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Abstract: Semantic segmentation of high-resolution remote sensing images (HRSI) is significant, yet
challenging. Recently, several research works have utilized the self-attention operation to capture
global dependencies. HRSI have complex scenes and rich details, and the implementation of self-
attention on a whole image will introduce redundant information and interfere with semantic
segmentation. The detail recovery of HRSI is another challenging aspect of semantic segmentation.
Several networks use up-sampling, skip-connections, parallel structure, and enhanced edge features
to obtain more precise results. However, the above methods ignore the misalignment of features
with different resolutions, which affects the accuracy of the segmentation results. To resolve these
problems, this paper proposes a semantic segmentation network based on sparse self-attention
and feature alignment (SAANet). Specifically, the sparse position self-attention module (SPAM)
divides, rearranges, and resorts the feature maps in the position dimension and performs position
attention operations (PAM) in rearranged and restored sub-regions, respectively. Meanwhile, the
proposed sparse channel self-attention module (SCAM) groups, rearranges, and resorts the feature
maps in the channel dimension and performs channel attention operations (CAM) in the rearranged
and restored sub-channels, respectively. SPAM and SCAM effectively model long-range context
information and interdependencies between channels, while reducing the introduction of redundant
information. Finally, the feature alignment module (FAM) utilizes convolutions to obtain a learnable
offset map and aligns feature maps with different resolutions, helping to recover details and refine
feature representations. Extensive experiments conducted on the ISPRS Vaihingen, Potsdam, and
LoveDA datasets demonstrate that the proposed method precedes general semantic segmentation-
and self-attention-based networks.

Keywords: semantic segmentation; high-resolution remote sensing; self-attention; context modeling;
feature alignment

1. Introduction

Semantic segmentation predicts the semantic labels for each pixel in an image. Seman-
tic segmentation of high-resolution remote sensing images (HRSI) is the cornerstone of
remote sensing interpretation. It is of great importance in many fields, such as mapping,
navigation, land resource management, etc. [1–3]. Specifically, land cover maps depict local
and overall landscape conditions, from which environmental change trends can be obtained.
Semantic segmentation can be used to assess urban development and estimate the impact of
natural disasters. Since remote sensing technology has advanced, HRSI with more complex
pixel representation have become more readily available. Semantic segmentation is more
crucial and challenging for HRSI. Traditional semantic segmentation methods [4–6] rely on
expert experience and complex human-designs. Moreover, the segmentation performance
relies on the accuracy and suitability of manually designed features. With robust feature
modeling capabilities, deep learning technology has become an effective method used for
semantic segmentation of HRSI, and researchers have applied deep learning technology
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to this operation. Specifically, a convolutional neural network (CNN) [7] has been widely
used in semantic segmentation and achieved satisfactory results. To further enhance the
accuracy of semantic segmentation, researchers focus on both contextual information fusion
and the refinement of segmentation results.

To achieve contextual information fusion, several network variants are proposed to
enhance contextual aggregation. PSPNet [8] developed spatial pyramid pooling to acquire
a rich, multi-scale context. The Deeplab series [9–11] utilized the atrous spatial pyramid
pooling (ASPP) to gather contextual clues, which consisted of parallel atrous convolutions
with different dilated rates. GCN [12] removed the pooling in the network and developed
a large decoupling convolution kernel to extract features. The large convolution kernel
can obtain a large receptive field and is beneficial to the capture of long-range contextual
information. However, the above methods fail to model the global contextual dependencies
across an entire image. Recently, self-attention mechanisms commonly used in natural
language processing (NLP) have been widely used for visual tasks with exciting results.
Wang et al. [13] first proposed self-attention to capture global dependencies. Fu et al. [14]
developed DANet to model non-local dependencies in position and channel dimensions.
Instead of calculating self-attention at each point, EAMNet [15] utilized the expectation-
maximization iteration manner to learn a more compact basis set, and then carried out
self-attention. To model spatial long-range dependencies, CCNet [16] proposed recurrent
a criss-cross attention module. Yuan et al. [17] developed OCNet with interlaced sparse
self-attention. The above methods show that the self-attention operation is an effective
way to capture global dependencies. Thus, several studies have used the self-attention
mechanism for semantic segmentation of HRSI. Shi et al. [18] combined self-attention
and atrous convolution with different atrous rates to capture spatially adaptive global
context information. Li et al. [19] proposed kernel attention with linear complexity and
combined it with the standard dot product attention. However, the above methods ignore
a key problem: due to the complex background and rich details of HRSI, standard self-
attention will introduce redundant information and interfere with semantic segmentation.
To solve this problem, this paper proposes the sparse position self-attention module (SPAM)
and sparse channel self-attention module (SCAM), which not only captures the global
information, but also reduces the interference of redundant information.

For the refinement of segmentation results, the current semantic segmentation network
uses several strategies. One is to obtain the high-level semantic information gradually via
down-sampling and then integrate the features of various levels through the decoder to
recover the details. For example, Long et al. [20] proposed fully convolutional networks
(FCNs) that restored the original image size by incorporating the low-level features and high-
level features. SegNet [21] retained the index of the maximum position when pooling, and the
index was reused when upsampling. U-Net [22] adopted skip-connections to connect shallow
layers and deep layers. RefineNet [23] utilized a Laplacian image pyramid to explicitly model
the available information during downsampling and predictions from coarse to fine. Another
potential strategy is to learn semantic information while maintaining high resolution feature
maps. For example, HRNet [24] proposed a parallel structure backbone network, which
maintained high resolution characteristics during the entire process. Additionally, several
networks refine the segmentation edges to obtain more precise semantic segmentation results.
Gated-SCNN [25] deconstructed the edge information from the regular features and used
a shape branch to focus on semantic boundary information. SegFix [26] proposed a post-
processing method to refine the boundaries of semantic segmentation results. ERN [27]
developed the edge enhancement structure and the loss function used to supervise the edge
to enhance the segmentation accuracy. Zheng et al. [28] developed a Dice-based edge-aware
loss function to refine edge information directly from semantic segmentation prediction.
Li et al. [29] highlighted the edge distribution of the feature map in a self-attention fashion.
The above methods recover the details and improve the edge segmentation performance to
some extent. However, the issue of feature maps with different resolutions being misaligned
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is ignored. To solve this problem, this paper proposes the feature alignment module (FAM),
which generates a learnable offset map to align feature maps with different resolutions.

