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Abstract: The increasing number of landslide hazards worldwide has placed greater demands on the
production and updating of landslide inventory maps. As an important data source for landslide
detection, interferometric synthetic aperture radar (InSAR) data processing is time-consuming and
also requires specialized knowledge, which severely hinders its widespread application. At present, a
new cloud-based online platform, i.e., Alaska Satellite Facility’s Hybrid Pluggable Processing Pipeline
(ASF HyP3) was developed for massive SAR data processing. In this study, combining the HyP3
online platform and Stacking-InSAR method, we constructed a new easy-to-use processing chain
for rapidly identifying slow-moving landslides over large areas. With this processing chain, a total
of 923 interferometric pairs covering an area of over 1800 km2 were processed within a few hours
(about 4 to 5 h). A total of 81 slow-moving landslides were immediately detected and mapped
using Stacking-InSAR method, of which 65 landslides were confirmed by previous studies and
16 landslides were newly detected. Results show that the new processing chain can greatly improve
the efficiency of wide-area landslide mapping and is expected to serve as an effective tool for rapid
updating the existing landslide inventories and contribute to the prevention and management of
geological hazards.

Keywords: landslide; InSAR; HyP3; Sentinel-1; Jinsha River

1. Introduction

Landslides are a common geological phenomenon in mountainous areas, and they
can lead to significant death and property damage [1,2]. In China, recent catastrophic
landslides such as the 24 June 2017 Xinmo landslide [3], the October and November
2018 Baige landslide [4], are characterized by high altitude, hidden locations, long dormant
periods and rapid movement, making it difficult to identify such disasters during on-site
investigations [5]. Moreover, in the context of global climate change and human activity,
landslide hazards will become more frequent [6,7]. Thus, developing a rapid landslide
mapping method over large areas is an urgent need for disaster prevention and mitigation.

Slow-moving landslides usually occur in areas with mechanically weak soil/rock and
high seasonal rainfall [8], with a slow rate of material movement (mm/year to m/year) [9].
Usually, slow-moving landslides are difficult to identify due to the imperceptible deforma-
tion and dense vegetation cover. The synthetic aperture radar (SAR) data has the advantage
of wide coverage (about 250 km for Sentinel-1 image) and penetrating clouds/fog. On this
basis, the advanced Interferometric SAR (InSAR) technologies such as differential InSAR
(D-InSAR) [10], persistent scatterer InSAR (PS-InSAR) [11], and small baseline subset InSAR
(SBAS-InSAR) [12–14] are very suitable for measuring subtle surface displacements [15–17],
which have great potential for identifying these slow-moving landslides [18–21]. For in-
stance, ref. [22] adopted the time-series InSAR method to detect slow-moving landslides in
the steep mountainous areas of Nepal, demonstrating the potential of the Sentinel-1 data to
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map landslides. Ref. [23] adopted Stacking-InSAR method to identify potential landslides
in mountainous areas and proved its effectiveness by comparing it with the SBAS-InSAR
method. Ref. [24] successfully interpreted 904 active landslides in an area of 179,000 km2

on the Tibetan Plateau using a combination of InSAR observations and optical images.
Ref. [25] investigated slow-moving shallow soil landslides in the New Zealand region using
SBAS-InSAR method. Ref. [26] analyzed the efficiency of PS-InSAR method in landslide
mapping. Ref. [27] adopted the parallel SBAS technique and spatial clustering to map
potential instability phenomena affecting the Italian Peninsula.

