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Abstract: One method of understanding landscape pattern changes is through an understanding
of land use/land cover (LULC) changes, which are closely related to landscape pattern changes.
Previous studies have monitored LULC changes across North Korea but did not consider landscape
changes at a local scale. Using multiple LULC products to construct sample points, the LULC
was classified using a random-forest algorithm and Landsat satellite dataset. The overall accuracy
of the classification was 97.66 ± 1.36%, and the Kappa coefficient was 0.95 ± 0.03. Based on the
classification results, landscape indices were used to quantify and monitor landscape pattern changes.
The results showed that, from 2000 to 2020, there was an increasing trend in built-up and forest areas
in Pyongyang, while cropland showed a decreasing trend, and landscape fragmentation increased.
However, urban expansion was not the main factor affecting fragmentation. The main factors
were forest recovery and cropland reduction, leading to an increase in landscape fragmentation
in Pyongyang.

Keywords: land use/land cover change; landscape pattern change; local scale; North Korea;
remote sensing

1. Introduction

Land use/land cover (LULC) data provide information on ecosystem services to hu-
mans with regard to food and other resources; however, in terms of spatial distribution,
human activities in land use have led to changes in landscape patterns [1]. Altered land-
scape patterns are largely influenced by human activities and are associated with a decline
in biodiversity, environmental pollution, soil degradation, and other issues [2]. Thus,
understanding historical changes in landscape patterns is important for resolving these
issues [3]. Landscape pattern changes can be reliably monitored through LULC changes
because human land use directly affects these changes [4].

Moreover, land-use-change analysis assists in understanding landscape pattern changes.
However, land-use-change analysis requires high-precision LULC datasets to improve the
reliability of the results and closely monitor these changes [5]. LULC is widely used as the
primary analysis data for studies on local climate zones [6], urban administration zones [7],
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precinct ventilation zones [8], and urban functional zones [5,9]. The relationship between
surface temperature and LULC in the heat island phenomenon is monitored based on
LULC analysis at the urban scale [8,10–12]. Urban land expansion and population-transfer
patterns can be analyzed based on LULC-change detection [9].

Several studies have been performed to better understand the relationship between
land use and land cover change (LULC), urbanization, and landscape patterns. Specifically,
analyzed urban land expansion and population-transfer patterns using LULC change
detection [9] were used to investigate the relationship between LULC change, urbanization,
and landscape patterns [13–15], as well as the relationship between urbanization and
changes in agricultural landscape patterns [5]. To monitor these changes over time, it is
important to regularly track LULC and landscape patterns because the spatial structure
and distribution characteristics of LULC affect the monitoring of changes in landscape
patterns [16,17].

The development and widespread use of remote-sensing tools and techniques facilitate
the production of high-precision LULC data. Remote-sensing data provide historical
information (including multi-temporal and spatial data) and various satellite products
that can help effectively monitor and analyze LULC changes. Google Earth Engine (GEE)
became accessible in 2017, considerably increasing the ease of conducting land-cover
classification studies. GEE is a cloud-processing platform for satellite image data with
the advantage of execution through code and on Google supercomputers, offering an
integrated set of easy-to-use satellite data products that can markedly reduce the labor and
time required for organizing, pre-processing, and analyzing data [18].

These features have significantly reduced the equipment requirements and thresholds
required for remote-sensing studies. Several GEE-based LULC classification studies have
been recently conducted. Among them, LULC results classified based on multi-source
LULC products are highly reliable in terms of accuracy and visual interpretation [19–21].
The advantages of a classification approach using multi-source LULC products include its
applicability to inaccessible areas, a considerable reduction of labor and time consumption,
and the ability to provide highly accurate classification results.

Understanding how changes in LULC affect landscape patterns is important be-
cause changes in LULC lead to changes in landscape patterns [1]. Therefore, analyzing
changes in land use helps to understand how landscape patterns change [13]. Monitor-
ing and trend analysis of landscape pattern change can provide references for decision
making at the planning level [17]. Information on compositional landscape change can
be quantified through landscape metrics [7]. Landscape metrics are widely used in
landscape pattern analysis to monitor spatial changes in landscape configuration and
composition, providing information on changes, such as fragmentation, heterogeneity,
and evenness [22].