HRSI generally have complex background information and abundant details, which
makes semantic segmentation more challenging. The standard self-attention and excessive
fusion of long-range context information may introduce redundant information and cause
interference to object segmentation. This paper proposes SPAM and SCAM to effectively
model the position global context and channel-wise dependencies. Additionally, feature
maps with different resolutions are not aligned. Features from shadow layers and deep
layers are directly fused and, thus, fail to obtain higher-quality segmentation results. This
paper proposes FAM, which combines low-level and high-level features with different reso-
lutions. FAM is beneficial, as it refines segmentation results and improves the segmentation
performance of an object edge. The contributions of this work are threefold:

1. The paper proposes SPAM and SCAM to efficiently model the position non-local
information and channel-wise dependency, which reduces redundant information,
contributing to the intraclass consistency of large objects and the segmentation accu-
racy of small objects.

2. The paper introduces FAM, which can align feature maps with different resolutions
and further improve segmentation results.

3. Extensive experimental results demonstrate that SAANet achieves leading perfor-
mance on ISPRS Vaihingen, Potsdam, and LoveDA datasets.

2. Materials and Methods

The particulars of the proposed semantic segmentation network based on sparse self-
attention and feature alignment (SAANet) for semantic segmentation will be introduced.
We first present the overall framework of our SAANet and then illustrate the details of the
SPAM, SCAM, and FAM.

2.1. Overview

As shown in Figure 1, the proposed SAANet consists of a backbone, SPAM, SCAM, and
FAM. Many studies have proved the good performance of a pretrained ResNet backbone
in semantic segmentation tasks. First, the dilated ResNet-101 [30] is set as the backbone
to extract features. The outputs of the dilated ResNet-101 in each stage are denoted as
{S1, S2, S3, S4}. Due to the removal of down-sampling operations and adoption of dilated
convolutions in the last two blocks, feature maps have strides of {4, 8, 8, 8} pixels, with
respect to the input image. Then, SPAM and SCAM take the feature map S4 as input
to model non-local dependencies in the position and channel dimensions. In addition,
in order to achieve better feature representations, a feature pyramid network (FPN) [31]
is used to combine low-level and high-level features and the outputs are denoted as
{F1, F2, F3, F4}. Finally, feature maps F2,F3, and F4 are up-sampled to the same size as
feature map F1 utilizing FAM. The four feature maps are concatenated to gain final pixel-
level feature representations.
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Figure 1. An overview of our proposed semantic segmentation network based on sparse self-
attention and feature alignment (SAANet). H and W represent the height and width of the input
image, respectively.
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2.2. Sparse Position Self-Attention Module

Due to the complex scenes and rich details of HRSI, the implementation of a position
self-attention module (PAM) on the whole image introduces redundant information and
interferes with semantic segmentation. To capture long-range dependencies more efficiently
and reduce redundant information, this paper proposes the SPAM, which is based on PAM.

2.2.1. Position Self-Attention Module

PAM is first introduced and shown in Figure 2. Given the feature map M, the features
query (Q), key (K), and value (V) are first generated by convolutions, respectively, where
Q, K, V ∈ RC×H×W . C, H, and W denote the number of channels of the feature, image
height, and image width, respectively. Then, they are reshaped to Qp, Kp, Vp ∈ RC×N ,
where N = H ×W is the number of pixels. Next, Qp is multiplied by the transpose of Kp,
and the softmax layer is applied to calculate the position attention map Ap ∈ RN×N :

Ap = softmax
(

KT
p Qp

)
(1)

where Ap measures the influence between the two positions, and the more similar two
pixel features are, the larger the value of Ap is. Then, Vp and the transpose of Ap are
multiplied, and the resulting product is reshaped to RC×H×W . Finally, to obtain the output
Np ∈ RC×H×W , the feature map is multiplied by the scale coefficient α and sum with the
feature map M.

Np = αVp AT
p + M (2)

where α is a learnable parameter, which is initialized to 0.

transpose

softmax

reshape

HW HW

M

Q

K

V

pN

reshape

reshape

reshape

pK

pQ

pV

pA

Figure 2. The framework of the position self-attention module (PAM).

2.2.2. Sparse Position Self-Attention Module

The proposed SPAM is based on PAM. Instead of standard PAM operating on the
entire image, SPAM implements the sparse mechanism by performing PAM operations on
sub-regions. SPAM can not only capture global context information, but can also reduce
redundant information. Specifically, we divide the inputs to small regions along the position
dimension and perform PAMs in sub-regions. The details of SPAM are shown in Figure 3.
Given a feature map X with the spatial size of H ×W, the feature map X is grouped along
the H and W dimensions and the spatial size of each group is H_n×W_n. The feature map
X is divided into H/H_n×W/W_n groups, named {X1, X2, X3 . . .}. Figure 3 illustrates
the details of SPAM by taking H, W = 8 and H_n, W_n = 2 as an example. Then, the pixels
at the same relative positions in each group are reorganized into new regions. The number
of new regions is H_n×W_n, and the pixels of each new region are H/H_n×W/W_n.
Meanwhile, PAMs are operated in new regions, and the feature map Y1 is obtained, which
is then set as the global operation. Finally, the pixel position of the feature map Y1 is
restored to the original combination, and PAMs are carried on {X1, X2, X3 . . .}. The feature
Z1 is obtained. The input of SPAM is S4 in our SAANet. SPAM efficiently captures the
long-range context information and models the pixel-wise relationship. The information
propagation process of SPAM is shown in Figure 4. Take regions R1, R2 and pixels M, N, P,
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Q as examples to illustrate details of the information propagation. Specifically, pixel M in
the region R1 and pixel N in the region R2 first operate PAM, while pixel P in the region R1
and pixel Q in the region R2 operate PAM. Then, the region R1 and the region R2 continue
PAM, respectively. Finally, pixels M, N, P, and Q aggregate the local and global contextual
information. The above operations complete the information propagation between regions
R1 and R2.