Although InSAR technology has substantial advantages in identifying slow-moving
landslides, the high hardware/software requirements, time-consuming processing, and
the involvement of specialized knowledge greatly limit its widespread application [28],
especially the rapid mapping and updating of the existing landslide inventories. To alleviate
this issue, some organizations and institutions provide freely accessible InSAR products
(such as LiCSAR [29]) or cloud-based online services (such as Hybrid Pluggable Processing
Pipeline (HyP3) [30]). Among them, LiCSAR products are easy to use, and with the
LiCSBAS time series analysis package, users can quickly obtain large-scale deformation
data with relatively reliable accuracy [29]. However, LiCSAR products with 100 m spatial
resolution are more suitable for large-scale tectonic strain mapping [31]. Additionally,
LiCSAR products have no available data in some regions and are less customizable. In
contrast, the HyP3 is a new free cloud-based online service platform for Sentinel-1 SAR
data processing, developed by NASA’s Alaska Satellite Facility Distributed Active Archive
Center (ASF DAAC) [32]. It supports users to process Sentinel-1 data on demands. By
submitting the jobs online, users can quickly obtain the processed products (such as
wrapped/unwrapped differential interferograms). It does not require users to download
and process the raw SAR data, which greatly saves storage resources, shortens the data
processing time, and simplifies the InSAR data processing. However, the application of this
online platform is still relatively rare [32,33], while few studies have confirmed its efficiency
in landslide mapping.

In this paper, we combined the HyP3 platform and Stacking-InSAR method to con-
struct a new easy-to-use processing chain for rapidly identifying slow-moving landslides
over large areas. This processing chain has three main advantages: ease of use, small
space occupation, and fast processing speed. To prove its effectiveness, the Batang section
of Jinsha River, covering an area of approximately 1832 km2, was selected as the study
area, where landslide disasters are very frequent. Slow-moving landslides in the study
area were identified and analyzed by using this new processing chain. We expected it to
be an effective tool to quickly update the existing landslide inventories and assist in the
prevention and management of geological hazards.

This paper is organized as follows: Section 2 mainly describes the landslide mapping
chain used in this study, Section 3 focuses on the description of the study area and the use
of data, Section 4 presents the results and validation, and Section 5 discusses the results,
ending with a conclusion in Section 6.

2. Methodology

Figure 1 presents the new landslide mapping chain. It mainly includes two steps. First,
Sentinel-1 SAR images of the study area were selected to generate unwrapped differential
interferograms by using the HyP3 online platform. Subsequently, the Stacking-InSAR
method was adopted to process these interferograms and obtain the annual deformation
rate maps of the study area. Finally, slow-moving landslides were visually identified by
combining optical images and digital elevation model (DEM). The open-source MintPy
tool [34] was applied for Stacking-InSAR processing, meaning that the entire processing
chain was open source and free to use.
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Figure 1. The new rapid landslide mapping chain used in this study.

2.1. Generation of Interferograms Using HyP3 Platform

The HyP3 was originally developed to solve the problems of large storage resource,
time-consuming computation, and high requirements for users’ knowledge in the process
of SAR data processing [30]. It is an automated SAR data processing online platform
that mainly relies on core Amazon services, such as Amazon Elastic Compute Cloud
and Amazon Simple Storage Service. It provides users with customized on-demand SAR
processing services [32], and users are not required to purchase or install complex SAR
processing software and have sophisticated SAR processing skills.

The HyP3 is primarily used to process Sentinel-1 data freely provided by European
Space Agency (ESA). Based on ASF data platform, users can search and query the archived
Sentinel-1 SAR data. The HyP3 can automatically access and process these archived data.
Currently, the HyP3 mainly supports radiometric terrain correction (RTC), autonomous
Repeat Image Feature Tracking (autoRIFT), and InSAR processing chains, all based on
GAMMA software [32].

For the InSAR processing, differential interferometry is the primary type of interfer-
ometry performed by the HyP3 online platform. There are several parameters that can
be set, including the temporal baseline, perpendicular baseline, and the number of looks.
The temporal baseline is defined as the time interval between imaging passes. Currently,
HyP3 supports a temporal baseline setting of up to 60 days. This is typically sufficient
to detect geological hazards. The perpendicular baseline is the perpendicular component
of the physical distance between the two acquisitions. This value should be very small
to ensure coherence, and values from 0 to 300 m can be set in the HyP3. The number of
looks determines the pixel spacing and the resolution of output products. The 10 × 2 looks
with a 40 m pixel spacing (80 m resolution) and 20 × 4 looks with an 80 m pixel spacing
(160 m resolution) can be selected by users, and the default is 20 × 4 looks with a smaller
product size. In addition, users can also choose the output products, including wrapped
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phase, displacement maps (unwrapped), DEM, etc. A water mask can also be set during the
phase unwrapping. It should be noted that the current version of the HyP3 platform only
supports processing Sentinel-1 images with the VV polarization. Products are distributed
as the UTM-projected GeoTIFFs format, which is convenient for subsequent analysis using
relevant software.