Local-scale landscape pattern changes directly affect ecosystem service functions, and
analyzing them can provide a valuable reference for environmental protection, sustainable
urbanization, and ecological structure and function [16,17]. Hence, it is crucial to capture
and monitor local-scale landscape pattern change. In this study, the spatial distribution
of land cover, decreasing or increasing trends in land cover and landscape patterns, and
changes in fragmentation and heterogeneity in Pyongyang were monitored based on the
spatial structure and distribution characteristics of LULC data.

North Korea is inaccessible owing to its national policies, and, consequently, few
studies provide information on the development trends and changes in the local urban area
in Pyongyang, the capital of North Korea. Although some studies have examined the entire
North Korean region [23], few have focused on the capital, Pyongyang, at a local scale. The
main challenge in using LULC classification in such areas is the high heterogeneity and
complexity of urban areas.

Furthermore, the landscape patterns in local areas in the capital in developing
countries generally show a high degree of fragmentation, increasing heterogeneity, and
discontinuity [7]. Therefore, understanding the characteristics of the study area and
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selecting appropriate image analysis techniques and remote-sensing data are neces-
sary [24].

North Korea has experienced various land-cover change related events since the
1980s. Beginning in the 1980s, deforestation in North Korea accelerated in magnitude as
well as in form [25]. During this period, the area occupied by farmland in North Korea
was expanding, and most of the flat ground and mountainous areas were reclaimed for
agricultural use [26]. North Korea has since focused on environmental issues, such as
deforestation. On 11 December 1992, North Korea officially enacted the Forest Law.

In June 2000 and October 2001, the Forest Law was strengthened through amendments
and additions focusing on limiting terrace field expansion and deforestation. On 2 August
2005, afforestation, re-forestation, and logging restrictions were emphasized in the supple-
ment to the Forest Law Amendment [27]. In addition, the implementation of the “10-year
plan for forest restoration” is one of the main drivers of forest cover change. According to
the “10-year plan for forest restoration” in North Korea, from 2013 to 2022, about 6.5 billion
trees will be planted [28]. Based on the policy changes related to LULC, this study chose
10 year time intervals for analysis.

In this study, multi-source LULC products were used based on the time period
and scale of the study area, and the optimal classification dataset and parameters were
identified. We then used multi-source LULC products and Landsat time-series data
for LULC classification based on a local-scale random-forest (RF) algorithm. High-
precision time-series LULC result maps validated against confusion matrices and visual
interpretation were used to monitor LULC and landscape pattern changes in Pyongyang.
With respect to Pyongyang as the study area, building a reliable time-series LULC dataset
in an inaccessible local area and providing information on the development and changes
at the urban scale in North Korea are essential for reference and future research. To the
best of our knowledge, no previous studies have examined landscape pattern changes in
the capital of North Korea.

2. Study Area

North Korea (also known as the Democratic People’s Republic of Korea) is located
in the northern part of the Korean Peninsula, bordering South Korea in the south and
Russia and China in the north. It is located in a midlatitude temperate climate zone with
four pronounced seasons (spring, summer, autumn, and winter). Spring and autumn are
sunny and dry; summer is hot, cloudy and rainy; and winter is cold and dry. In North
Korea, the flat terrain of the capital city, Pyongyang, is highly conducive to urban and
agricultural development.

North Korea is a developing country where agriculture is a crucial economic sector,
and the country is also facing a severe degradation of its forest resources [29]. Due to the
mountainous topography that covers about 80% of the total area, the expansion of terraced
fields has become necessary [28]. Due to political reasons, the city was originally built
mainly in the northern areas of the Taedong River, which served as a defense line towards
the south.