. . .

permute

divide

PAM

PAM

merge permute

divide

. . .

PAM

PAM

merge

X 1Y
1Z

_H n

_W n

/ _W W n

/ _H H n

Global operation Local operation

(a) (b) (c) (d) (e)

Figure 3. The structure of the proposed sparse position self-attention module (SPAM). (a) The input
image is divided along position dimension. (b) PAMs are performed in rearranged small regions.
(c) The pixel position of the feature map is restored to the original combination. (d) PAMs are
performed in restored sub-regions. (e) The output of SPAM is obtained.

M

P
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Q

M

P

N

Q

M
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Q
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Figure 4. The information propagation process of the proposed SPAM. (a) M and P are the two pixels
in region R1; and N and Q are the two pixels in region R2. (b) During the first PAM operation, the
information is transmitted between M and N and between P and Q, respectively. (c) During the
second PAM operation, the information is transmitted between M and P and between N and Q,
respectively. (d) M, N, P, and Q contain global and local information.

2.3. Sparse Channel Attention Module

Due to the complexity of HRSI, there are large intra-class differences and small inter-
class differences. Therefore, operating a standard self-attention module (CAM) on all
channels introduces redundant information and causes category confusion. To model
interdependent information between channels more efficiently and suppress redundant
information, this paper proposes SCAM, which is based on CAM.

2.3.1. Channel Self-Attention Module

The architecture of CAM is shown in Figure 5. We first reshape the local feature
map M ∈ RC×H×W to Mc ∈ RC×HW . Then, the matrix multiplication between Mc and
the transpose of Mc is performed for the softmax layer, and the attention feature map
Ac ∈ RC×C is obtained as follows:

Ac = softmax
(

Mc Mc
T
)

(3)

where Ac measures the influence of different channels. Then, Mc is multiplied by the
transpose of Ac, and the multiplication is reshaped to RC×H×W . Finally, the product is
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multiplied by the scale coefficient β and added to the original feature M to obtain the final
feature map Nc ∈ RC×H×W , as follows:

Nc = βAc
T Mc + M (4)

where β is a learnable parameter and is initialized to 0.

 transpose

softmax

reshape

reshape

C C

M

cN

cM

cA

Figure 5. The architecture of the channel self-attention module (CAM).

2.3.2. Sparse Channel Self-Attention Module

The details of SCAM are shown in Figure 6. First, the feature map X is divided
into C_n groups {C1, C2, C3 . . .} in the channel dimension. The channel number of each
group is C/C_n. Figure 6 illustrates the details of SCAM, taking C_n = 2 as an exam-
ple. Then, the groups {C1, C2, C3 . . .} are further divided into C_n sub-groups, named
{C11, C12, C13 . . .}, {C21, C22, C23 . . .}, {C31, C32, C33 . . .} . . . . The channel number of each
sub-group is C/C2_n. Next, for each channel group, sub-groups in the same relative
position (for instance, C11, C21, C31 . . .) are taken out to rearrange and generate new
channel groups {C11, C21, C31 . . .}, {C12, C22, C32 . . .}, {C13, C23, C33 . . .} . . . . The feature
map Y2 is obtained by operating CAMs in C/C_n new groups. Finally, Y2 is restored to
the original channel arrangement, and Z2 is acquired by performing CAMs in original
groups {C1, C2, C3 . . .}.

C

/ nC C / nC C

permute

divide

CAM

CAM

merge permute

divide

CAM

CAM

merge

X
2Y 2Z

Global operation Local operation

(a) (b) (c) (d) (e)

Figure 6. The structure of the proposed sparse channel self-attention module (SCAM). (a) The input
image is divide along the channel dimension. (b) CAMs are performed in rearranged sub-channels.
(c) The channels of the feature map are resorted to the original combination. (d) CAMs are performed
in resorted sub-channels. (e) The output of SCAM is obtained.

2.4. Feature Alignment Module

Several methods are proposed to refine semantic segmentation results. However,
the misalignment of features is ignored. To align features with different resolutions and
refine semantic segmentation representations, this paper proposes an FAM. Specifically, the
feature map S′4 in Figure 1 from the last stage of ResNet fuses global context information
and possesses enriched semantic information. However, the feature map S′4 with coarse
resolution lacks fine details. The proposed SAANet uses an FPN to fuse different resolution
features from different stages. The FPN gradually fuses lower-level features with the details
and higher-level features with abundant semantic information in a top-down pathway
via 2× bilinear upsampling. However, the feature maps with different resolution are mis-
aligned, which causes confusion in edges and small object segmentation. The misalignment
has a great influence on the accuracy of semantic segmentation, especially on HRSI with
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complex scenes. After a series of operations in SAANet, such as downsampling, residual
connection, self-attention, etc., the misalignment of the feature maps is more complicated.
In the upsampling process, using bilinear interpolation alone fails to achieve better semantic
segmentation results. The proposed SAANet develops a feature alignment module, which
utilize convolutions to obtain a learnable offset map for feature alignment.

The details of the FAM are shown in Figure 7. The FAM is structured within the FPN
framework. The inputs of the FAM are two feature maps with different spatial resolutions.
It is assumed that Fl and Fl−1 are the two input features of FAM, where Fl ∈ RHl×Wl×C and
Fl−1 ∈ RHl−1×Wl−1×C. Fl is first upsampled via the standard regular grid sampling based
bilinear interpolation. Then, the upsampled Fl and Fl−1 are concatenated, and the feature
map F′ is obtained. The feature F′ is passed through a 1× 1 convolution, BN, and 3× 3
convolution to predict an offset ∆ f ∈ RHl−1×Wl−1×2. Finally, the offset map is used to correct
the upsampled Fl , which obtains the output feature map aligned with Fl−1. Mathematically,
the above operations can be written as:

F′ = concat(Fl−1, upsample(Fl)) (5)

∆ f = conv3×3(BN(conv1×1(F′))) (6)

where the upsample denotes the bilinear interpolation function, and ∆ f denotes offsets in
horizontal and vertical directions. The FAM also involves less computation. SAANet uses
three FAMs for the alignment of F2, F3, F4, and F1, respectively. FAM alleviates the feature
misalignment and enhances the performance of semantic segmentation, especially for small
objects and boundary regions.