After downloading the processed products, a key step is to check the quality of the
data to ensure its reliability. It consists of two main parts: one is to check the completeness
of the data, and the other is to estimate the data error. Since the HyP3 platform is automated,
there is a possibility that the processed products may be incomplete or even missing. In
this case, a required step is to manually check the generated interferograms one by one and
reprocess the incomplete ones. In addition, estimating the error of interferograms is also
required, as it is difficult to guarantee that each interferogram is reliable. In this case,
estimating the mean and standard deviation and calculating the spatial coherence of these
interferograms are critical for selecting high quality interferograms. Finally, the cropping of
data according to the extent of the study area should be considered to further decrease the
computational expense.

2.2. Landslide Mapping Using Stacking-InSAR Method

The Stacking-InSAR method was first proposed by [35]. It is an enhancement tech-
nique that obtains the average deformation rate by linearly stacking a set of unwrapped
differential interferograms [36]. The assumption behind this method is that in indepen-
dent differential interferograms, the atmospheric error phase is random and equal, and
the deformation rate over the region is approximately linear. Based on this assumption,
the Stacking-InSAR method can effectively reduce the impact of atmospheric delay and
obtain the accurate average deformation rate [36]. Here, the Stacking-InSAR method
adopts the temporal baseline to weight the data. The average velocity is estimated by the
following equation.

Vde f =
∑n

i=1 ∆ti phi

∑n
i=1 ∆t2

i
(1)

where Vdef represents the average velocity after stacking, phi represents the unwrapped
phase, ∆t represents the temporal baseline of the differential interferogram, and n repre-
sents the number of differential interferograms to be stacked. In this study, we aimed to
achieve fast landslide detection. Thus, we did not apply any additional processing, such as
atmospheric correction, when performing the Stacking-InSAR processing.

Due to the limitations of SAR satellite side-view imaging and terrain conditions, it is
necessary to analyze the visibility of SAR satellites prior to landslide mapping. According
to the geometric relationship between satellite orientation and local terrain, there are
three main types of geometric distortions, i.e., foreshortening, layover, and shadow. Among
them, the layover and shadow areas in the SAR images have poor visibility and deformation
in these areas cannot be effectively detected by InSAR techniques [37,38]. In this study,
R-index was applied to measure the effect of topography on SAR images [38]. The R-index
denotes the ratio between the slant range and the ground range and can be calculated from
satellite geometry parameters and DEM data. The calculation equation is as follows:

Rindex = −sin
((

S × sin
(

A +
3
2

π − θ
))

− α

)
× Sh × La (2)

where S represents the local terrain slope, A represents the aspect, θ represents the azimuth
angle of SAR satellite, α represents the incident angle of SAR satellite, Sh represents the
shadow coefficient, and La represents the layover coefficient. The values of Sh and La can
be calculated by the GIS-based shadow model. The detailed calculation steps can be found
in [38]. The value of the R-index varies between 0 and 1, with a value of 0 indicating poor
visibility (layover and shadow). The value between 0 and sin(α) indicates medium visibility
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(foreshortening), and greater than sin(α) indicates good visibility. In this study, the layover
and shadow areas were masked to avoid misidentification.

Finally, slow-moving landslides in the study area were visually identified by using the
average deformation rate maps. The optical images and DEM data were also used to refine
landslide boundaries. The identification results were validated by comparing them one by
one with the existing landslide inventories.