Later, in the process of rebuilding Pyongyang, North Korea expanded the urban area
to the southern part of the Taedong River, resulting in the river running through the center
of the city. As the primary urban hub of North Korea, the city’s population and economic
growth are expected to drive the expansion of its built-up area. Despite this, the limited
access to North Korea hinders the availability of literature and data concerning its cities
and environment. Figure 1 shows the study area and its elevation based on the Shuttle
Radar Topography Mission V3 product (SRTM3).
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ple point dataset. In the third step, classification was performed based on a machine-learn-
ing algorithm and validated using a confusion matrix. In the fourth step, LULC change 
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The first three steps of this study were performed on the GEE platform, a cloud platform 
for efficient processing and analysis of satellite data [18], and step 4 was performed using 
the ArcGIS platform. 

Figure 1. Study area: Pyongyang, North Korea (Democratic People’s Republic of Korea) with elevation.

3. Materials and Methods

Time-series land-cover classification was performed at the local scale, and LULC
change detection and landscape pattern changes were analyzed (Figure 2) using four main
steps. In the first step, semi-permanent sample points were constructed, and the satellite im-
age dataset was pre-processed. In the second step, the semi-permanent sample points were
randomly divided into training (70%) and testing (30%) datasets. The training dataset was
used for classification, and the testing dataset was used to validate the classification results.
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Ten rounds of cross-validations were performed for the entire semi-permanent sample
point dataset. In the third step, classification was performed based on a machine-learning
algorithm and validated using a confusion matrix. In the fourth step, LULC change
detection and landscape pattern changes were analyzed based on the LULC result maps.
The first three steps of this study were performed on the GEE platform, a cloud platform
for efficient processing and analysis of satellite data [18], and step 4 was performed using
the ArcGIS platform.

3.1. Data Collection

This study analyzed LULC changes and trends in landscape pattern changes over a
long-term time period from 2000 to 2020. Although there are products, such as Sentinel
2 (15 m), with higher resolution than Landsat (30 m), the availability of such products
does not cover the research time period. Therefore, in this study, the Landsat 7 ETM+
Collection 2 Level 1 TOA and Landsat 8 OLI Collection 2 Level 1 TOA datasets were used
for the classification dataset. In addition, the SRTM3, digital elevation data [30], and two
satellite indices, the normalized difference vegetation index (NDVI) [31] and the normalized
difference water index (NDWI) [32]), were also included in each classification dataset.

Among them, we used satellite product time-series data from April–July 2000–2012,
using data from 383 Landsat 7 images (2000: 28, 2001: 36, 2002: 28, 2003: 26, 2004: 26, 2005:
31, 2006: 33, 2007: 34, 2008: 33, 2009: 28, 2010: 25, 2011: 26, and 2012: 29) and 272 Landsat
8 images (2013: 10, 2014: 38, 2015: 41, 2016: 41, 2017: 36, 2018: 34, 2019: 35, and 2020: 37);
data from a total of 655 images were used. After classification, the time-series LULC result
map of the study area from 2000 to 2020 was obtained.

Among the multi-source LULC products, MODIS Land Cover Type Product
MCD12Q1.006 [33], Copernicus Global Land Service Land Cover (CGLS-LC100) [34], the
South Korean MoE LULC Product (egis.me.go.kr), Finer Resolution Observation and Mon-
itoring of Global Land Cover (FROM-GLC) [35,36], GlobeLand30 (GLC30) [37], Global
Forest Change dataset (GFCD) [38], and the global food security-support analysis data from
southeast and northeast Asia (GFSAD30SEACE) [39] were used to construct sample points.
Table 1 shows the data collection types, information, and references used in this study.

Table 1. Data collection types and information [30,33–39].