Upsample

Concat 1  1 Conv + BN + 3  3 Conv 

lF

1lF −

f

 

Figure 7. The framework of the proposed feature alignment module (FAM).

3. Experiments

We first introduce the datasets, evaluation metrics, and implementation details and then
conduct ablation studies to validate the effectiveness of our framework. Finally, we compare
the proposed network with several state-of-the-art methods on ISPRS Vaihingen, Potsdam [32],
and LoveDA Urban [33] datasets.

3.1. Datasets and Evaluation Metrics

ISPRS Vaihingen dataset: ISPRS Vaihingen is a high-resolution remote sensing
dataset used for semantic segmentation, which is composed of 33 images. The ground
sampling distance (GSD) is 9 cm, and the average size of the images is 2496× 2046 pixels.
All images have corresponding semantic segmentation labels. The training and testing
sets contain 17 and 16 images, respectively. There are six categories: impervious surface,
building, low vegetation, tree, car, and clutter/background.

ISPRS Potsdam dataset: ISPRS Potsdam contains 38 images. The GSD is 5 cm, and
the size of each image is 6000× 6000 pixels. All images have corresponding semantic
segmentation labels. The number of images in the training and testing sets is 21 and 17,
respectively. As with the Vaihingen dataset, there are six categories.

LoveDA Urban dataset: The LoveDA dataset is constructed by Wang et al. [33]. The
historical images were obtained from the Google Earth platform. LoveDA Urban dataset



Remote Sens. 2023, 15, 1598 8 of 17

was obtained from urban areas in Wuhan, Changzhou, Nanjing, and other places in China.
The size of each image is 1024× 1024 pixels, and the GSD is 0.3m. The dataset was divided
into three parts: a training set, a val set, and a test set, among which the training set and
val set have semantic labels. In our experiment, 1156 training images were used as our
training set, and 677 val set images were used as our test set. There are seven categories:
background, building, road, water, barren, forest, and agricultural.

Evaluation Metrics: To evaluate the performance of semantic segmentation, this study
sets the mean intersection over union (mIoU), F1-score (F1), and overall pixel accuracy (OA) [34]
as its evaluation metrics. The aforementioned metrics are as follows.

mIOU =
1
N

N

∑
k=1

TPk
TPk + FPk + FNk

(7)

F1 = 2× Precision× Recall
Precision + Recall

, Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(8)

OA =

N
∑

k=1
TPk

N
∑

k=1
TPk + FPk + TNk + FNk

(9)

where TP, FP, TN, FN, and k indicate the true positive, false positive, true negative, false
negatives, and category, respectively.

3.2. Implementation Details

Due to limited computing resources, we cropped all images into 512× 512 pixels. All
experiments were implemented with PyTorch on a single NVIDIA GeForce RTX 2080Ti
GPU, and the optimizer was set as standard the stochastic gradient descent (SGD). For
different data sets, different learning rates were selected. The learning rates of the Vaihingen,
Potsdam, and LoveDA Urban datasets were 0.001, 0.0008, and 0.0007, respectively. For all
methods, cross-entropy loss is set as the loss function. For all datasets and networks, the
maximum iteration period is 100 epochs.

3.3. Comparison to State-of-the-Art

To verify the superiority of our SAANet, we perform comparisons with several existing
semantic segmentation methods, including self-attention-based and other general semantic
segmentation networks. Aside from HRNet, whose backbone network is W48, other
networks use the dilated ResNet-101 as the backbone. The experimental results on ISPRS
Vaihingen, Potsdam, and LoveDA datasets are shown in Tables 1–3, respectively. The
proposed SAANet achieves the best mIOU on ISPRS Vaihingen, Potsdam, and LoveDA
Urban datasets.

Results on the Vaihingen dataset: Compared with the typical segmentation network
FCN, our SSANet obtains 1.72%, 1.33%, and 0.76% improvement and achieves 68.50%,
80.22%, and 86.72% for mIOU, mF1, and OA, respectively. Moreover, the mIOU/F1/OA of
our SAANet surpasses 0.92%/0.72%/0.37% by the network based on self-attention DANet.
Thanks to SPAM, SCAM, and FAM, SSANet achieves more precise semantic segmentation
results in all classes, especially on small objects. For example, SSANet outperforms the
previous best one by 1.62% in the car category.

Results on the Potsdam dataset: Compared with a typical segmentation network
based on self-attention CCNet, our SSANet obtains 1.20%, 1.02%, and 0.61% improvement
and achieves 73.79%, 83.57%, and 88.22%, on mIOU, mF1, and OA, respectively. Moreover,
the mIOU, mF1, and OA of our SAANet surpasses 1.07%/0.75%/0.76% by the typical
network with multi-scale aggregation PSPNet. Meanwhile, SSANet achieves more precise
semantic segmentation results in all classes, with the most significant improvement in the
car category.
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Table 1. Comparisons of different networks on ISPRS Vaihingen dataset. Note that we chose the IOU
as the metric of each category. The best results are shown in boldface.

Method Imp. Surf. Building Low Veg. Tree Car Background mIOU mF1 OA

DeepLabv3+ 77.15 85.40 61.22 74.54 57.46 26.44 63.70 75.90 85.30
HRNet 79.12 85.78 62.46 75.69 60.46 25.87 64.90 76.70 86.10

EMANet 77.83 85.73 62.61 75.37 60.95 32.18 65.78 77.87 85.88
PSPNet 77.94 85.77 62.90 75.65 60.40 34.59 66.21 78.34 85.97
CCNet 77.73 85.64 62.35 75.42 61.61 36.22 66.50 78.66 85.83
FCN 77.99 85.82 62.84 75.39 61.86 36.76 66.78 78.89 85.96

DANet 78.48 86.67 63.19 75.74 63.73 37.67 67.58 79.50 86.35

SAANet 79.00 87.52 63.79 76.16 65.35 39.21 68.50 80.22 86.72

Table 2. Comparisons of different networks on ISPRS Potsdam dataset. Note that we choose the IOU
as the metric of each category. The best results are shown in boldface.