3. Study Area and Data

In this study, we selected the Batang section of Jinsha River (about 1832 km2) in
China as the study area (as shown in Figure 2). The Jinsha River is the upper reaches of the
Yangtze River, characterized by huge elevation differences and deep valleys. Due to tectonic
movements, a series of north–south active faults have developed around the study area.
Historically, several large earthquakes occurred here, such as the magnitude 7.3 earthquake
in 1870. The combination of multiple factors makes landslide disasters in the study area
very frequent. A typical case of recent disasters is that in October 2018, two collapses
of the Baige landslide occurred within a month, damming the Jinsha River twice [4].
These two landslide events caused catastrophic flooding that threatened people’s lives and
caused significant economic losses. Thus, there is an urgent need for the rapid mapping
and updating of landslides in this area to prevent the occurrence of similar disasters.
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Figure 2. Map of the study area. (A) The geographical location of the study area, (B) Tectonic
and topographic map of the study area. Red lines show major active faults, and red circles show
major earthquakes.

Through the ASF data platform, we first retrieved 352 Sentinel-1 images for ascending
and descending tracks from January 2018 to December 2021. To reduce the effect of temporal
and spatial decoherence, the perpendicular and temporal baselines should be set relatively
small. According to the options provided by HyP3 platform, the maximum temporal
baseline for this study was set to 36 days, and the maximum perpendicular baseline was
set to 200 m. We, therefore, created three InSAR processing flows containing a total of
923 interferometric pairs. The detailed data usage is shown in Table 1.
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Table 1. The Sentinel-1 images and interferograms used in this study.

Track Time Number of Images Number of Interferograms

Ascending (T99 F1280) January 2018–December 2021 117 304
Ascending (T99 F1275) January 2018–December 2021 117 281
Descending (T33 F493) January 2018–December 2021 118 338

Total – 352 923

Subsequently, these interferometric pairs were submitted to the HyP3 online platform
for InSAR data processing. The number of looks was set to 10 × 2, allowing results with a
pixel spacing of 40 m. After downloading the processed products, we manually checked
the interferograms one-by-one to ensure their completeness and estimated the data error of
each interferometric pair to ensure their availability. The unwrapped interferograms with
good coherence were, therefore, selected. Finally, we adopted the MintPy tool to perform
the Stacking-InSAR processing.

In addition, Google Earth images (2 m) and DEM (12.5 m) were also collected to assist
Stacking-InSAR results in identifying slow-moving landslides. The DEM data are from
ALOS PALSAR DEM products and can be downloaded from the ASF website.

4. Results and Validation
4.1. Slow-Moving Landslide Mapping

Figure 3 presents the Stacking-InSAR results for the study area. Note that the average
deformation rate (mm/year) is in the line-of-sight (LOS) direction. A positive value
indicates the movement close to the satellite (red color) and vice versa for negative value
(blue color). According to [39], the scatterers were corrupted by the strong noise when the
absolute value of the LOS velocity was below 6–7 mm/year. Thus, in this study, we mainly
interpreted the scatterers with deformation rate greater than 10 mm/year.
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Figure 3. The LOS velocity of the study area and optical images. (A) LOS velocity of ascending track,
(B) Optical images obtained from Google Earth, (C) LOS velocity of ascending track. The four black
rectangles on the left and right show the LOS velocity maps, optical features, and topography of
two typical landslides (L1 and L2 in (A)), respectively. The hill shade data calculated from DEM is
used as the base map.
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A total of 81 slow-moving landslides were identified and mapped. The landslide areas
ranged from about 0.05 km2 to more than 5 km2, with an average area of about 0.6 km2.
The total area of identified slow-moving landslides was nearly 50 km2. Most of the mapped
slow-moving landslides were distributed along the Jinsha River. Optically, most of them
were old landslides that have historically failed.

