiencies in measurement accuracy, which can lead to an underestimation of up to 50%
in severe cases [19,23]. This was just as in this study, the LAI estimated by DHP was always
in the low range. The overexposure problem and the classification threshold problem are
the main sources of error in the DHP estimates of gap fraction and LAI [18,56]. On the
one hand, overexposure increases the image brightness, which makes the canopy blurrier
at the edges and reduces its optimal contrast with the sky. The bright canopy is easily
mistaken for the sky and ignored in the calculation, and eventually, underestimation occurs.
Therefore, it is necessary to properly consider the exposure settings of the camera and seek
a balance between overexposure and underexposure. The automatic exposure mode was
chosen for this study, which was likely to have some degree of overexposure problems,
resulting in underestimation. On the other hand, accurate thresholds are the key to LAI
calculation by DHP. The choice of manual threshold for the DHP by different operators
resulted in up to a 17% range in gap fraction [57]. In this study, we obtained thresholds
using Sidelook software, which eliminated subjective interpretation errors, but it was
still necessary to compare their algorithms and recognition characteristics to reduce the
influence of measurement results due to partial misclassification. In addition, the reason for
the low measurement results of DHP may be related to the low pixel size of the camera used,
and we could consider replacing the camera with a higher resolution for data acquisition in
the future. Additionally, shaking might have occurred during the photo-taking process,
which could have caused some of the photos to be not fully in focus, thus leading to the
ignoring of more canopy details.

TLS is an active remote sensing technique that does not rely on visible light for its
measurement. It does not need to consider the solar incidence direction, radiation type, and
multiple reflections; therefore, it has great advantages in measuring different types of forest
structure and secondary succession and can obtain more stable estimates, which should
be theoretically superior to traditional optical methods [17,33]. When TLS is scanning, the
trees behind in the same direction are easily shaded by the trees in front. The varying
heights of the trees can make it easy for the lower canopy to shade out the higher canopy. At
the same time, the number of acquired point clouds decreases as the scan radius increases,
resulting in missing edges. In forests with higher LAI, such as LAI > 5, the shadowing
effect becomes more significant [45]. In this study, the reason for the low results of TLS
single-station estimation was still the shadowing effect, which made it difficult to obtain
the complete canopy structure of trees. With multi-station measurements, TLS could obtain
more “details” from multiple directions and compensate for the measurement bias caused
by shadowing effects to the maximum extent, which was well reflected in the estimation
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results of TLS multi-station (Figure 4). In addition, different algorithms and inversion
models have important effects on the measurement results during the data processing
of TLS. Some new methods, such as the voxel method [31], the path length distribution
model [58], and the point space density (PSD) algorithm [25], were gradually used to
improve their estimation of LAI in tropical forests. It is still an important research direction
for TLS to choose a suitable algorithm to estimate LAI.

4.4. Other Uncertainties

Different ground-based indirect methods can generate methodological errors at any
stage of model assumptions, sampling schemes, strategies, data collection, and analysis [59].
First, a key assumption is implicit in the use of gap fractions for LAI inversion: the projection
functions (G, Equation (1)) are all considered to be essentially the same at the scene scale.
Due to the difficulty of measuring the leaf angle distribution in practice, G is generally taken
to be 0.5 to simplify the calculation [60]. However, it may also result in different degrees of
error, which can be as high as 68% in severe cases [18,61]. Second, there is still no consistent
agreement on the sampling strategy, scale, and frequency [26]. A reasonable sampling
strategy can ensure the validity of the original data and maximize the performance of the
instrument, but it also needs to take into account the height and vertical stratification of the
canopy as well as spatial heterogeneity. Third, focus on the terrain effect. In mountainous
areas with large surface relief (at slopes greater than 30◦), topographic effects are likely
to be an important error factor [62]. The gap fraction showed a significant asymmetric
relationship at different slopes, which was mainly attributed to the difference in path
length [58]. At the same time, a larger slope also increases the measurement difficulty and
affects the stability of the instruments. Finally, forests are always in a constant state of
development, with varying degrees of community succession, and it is still necessary to
carry out long-term continuous location observations and verification work.

5. Conclusions

In this study, we attempted to compare the applicability of the LAI-2200, DHP, TRAC,
and TLS methods for estimating the LAI of a typical northern tropical secondary monsoon
rainforest. The TLS method was divided into single-station and multi-station measurements
to analyze the effect of shadowing effects on its estimation of LAI. At the same time, the
influence of the clumping effect and wood component on the measurements was quantified,
and the effective LAI has been corrected accordingly. The main conclusions were as follows:

The measurement of LAI in dense evergreen tropical forests remained a considerable
challenge. In this forest, the estimations of these ground-based methods did not show a
high degree of agreement, although they were significantly correlated with each other. To
meet the requirements for validating the satellite-derived products of LAI, there was still a
need to further reduce the measurement differences between them.

Considering the stability and data collection efficiency, based on the results of this
study, we advocated using the LAI-2200 method preferentially for LAI measurements in
tropical forests to obtain more reliable estimates. The estimation of LAI using the DHP and
TRAC methods was prone to underestimation and overestimation, respectively. Compared
to the TLS single-station, the TLS multi-station could maximize the compensation for
measurement bias due to shadowing effects. However, it was costly and cumbersome
to process, which required a better solution to improve efficiency. Of course, the TLS
single-station could also consider fusing airborne LiDAR data to reduce underestimation.

The existing correction methods seemed to be insufficient to fully correct the difference
between these indirect methods. The clumping index and the woody-to-total area ratio
were only able to compensate for the hypothetical deficiencies of the instrument. The
measurement bias of these methods could be more due to the differences in sensor and
instrument structures. In addition to obtaining these correction coefficients accurately, it
was still necessary to get the true LAI as a correction reference using the direct methods.
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Pay attention to the scaling effects. The results of this study were obtained using
different ground-based methods for measurements at a plot scale of 10 m × 10 m. When
they were used to validate remote sensing products, proper scaling conversion was required
to match the pixel size.
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