Method Imp. Surf. Building Low Veg. Tree Car Background mIOU mF1 OA

DeepLabv3+ 81.87 90.32 71.75 73.58 83.12 34.19 72.47 82.50 87.45
CCNet 82.43 90.64 71.72 73.31 83.47 33.97 72.59 82.55 87.61
PSPNet 81.64 89.96 71.43 74.45 82.61 36.21 72.72 82.82 87.46
HRNet 82.65 89.99 72.17 74.16 83.58 35.06 72.94 82.87 87.76
DANet 82.80 90.94 72.23 74.42 83.70 33.87 72.99 82.80 87.96

FCN 82.30 90.66 71.62 74.37 83.55 36.03 73.09 83.03 87.73
EMANet 82.54 90.49 71.92 73.73 83.31 37.16 73.19 83.18 87.77

SAANet 83.40 90.78 72.46 74.53 84.12 37.46 73.79 83.57 88.22

Table 3. Comparisons of different networks on LoveDA Urban dataset. Note that we choose the IOU
as the metric of each category. The best results are shown in boldface.

Method Background Building Road Water Barren Forest AgriculturalmIOU mF1 OA

DeepLabv3+ 35.31 59.73 56.23 54.95 19.45 42.05 31.17 42.70 58.46 57.99
FCN 34.13 59.60 54.99 68.42 26.91 47.90 23.27 45.03 60.39 58.38

HRNet 37.96 60.03 59.83 68.33 25.07 44.63 30.59 46.63 62.11 60.87
PSPNet 38.72 58.80 53.00 60.30 23.18 44.36 48.13 46.64 62.64 63.41
DANet 38.67 62.04 58.93 66.52 23.26 43.92 34.37 46.82 62.33 61.54
CCNet 38.83 60.31 56.04 63.89 39.74 46.96 29.61 47.91 63.92 61.62

EMANet 40.46 60.02 58.18 64.55 30.36 47.74 46.22 49.65 65.58 65.19

SAANet 42.09 61.25 57.26 63.64 33.14 44.32 48.38 50.01 66.03 65.45

Results on the LoveDA Urban dataset: Compared with the ISPRS Vaihingen and
Potsdam datasets, the LoveDA Urban dataset with lower GSD has more complex scenes,
which makes semantic segmentation more challenging. Nevertheless, our SAANet still
achieves the best mIOU, mF1, and OA. Particularly, for more challenging classes, the
background class with greater intra-class variation, and the agricultural class with a small
number of pixels, the proposed SAANet achieves the highest IOU. Specifically, compared
with typical segmentation network FCN, our SSANet obtains 4.98%, 5.64%, and 7.07%
improvement and achieves 50.01%, 66.03%, and 65.45% for mIOU, mF1, and OA, respec-
tively. Moreover, the mIOU/F1/OA of our SAANet surpasses 2.10%/2.11%/3.83% for the
network based on the self-attention CCNet.

Overall, our method achieves state-of-the-art semantic segmentation performance
on the ISPRS Vaihingen, Potsdam, and LoveDA datasets. To qualitatively validate the
effectiveness, several visualization results are shown in Figures 8 and 9. It is observed that
the overall visual effect of our method outperforms other methods. Specifically, for large
objects, our method contributes to the intra-class consistency. In the first group in Figure 8,
for large buildings, other methods incorrectly predict that several pixels representing
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buildings are low vegetation or tree class. In the first group in Figure 9, other methods
incorrectly predict pixels inside impervious surfaces. On the contrary, our SAANet can
maintain category consistency. Additionally, for small objects, our method achieves more
refined semantic segmentation results. For example, in the second group in Figures 8 and 9,
several pixels representing cars are incorrectly predicted or have rough edges in the visual
results of other methods. However, our SAANet obtains more accurate pixel classification
and more precise edges. This suggests that our SAANet can obtain superior semantic
segmentation performance and visual effects.

(   ) Input image (   ) DeepLabv3+ (   ) HRNet (   ) EMANet (   ) PSPNet

(   ) CCNet (   ) FCN (   ) DANet (   ) SAANet (   ) Ground truth

(   ) Input image (   ) DeepLabv3+ (   ) HRNet (   ) EMANet (   ) PSPNet

(   ) CCNet (   ) FCN (   ) DANet (   ) SAANet (   ) Ground truth

Impervious

surfaces
building

Low

vegetation
tree car background

1a
1b 1c 1d 1e

1f 1g
1h 1i 1j

2a 2b 2c 2d 2e

2f 2j2h 2i2g

Figure 8. Visual results achieved by different networks on ISPRS Vaihingen dataset. For the first group,
other methods incorrectly predict that several pixels representing buildings are low vegetation or tree
class. For the second group, several pixels representing cars have rough edges. However, our SAANet
can maintain category consistency and obtain more precise edges.
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(   ) Input image (   ) DeepLabv3+ (   ) CCNet (   ) PSPNet (   ) HRNet

(   ) DANet (   ) FCN (   ) EMANet (   ) SAANet (   ) Ground truth

(   ) Input image (   ) DeepLabv3+ (   ) CCNet (   ) PSPNet (   ) HRNet

(   ) DANet (   ) FCN (   ) EMANet (   ) SAANet (   ) Ground truth
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Figure 9. Visual results achieved by different networks on ISPRS Potsdam dataset. For the first group,
other methods incorrectly predict pixels inside impervious surfaces. For the second group, several
pixels representing cars are incorrectly predicted. However, our SAANet can maintain category
consistency and obtain more accurate pixel classification.

3.4. Evaluation in Efficiency

We not only evaluate the segmentation accuracy and visualization results of different
methods, but also measure the computational complexity and model parameters, in terms of
giga floating-point operations per second (GFLOPs) (G) and the number of parameters with
millions (Params) (M). All models are calculated with an input image size of 512× 512× 3.
The results are shown in Table 4. HRNet uses HRNetv2_W48 as the backbone network
and has the lowest computational complexity. The backbone network of other methods
is ResNet-101 with dilated convolution strategy. Compared with the self-attention-based
networks DANet and CCNet, our method only increases the computational complexity by
about 1.76% and the number of parameters by 0.6% to obtain better segmentation accuracy.
Although our SAANet achieves better performance, it has a more complex structure and
provides a small amount of computational complexity and parameters. We will focus on
balancing the relationship between accuracy and complexity in future work.
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Table 4. Comparison with other networks on GFLOPs and Params. The best results are shown in boldface.