Type Data Collection Used Temporal
Coverage Term Spatial

Resolution Reference

Satellite
Product

Landsat 7 ETM + Collection 2
Level 1

top-of-atmosphere reflectance
(TOA)

2000–2012 16 days 30 m (usgs.gov, accessed on
1 September 2022)

Landsat 8 OLI Collection 2
Level 1

top-of-atmosphere reflectance
(TOA)

2013–2020 16 days 30 m (usgs.gov, accessed on
1 September 2022)

Shuttle Radar Topography
Mission V3 product (SRTM3) 2000 - 30 m Farr et al. [30]

LULC
Product

MCD12Q1.006 2001–2020 1 year 500 m Sulla-Menashe &
Friedl et al. [33]

COPERNICUS 2015–2019 1 year 100 m Masiliūnas et al. [34]

South Korea’s Ministry of
Environment (MoE) LULC Map 2000, 2010 - 30 m (egis.me.go.kr, accessed

on 1 September 2022)

Finer Resolution Observation
and Monitoring of Global Land

Cover (FROM-GLC)
2015, 2017 - 30 m Li et al. [35]

Gong et al. [36]

usgs.gov
usgs.gov
egis.me.go.kr
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Table 1. Cont.

Type Data Collection Used Temporal
Coverage Term Spatial

Resolution Reference

GlobeLand30 (GLC30) 2000, 2010, 2020 - 30 m Chen et al. [37]

Global Forest Change dataset
(GFCD) 2000 - 30 m Hansen et al. [38]

Global Food Security-support
Analysis Data Extent Southeast

and Northeast Asia
(GFSAD30SEACE)

2015 - 30 m Oliphant et al. [39]

3.2. Data Processing

Considering the geographical and climatic characteristics of the study area, identifying
the appropriate period and removing noise were key to classification at the regional scale.
The study area experiences four distinct seasons and is located in a semi-humid and semi-
arid region with agriculture as the primary economic sector. In the Pyongyang region, the
main agricultural activity is the annual cultivation of rice. Agricultural practices include
planting and seeding from April to July/August with the tillering phase ending in July and
the boosting/heading phase beginning in August.

Therefore, it is necessary to consider the timing of the growth and maturity periods
of agricultural vegetation to avoid convergence with forest vegetation in the index [40].
The study area is located in a peninsular zone with cloudy and rainy summers, which
also requires consideration to account for cloud data masking [23]. In Landsat products,
the Surface Reflectance (SR) correction effect was reduced in the study area because it is
located on the coast and in areas with extensive cloud noise. Through the classification
comparison of the two products, we found that the SR product in the research area could
not completely mask cloud noise. In this study, the Landsat-calibrated top-of-atmosphere
(TOA) product [41] was used, and cloud-free synthetic data were created based on temporal
aggregation methods, with a 3 year interdecadal window from April to July.

The salt-and-pepper noise was overcome through median synthesis, and a TOA
synthetic dataset without cloud and salt-and-pepper noise in the study area was ob-
tained [19,20]. Landsat Enhanced Thematic Mapper (ETM) 7 and Landsat 8 Operational
Land Imager (OLI) were used for LULC classification from 2000 to 2020. The Landsat
7 dataset covered the time period 2000–2012, and the Landsat 8 dataset the time period
2013–2020. Landsat 7 products were gap-filled to correct the image data due to a severe
failure of the Landsat 7 sensor from 2003 [42]. All Landsat datasets in this study were
obtained from Collection 2.

It should be noted that the study area is inaccessible for policy reasons; thus, a
verifiable and accurate classification method is needed. Based on previous studies, the
classification approach using multi-source LULC products was used to apply time-series
land-cover classification to the entire North Korean region [23]. This method is effective
for time-series land-cover classification and validation of inaccessible areas for a wide
range of applications in various regions [19–21,43], including alpine areas, extensive forests,
and plains.

Seven existing LULC products were selected based on the methodological principles
of “full consistency” and “temporal stability” [19]. Five of the LULC products had the same
30 m resolution as that of Landsat to reduce the uncertainty of evenness and geographical
integrity [39]. To analyze and assess landscape pattern changes, we generated seven major
land-cover categories based on the Ministry of Environment (MOE) classification system
in Korea: built-up land, cropland, forest, grassland, wetland, bare land, and water bodies.
We then constructed 10,000 random sample points in the study area and set the distance
between the sampling points as >100 m to avoid accuracy deviation caused by excessively
dense sampling points.
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After extracting 10,000 sample points for each LULC type, inconsistent sample points
were removed through an overlay analysis on other LULC products—that is, the filtered
land-cover sample point attributes remained constant through annual variations over the
study period. Here, we refer to filtered sample points as semi-permanent sample points. We
overlayed the analysis of the randomly generated points with MCD12Q1, COPERNICUS,
FROM-GLC, MOE LULC map, GLC30, GFCD, and GFSAD30SEACE to remove points that
were “inconsistent” in the classification and obtained consistent points under multi-source
LULC products.