Figure 4 illustrates the annual deformation rate of four typical slow-moving landslides
from 2018 to 2021. For Figure 4A, the whole landslide was in motion during the monitoring
period, with a maximum LOS velocity exceeding 30 mm/year. Moreover, its characteristics
can be clearly seen from the optical image, and its front edge close to the Jinsha River has
begun to partially collapse, with evident cracks appearing. For Figure 4B, the significant
deformation part of this landslide is located at its front edge, with a maximum LOS velocity
exceeding 40 mm/year. The grayish-white slip wall and the loose accumulation on its front
edge are clearly visible on the optical image. It appears to be a pull-type landslide, with
the sliding rate at the rear being significantly less than that at the front. In addition, it is
worth noting that the slope at the middle of the landslide body is relatively gentle, with
some buildings. Once the landslide fails, these buildings will be at risk of damage. For
Figure 4C, the landslide, shaped similar to a lap chair, has a large sliding rate at the front
edge, with a maximum LOS velocity exceeding 80 mm/year. The damage characteristics of
its front edge can also be clearly seen on the optical image. For Figure 4D, the LOS velocity
at the top of the landslide exceeds 30 mm/year. The deformation area is mainly located at
the top of the gully and visible signs of damage can also be seen from the optical image.
Under the effect of heavy rainfall, it is likely to evolve into a source of mudslides. Overall,
landslide boundaries identified based on the average velocity maps are in good agreement
with corresponding geomorphological features, implying that the InSAR-driven landslide
identification results are reliable.
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velocity of descending track, (C,D) LOS velocity of ascending track. The red lines show the landslide
boundary, the purple lines show the strong deformation zone of the landslide determined by the LOS
velocity, and the black arrows indicate the sliding direction of the landslide.

As shown in Figure 5, it can be seen that landslides with larger deformations are shown
on both ascending and descending results, while landslides with smaller deformation
only visible on a single track. Of these identified landslides, 51 were identified using
the ascending track, and 52 were identified using the descending track. The number of
landslides identified using the ascending and descending tracks is approximately equal,
accounting for about 64% of the total number identified. In addition, 22 slow-moving
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landslides are identified from both the ascending and descending tracks, only 27% of the
total. Evidently, the combination of ascending and descending data can effectively reduce
landslide identification omissions, especially in mountainous areas. Moreover, the results
of ascending and descending tracks can also be confirmed with each other, although the
number of their overlap is small. Additionally, due to the characteristics of SAR imaging,
there is a certain difference in the deformation rate of the same slope driven by ascending
and descending tracks. For quantitative analysis, we can decompose the slope deformation
by using the ascending and descending data to obtain the real motion of the slope. Thus,
we recommend using both ascending and descending track data for mapping landslides in
mountainous areas when data are available.
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4.2. Comparison with Existing Landslide Inventories

To further validate the mapped results, we compared each identified slow-moving
landslide with previous identifications in the study area. In the study area, a total of
90 landslides were detected by using Sentinel-1 (ascending and descending) and ALOS
PALSAR-1 (ascending) data from 2007 to 2019, and these slow-moving landslides were also
confirmed by optical images [24,40]. Thus, they can be considered as relatively complete
landslide inventories covering the study area. We identified 65 of these landslides, although
the identified landslide boundaries did not completely overlap (as shown in Figure 6). There
were 25 landslides that we did not identify. In addition, we detected 16 new landslides that
were not in the previous results. There are several possible reasons for this discrepancy. For
instance, we used Sentinel-1 data from 2018 to 2021 and did not use ALOS PALSAR-1 data.
Moreover, the movement state of landslides may not be the same at different time periods,
which is a long-term cumulative non-linear deformation. In any case, a recognition overlap
rate of more than 70% is sufficient to prove that our identification results are reliable.
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Overall, the new processing chain is reliable and effective for wide-area landslide map-
ping, which can be used as a powerful tool to quickly update the existing landslide inventories.

5. Discussion
5.1. Error Estimation of Interferograms

Estimating the quality of interferograms is a crucial step before applying them. In this
study, we directly characterized the data errors by estimating the mean and standard devi-
ation of each interferogram. To avoid estimation bias, we randomly selected several areas
in the low-slope (less than 15 degrees) regions for error estimation. The main assumption
of this step is that low-slope areas are less prone to landslides and, therefore, have little
expected deformation.