Method GFLOPs (G) Params (M)

DeepLabv3+ 254.56 60.21
HRNet 93.73 65.85

EMANet 246.63 58.71
PSPNet 256.63 65.60
CCNet 278.57 66.45
FCN 275.88 66.12

DANet 277.26 66.45
SAANet 283.46 66.85

4. Discussions

Previous work has focused on the fact that contextual information is important for
semantic segmentation. PSPNet [8] uses the pooling operation of a pyramid structure to
model the context information of different scales. Deeplabv3+ [11] combines the pyramid
structure with the dilated convolution to capture the context information. In addition,
several works [13–17] have proved that the self-attention mechanism is an effective way to
model global context information. The self-attention mechanism captures context informa-
tion through a sequence of matrix operations, which improves the accuracy of semantic
segmentation. However, HRSI have complex scenes and rich details. The implementation
of standard self-attention will introduce excessive redundant information and interfere
with semantic segmentation. In this paper, SPAM and SCAM are proposed to model local
and global context information, while avoiding the introduction of redundant information.
In addition, FAM is proposed to improve the segmentation accuracy of edge regions and
refine the semantic segmentation results. To better discuss and validate the effectiveness
of each module of our SAANet, extensive ablation studies are conducted on the ISPRS
Vaihingen and Potsdam datasets.

4.1. Sparse Position and Channel Attention Module

Both local and global context information is indispensable for the semantic segmenta-
tion task. In general, a larger receptive field can fuse a wider range of information, which is
conducive to obtaining better feature representation. The standard self-attention operation
is equivalent to fusing the information of each pixel of the image indistinguishably, which
models long-range context information. The proposed SPAM and SCAM can capture local
context information, as well as model long-range context information, and does so both
sparsely and efficiently. To acquire a balance between local and global context, different
H_n, W_n in SPAM and C_n in SCAM are set. Extensive experiments are conducted on the
ISPRS Vaihingen and Potsdam datasets, and the results are shown in Table 5.

The pretrained ResNet-101 with the dilated strategy is adopted to initialize the back-
bone. The output of the last stage of ResNet-101 is used for semantic segmentation. Baseline
based on ResNet101 obtains an mIOU of 65.19%, an mF1 of 77.32%, an OA of 85.60% on
the ISPRS Vaihingen dataset. Baseline obtains an mIOU of 72.03%, an mF1 of 82.04%, an
OA of 87.43% on the ISPRS Potsdam dataset. Compared with other H_n, W_n in SPAM
and C_n in SCAM, SPAM with H_n, W_n = 4 and SCAM with C_n = 2 achieves the best
mIOU of 68.19% on the Vaihingen dataset and mIOU of 73.65% on the Potsdam dataset.
The larger H_n and W_n are, the wider the region of capturing local information in the
spatial dimension is, which will introduce more redundant information. Each channel map
of high-level features is related to the category. By dividing channels into more groups
(i.e., the larger C_n is), several channels with strong associations may be dispersed and
rearranged, which is adverse to obtaining a better feature representation of each class.
Therefore, H_n, W_n, and C_n are set as 4, 4, and 2, respectively, in follow-up experiments.
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Table 5. Comparisons of different H_n, W_n, and C_n on ISPRS Vaihingen and Potsdam datasets.
The best results are shown in boldface.

Dataset H_n W_n C_n mIOU mF1 OA

Vaihingen

/ / / 65.19 77.32 85.60
4 4 2 68.19 79.99 86.64
4 4 4 67.82 79.67 86.47
8 8 2 67.73 79.71 86.24
8 8 4 67.82 79.75 86.40

16 16 2 67.67 79.52 86.42
16 16 4 68.04 79.75 86.40

Potsdam

/ / / 72.03 82.04 87.43
4 4 2 73.65 83.49 88.09
4 4 4 73.38 83.28 87.96
8 8 2 73.44 83.22 88.15
8 8 4 73.11 83.04 87.89

16 16 2 73.54 83.45 87.98
16 16 4 72.57 82.39 87.89

Sparse Position Attention Module: In order to efficiently model spatial long-range
context information, SPAM is introduced to enhance the output of the backbone. The results
are shown in Table 6. Compared with the baseline, SPAM provides an mIOU of 0.54% and
1.15% improvement and achieves an mIOU of 65.73% and 73.18%, an mF1 of 78.06% and
83.12%, and an OA of 85.61% and 87.88%, respectively, on the Vaigingen and Potsdam
datasets. It is obvious that SPAM can effectively capture global context information and
achieves a better segmentation performance.

Table 6. Comparisons of different versions of our network on ISPRS Vaihingen and Potsdam datasets.
The best results are shown in boldface.

Dataset SPAM SCAM FPN FAM mIOU mF1 OA

Vaihingen

65.19 77.32 85.6
X 65.73 78.06 85.61

X 65.38 77.41 85.85
X X 68.19 79.99 86.64
X X X 66.82 78.88 86.11
X X X X 68.50 80.22 86.72

Potsdam

72.03 82.04 87.43
X 73.18 83.12 87.88

X 72.80 82.80 87.73
X X 73.65 83.49 88.09
X X X 73.63 83.45 88.07
X X X X 73.79 83.57 88.22

Sparse Channel Attention Module: In order to efficiently capture the interdependencies
between channels, SCAM is introduced to enhance the output of the backbone. The results are
shown in Table 6. Compared with the baseline, SCAM provides mIOU of 0.19% and 0.77%
improvement and achieves an mIOU of 65.38% and 72.80%, an mF1 of 77.41% and 82.80%,
and an OA of 85.85% and 87.73%, respectively, on the Vaigingen and Potsdam datasets. SCAM
is of great significance when it comes to modeling the dependencies between channels.

We integrate SPAM and SCAM into the baseline to generate a network. Compared
with the baseline, the SPAM models long-range context information, and SCAM efficiently
captures the interdependencies between channels. SPAM and SCAM provide an mIOU of
3%, an mF1 of 2.67%, and an OA of 1.04% improvement and obtain an mIOU of 68.19%,
an F1 of 79.99%, and an OA of 86.64% on the Vaihingen dataset. Additionally, SPAM and
SCAM provide an mIOU of 1.62%, an mF1 of 1.45%, and an OA of 0.66% improvement
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and obtain an mIOU of 73.65%, an F1 of 83.49%, and an OA of 88.09% on the Potsdam
dataset. Extensive experiments demonstrate that SPAM and SCAM enhance the semantic
segmentation performance of HRSI.

4.2. Feature Alignment Module

We compare the segmentation results of the method with SPAM and SCAM with
labels. Several results are shown in Figure 10, demonstrating that most of the regions with
inaccurate segmentation are boundary regions. In this paper, the FPN structure is used
to integrate the high-level features with semantic information and the low-level features
with detail information to obtain a finer semantic segmentation result. However, feature
maps with different resolutions are misaligned. Utilizing the FPN structure to fuse features
from shadow layers and deep layers fails to obtain better results. Therefore, it is vital
that the FAM aligns and fuses features with different resolutions. The results are shown
in Table 6. The network with the FPN obtains an mIoU of 66.82%, an mF1 of 78.88%,
and an OA of 86.11% on the Vaigingen dataset. The network with FAM achieves the
best mIoU of 68.5%, mF1 of 80.22%, and OA of 86.72%. Meanwhile, the network with
FAM achieves the best mIoU of 73.79%, an mF1 of 83.57%, and an OA of 88.22% on the
Potsdam dataset. The results prove that feature alignment is essential and the proposed
FAM is effective. Additionally, FAM is beneficial, as it refines the boundaries. To prove the
effectiveness of FAM for boundary regions, the mIOU, mF1, and OA are calculated on the
edge region. Since there is no standard edge region, a neighborhood in which different
classes are connected is selected as the edge region in this paper. Specifically, we first extract
the boundary of different objects in the label and then perform the dilation operation in
morphology operations to obtain the edge region. Note that the pixels closer to the object
boundary are more likely to be confused, and the pixels closer to the object interior are
more likely to be classified. As the dilation kernel increases, the edge region expands and
the pixels grow closer to the interior of the object. The mIOU, mF1, and OA in a larger
area cannot fully highlight the improvement in the edge region. Therefore, in this paper, a
kernel of 3× 3 is selected for the dilation operation to obtain the edge region. The results
are shown in Table 7. The network without FAM obtains an mIoU of 35.68%, an mF1 of
51.88%, and an OA of 55.19% on the Vaigingen dataset. FAM provides an mIOU of 1.04%,
an mF1 of 0.84%, and an OA of 0.23% improvement. Meanwhile, the method without FAM
obtains an mIoU of 38.32%, an mF1 of 54.34%, and an OA of 56.48% on the Potsdam dataset.
The method with FAM obtains an mIoU of 38.81%, an mF1 of 54.82%, and an OA of 56.90%.
The results demonstrate that FAM refines the edge regions of semantic segmentation results
and further explains the necessity and effectiveness of feature alignment.

In general, the experiments and visual results illustrate that SPAM, SCAM, and FAM
achieve better semantic segmentation results. As shown in Tables 1–3, the proposed method
achieves optimal OA, mF1, and mIOU on the ISPRS Vaihingen, Potsdam, and LoveDA
Urban datasets. Specifically, the accuracy of small object cars is significantly improved.
Additionally, as shown in Figures 8 and 9, other networks incorrectly the predicted pixels
inside large objects, such as impervious surfaces and buildings. For small objects, such
as cars, incorrect pixel classifications occur, as well as inaccurate edges. In contrast, our
SAANet can maintain intra-class consistency for large objects and accuracy for small objects.
Meanwhile, the experimental results show that global context information enhancement
on HRSI with complex backgrounds introduces redundant information. The researchers
further explore more adaptive global context information fusion methods to suppress
redundant information as much as possible.
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Table 7. Quantitative results achieved by different variants of our network on boundaries. The best
results are shown in boldface.

Dataset Method mIOU F1 OA

Vaihingen baseline + SPAM + SCAM 35.68 51.88 55.19
baseline + SPAM + SCAM + FAM 36.52 52.92 55.42

Potsdam baseline + SPAM + SCAM 38.32 54.34 56.48
baseline + SPAM + SCAM + FAM 38.81 54.82 56.90

(a) (b) (c)

Figure 10. Visualization results of the difference between predictions and labels. (a–c) from the test set of
the Vaihingen dataset. Note that most of the regions with inaccurate segmentation are boundary regions.

5. Conclusions

In this paper, we present a network based on sparse self-attention and feature align-
ment for semantic segmentation of HRSI. Specifically, SPAM is developed to capture
long-range context information. SCAM is adopted to model interdependencies between
channels more efficiently, while FAM is introduced to align features with different resolu-
tions and refine semantic segmentation results. Moreover, extensive ablation experiments
demonstrate the effectiveness of our method on the ISPRS Vaihingen and Potsdam datasets.
Comparative experiments on the ISPRS Vaihingen, Potsdam, and LoveDA Urban datasets
demonstrate that our SAANet obtains finer semantic segmentation results and achieves
outstanding performance. Although our SAANet enhances the context information and
details, there are still problems in the field of semantic segmentation of HRSI, such as
large intra-class differences and small inter-class differences. For example, trees and low
vegetation in the Vaihingen and Potsdam datasets are easily confused. In subsequent
research, we will use comparative learning in the semantic segmentation of HRSI to obtain
better feature embedding space and more easily distinguished feature representation.