Figure 7A shows the mean and standard deviation of each interferogram. We found
that the absolute values of the means of all interferograms were within 0.5 mm and the
standard deviations were within 5 mm. These residual values were acceptable considering
the observation error of InSAR and the fact that we did not perform any additional error
corrections (e.g., orbital errors, tropospheric errors, and topographic errors) [41]. This
indicated that the interferograms derived from the HyP3 online platform were applicable
and effective for landslide mapping.
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Subsequently, we calculated the average value of spatial coherence of these inter-
ferograms, as shown in Figure 7B. To ensure the quality of the Stacking-InSAR results,
the interferogram with average spatial coherence values below 0.5 were discarded. In
total, there were 46 interferometric pairs with average spatial coherence below 0.5, i.e.,
23 in T99 F1280, 12 in T99 F1275, and 11 in T33 F493. Therefore, there were actually
877 interferograms involved in the Stacking-InSAR processing.

5.2. Visibility Analysis of SAR Satellites

Based on the R-index, we analyzed the terrain visibility of the study area, as shown in
Figure 8. For the ascending track, 6.25% of the study area was affected by the layover and
shadow (poor visibility), 45.08% was affected by foreshortening (medium visibility), and
the remaining 48.67% of the study area had good visibility. Similar to the ascending track,
the percentage of areas with poor, medium, and good visibility for the descending track
was 6.10%, 43.85%, and 50.05%, respectively. Apparently, the study area was less affected by
the layover and shadow. In this study, to avoid misidentification, the layover and shadow
areas were masked out before mapping the landslides. For the surface deformation in the
foreshortening area, we combined optical images to comprehensively identify landslides.
Even in this case, the number of landslides identified using a single track (ascending or
descending) only accounted for about 64% of the total number of landslides. Therefore, it
is strongly recommended to use the combination of ascending and descending tracks for
landslide detection in mountainous areas to obtain a more complete landslide inventory.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 15 
 

 

  
Figure 7. Error estimation of all interferograms generated by the HyP3 online platform: (A) the mean 
and standard deviation of each interferogram, (B) average spatial coherence of each interferogram. 
Note that the horizontal axis only shows partial interferometric pairs. 

5.2. Visibility Analysis of SAR Satellites 
Based on the R-index, we analyzed the terrain visibility of the study area, as shown 

in Figure 8. For the ascending track, 6.25% of the study area was affected by the layover 
and shadow (poor visibility), 45.08% was affected by foreshortening (medium visibility), 
and the remaining 48.67% of the study area had good visibility. Similar to the ascending 
track, the percentage of areas with poor, medium, and good visibility for the descending 
track was 6.10%, 43.85%, and 50.05%, respectively. Apparently, the study area was less 
affected by the layover and shadow. In this study, to avoid misidentification, the layover 
and shadow areas were masked out before mapping the landslides. For the surface defor-
mation in the foreshortening area, we combined optical images to comprehensively iden-
tify landslides. Even in this case, the number of landslides identified using a single track 
(ascending or descending) only accounted for about 64% of the total number of landslides. 
Therefore, it is strongly recommended to use the combination of ascending and descend-
ing tracks for landslide detection in mountainous areas to obtain a more complete land-
slide inventory. 

 

Figure 8. R-index maps of the ascending (A) and descending (B) tracks over the study area. The black
rectangles on the left and right are a zoomed-in view of the R-index maps. The visibility statistics for
the ascending and descending tracks are shown in the lower left and upper right corners, respectively.

5.3. Advantages and Limitations

In this study, we presented a case study of slow-moving landslide mapping over large
areas by using a new landslide mapping chain. We summarized that the new landslide
mapping chain has three main advantages.

First of all, it is very easy to use without complicated data processing skills. This
is mainly due to the convenience of HyP3 and the simplicity of Stacking-InSAR method.
Moreover, the whole processing chain is open source and nearly automatic, thus users do
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not need to install and master complex commercial processing software to receive reliable
results. In addition, ref. [23] confirmed the effectiveness of the Stacking-InSAR method in
low coherence areas, which can be applied to mountain areas with dense vegetation.

Second, it greatly reduces data processing time. In fact, it is one of the main advantages
of the HyP3 and Stacking-InSAR method. With HyP3, it took only 4–5 h to process a total of
923 interferometric pairs. However, in a normal workstation environment (Intel Xeon Gold
6152 CPU, 32 G memory), we estimated that it would take at least 1–2 months to process
these interferometric pairs. It is almost unbearable for practical applications, especially in
emergency response. Moreover, the time spent by the Stacking-InSAR method is almost
negligible (several minutes) because it does not require any additional processing. However,
if SBAS-InSAR is adopted, it may take several hours to process.

Third, it greatly saves storage resources, although it is a significant advantage of the
HyP3 online platform. For this study, a total of 923 interferometric pairs occupied less
than 1 terabyte (TB) of storage space, compared to 15–20 TB that might be required for
conventional processing. It is a huge advantage for large-scale data processing.

In addition, in the absence of a priori knowledge of landslide distribution, the new
processing chain can rapidly identify the landslide distribution area and narrow the study
area to save the time of conventional InSAR processing. Therefore, this processing chain
can also be regarded as a prior experiment of conventional InSAR processing.

Undoubtedly, the new processing chain also has some limitations. An important
limitation is that HyP3 does not support arbitrary adjustment of parameters during the
interferometric processing (such as filtering parameters, phase unwrapping methods),
meaning that we may sometimes not obtain the desired results. For instance, the HyP3
online platform only supports the output of products with a pixel spacing of 40 m or
80 m. For landslide detection, it means that some small-scale landslides may be missed.
Moreover, the HyP3 platform sets a monthly processing quota, meaning that each user can
only process a given number of interference pairs per month (1000 jobs/month), although,
in most cases, it is sufficient for a region.

In addition, we mainly focused on the rapid identification of wide-area landslides,
which means that we only performed the stacking of interferograms without any additional
processing, such as atmospheric correction, topography correction, etc. A recent study
reported that atmospheric correction of interferograms prior to the implementation of
Stacking-InSAR processing would help to improve the deformation accuracy, especially
when processing SAR images over large areas [42]. We will perform this process in the
future to further improve the landslide mapping chain. Moreover, for time-series landslide
analysis, the Stacking-InSAR method still has some limitations. In terms of this aspect,
users can replace the Stacking-InSAR method with SBAS-InSAR or another time-series
InSAR method as needed to obtain time-series landslide deformation data.

Finally, the deformation signal observed by InSAR may be caused by various earth
movements [41], not just landslides. In this case, to avoid misidentification, the optical
and geomorphological features of landslides need to be considered together when using
InSAR-driven surface deformations to interpret landslides. Moreover, the InSAR method
can only detect deformation regions, not the whole landslide boundary. Thus, the use of
high-resolution optical imagery can also help to finely delineate the landslide boundary.

Overall, the new landslide mapping chain is very suitable for the rapid detection of
slow-moving landslides over large areas. In the future, we expect to use this processing
chain to identify and update landslide inventory maps for more areas around the world to
further promote the understanding of landslide hazards.

6. Conclusions

Almost every country or region in the world is potentially threatened by landslide
hazards. Identifying slow-moving landslides in advance is considered as a critical step for
prevention and management of landslide hazards. However, rapid identification of slow-
moving landslides over large areas is difficult and challenging. In this work, we constructed
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a new easy-to-use processing chain for rapidly identifying slow-moving landslides over
large areas, by combining the HyP3 online platform and Stacking-InSAR method.

With this new processing chain, we obtained a total of 923 interferograms covering
an area of over 1800 km2 within a few hours and identified a total of 81 slow-moving
landslides. Among them, 65 were confirmed by previous studies, and 16 landslides were
newly detected. The effectiveness of the new processing chain was confirmed. The results
showed that the new landslide mapping chain greatly simplifies the process of wide-area
landslide mapping, which can be used as an effective tool to update the existing landslide
inventories and contribute to the prevention and management of geological hazards.
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