Author Contributions: H.Z. determined the research direction and revised the expression of the
article; L.S. came up with innovative ideas, developed the SAANet, conducted experiments, and
completed the manuscript. J.W. helped to modify the conception and provided suggestions for
expression. X.C., S.H., M.L. and S.L. checked out the article’s writing. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of China under grant 62071474.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tokarczyk, P.; Wegner, J.D.; Walk, S.; Schindler, K. Features, Color Spaces, and Boosting: New Insights on Semantic Classification

of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2014, 53, 280–295. [CrossRef]
2. Tang, Y.; Zhang, L. Urban change analysis with multi-sensor multispectral imagery. Remote Sens. 2017, 9, 252. [CrossRef]

http://doi.org/10.1109/TGRS.2014.2321423
http://dx.doi.org/10.3390/rs9030252


Remote Sens. 2023, 15, 1598 16 of 17

3. Wu, L.; Lu, M.; Fang, L. Deep Covariance Alignment for Domain Adaptive Remote Sensing Image Segmentation. IEEE Trans.
Geosci. Remote Sens. 2022, 60, 1–11. [CrossRef]

4. Liu, M.Y.; Tuzel, O.; Ramalingam, S.; Chellappa, R. Entropy rate superpixel segmentation. In Proceedings of the The 24th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011.

5. Radman, A.; Zainal, N.; Suandi, S.A. Automated segmentation of iris images acquired in an unconstrained environment using
HOG-SVM and GrowCut. Digit. Signal Process. 2017, 64, 60–70. [CrossRef]

6. Thanh Noi, P.; Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land
cover classification using Sentinel-2 imagery. Sensors 2017, 18, 18. [CrossRef] [PubMed]

7. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

8. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Computer Society, Las Vegas,
NV, USA, 26 June–1 July 2016.

9. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef]
[PubMed]

10. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,
arXiv:1706.05587.

11. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 801–818.

12. Peng, C.; Zhang, X.; Yu, G.; Luo, G.; Sun, J. Large kernel matters–improve semantic segmentation by global convolutional
network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July
2017; pp. 4353–4361.

13. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 7794–7803.

14. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.

15. Li, X.; Zhong, Z.; Wu, J.; Yang, Y.; Lin, Z.; Liu, H. Expectation-maximization attention networks for semantic segmentation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27–28 October 2019;
pp. 9167–9176.

16. Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. Ccnet: Criss-cross attention for semantic segmentation. In Proceedings
of the IEEE/CVF international conference on computer vision, 2019, pp. 603–612.

17. Yuan, Y.; Huang, L.; Guo, J.; Zhang, C.; Chen, X.; Wang, J. OCNet: Object context for semantic segmentation. Int. J. Comput. Vis.
2021, 129, 2375–2398. [CrossRef]

18. Shi, H.; Fan, J.; Wang, Y.; Chen, L. Dual attention feature fusion and adaptive context for accurate segmentation of very
high-resolution remote sensing images. Remote Sens. 2021, 13, 3715. [CrossRef]

19. Li, R.; Zheng, S.; Zhang, C.; Duan, C.; Su, J.; Wang, L.; Atkinson, P.M. Multiattention network for semantic segmentation of
fine-resolution remote sensing images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–13. [CrossRef]

20. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

21. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

22. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation; Springer: Munich, Germany, 2015.
23. Lin, G.; Milan, A.; Shen, C.; Reid, I. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 1925–1934.

24. Sun, K.; Zhao, Y.; Jiang, B.; Cheng, T.; Wang, J. High-Resolution Representations for Labeling Pixels and Regions. arXiv 2019,
arXiv:1904.04514.

25. Takikawa, T.; Acuna, D.; Jampani, V.; Fidler, S. Gated-scnn: Gated shape cnns for semantic segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27–28 October 2019; pp. 5229–5238.

26. Yuan, Y.; Xie, J.; Chen, X.; Wang, J. Segfix: Model-agnostic boundary refinement for segmentation. In Proceedings of the European
Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 489–506.

27. Liu, S.; Ding, W.; Liu, C.; Liu, Y.; Wang, Y.; Li, H. ERN: Edge loss reinforced semantic segmentation network for remote sensing
images. Remote Sens. 2018, 10, 1339. [CrossRef]

28. Zheng, X.; Huan, L.; Xia, G.S.; Gong, J. Parsing very high resolution urban scene images by learning deep ConvNets with
edge-aware loss. ISPRS J. Photogramm. Remote Sens. 2020, 170, 15–28. [CrossRef]

29. Li, X.; Li, T.; Chen, Z.; Zhang, K.; Xia, R. Attentively learning edge distributions for semantic segmentation of remote sensing
imagery. Remote Sens. 2021, 14, 102. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2022.3163278
http://dx.doi.org/10.1016/j.dsp.2017.02.003
http://dx.doi.org/10.3390/s18010018
http://www.ncbi.nlm.nih.gov/pubmed/29271909
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
http://dx.doi.org/10.1007/s11263-021-01465-9
http://dx.doi.org/10.3390/rs13183715
http://dx.doi.org/10.1109/TGRS.2021.3093977
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://dx.doi.org/10.3390/rs10091339
http://dx.doi.org/10.1016/j.isprsjprs.2020.09.019
http://dx.doi.org/10.3390/rs14010102


Remote Sens. 2023, 15, 1598 17 of 17

30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

31. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

32. Available online: https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-vaihingen/ (accessed on
1 March 2021).

33. Wang, J.; Zheng, Z.; Ma, A.; Lu, X.; Zhong, Y. LoveDA: A remote sensing land-cover dataset for domain adaptive semantic
segmentation. arXiv 2021, arXiv:2110.08733.

34. Zhao, Q.; Liu, J.; Li, Y.; Zhang, H. Semantic Segmentation with Attention Mechanism for Remote Sensing Images. IEEE Trans.
Geosci. Remote Sens. 2021, 60, 1–13. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-vaihingen/
http://dx.doi.org/10.1109/TGRS.2020.3042202

	Introduction
	Materials and Methods
	Overview
	Sparse Position Self-Attention Module
	Position Self-Attention Module
	Sparse Position Self-Attention Module

	Sparse Channel Attention Module
	Channel Self-Attention Module
	Sparse Channel Self-Attention Module

	Feature Alignment Module

	Experiments
	Datasets and Evaluation Metrics
	Implementation Details
	Comparison to State-of-the-Art
	Evaluation in Efficiency

	Discussions
	Sparse Position and Channel Attention Module
	Feature Alignment Module

	Conclusions
	References