Finally, from the 10,000 random data points, a total of 2767 semi-permanent sample
points were filtered for land-cover classification. Based on the methodological principles of
“full consistency” and “temporal stability,” unstable or extremely small land-cover classes
cannot be filtered. We found that among the 2767 semi-permanent sample points, four
LULC classes were present: built-up land, cropland, forest, and waterbodies. That is, the
attributes of the semi-permanent sample points of these four filtered classes remained
unchanged through annual variations over the study period. Finally, each Landsat spectral
band, along with NDVI, NDWI, elevation, and sample points, were used for time-series
classification from 2000 to 2020. Equation (1) was used to calculate the NDVI, and Equation
(2) was used to calculate the NDWI.

NDVI =
(NIR − Red)
(NIR + Red)

(1)

NDWI =
(Green − NIR)
(Green + NIR)

(2)

In Landsat 8 OLI, NIR is band 5, red is band 4, and green is band 3. In Landsat 7, ETM
and NIR are band 4, red is band 3, and green is band 2.

3.3. Machine-Learning Algorithm

In this study, classification was performed based on machine-learning algorithms that
can overcome limitations, such as overfitting, and can use different subsets of the same
training dataset [44]. The advantage of machine-learning algorithms lies in their nonpara-
metric approach based on nonlinear data, which can improve classification accuracy by
reducing covariance and noise handling in time-series data [45]. This study used the RF
algorithm that was proposed by Breiman [46], a commonly used machine-learning algo-
rithm. The RF algorithm is an ensemble-learning method for classification and regression
analysis [47] and has been widely used for LULC classification [48] as it exhibits excellent
performance [49].

RF includes bootstrap aggregation (termed bagging) and random feature selection.
In RF, multiple samples extracted by bagging the training samples are combined with a
classification tree and predicted by a voting process [46]. Based on a previous study [50],
the number of decision trees was set to 500, which was confirmed to be adequate for
classification. The 2767 semi-permanent sample points were randomly divided into training
(70%) and test (30%) datasets according to the LULC classes (built-up land, cropland, forest,
and waterbodies).

The training dataset was used for classification, and the test dataset was used to verify
the classification results. Accuracy validation uses a confusion matrix with four accuracy
metrics for verification: the overall accuracy, consumer accuracy, producer accuracy, and
kappa coefficient. To improve the reliability of the classification results, the LULC results
were cross-validated 10 times based on the cross-validation method—that is, 10 rounds of
cross-validations were performed for the entire 2767 semi-permanent sample point dataset.
The validation values were the mean and standard deviation of the accuracy indicators
from 2000 to 2020.
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3.4. LULC Change Detection

Based on the classification result map, spatial analysis was performed to detect the
trend of LULC-type changes in the study area and produce an LULC spatial conversion
map. The time-series land-cover classification maps from 2000 to 2020 were analyzed for
2000–2010 and 2010–2020. LULC change detection and spatial conversion map generation
were achieved by overlaying the classification result maps for the two specific periods. The
10 year intervals of 2000–2010 and 2010–2020 were chosen based on the time course of
deforestation and forest protection activities in North Korea. The proportion of area and
changes in each LULC category in the study area were analyzed from the classification
result maps using Equations (3) and (4).

The proportion of each LULC type used was calculated as follows:

Ai% =
Ai
At

× 100% (3)

The change for each LULC type was calculated as follows:

Ai = Ait1 − Ait2, (4)

where Ai is the area of the LULC type i, At is the total area of the study area, and Ai% is
the proportion of area of the LULC type i. t1 and t2 are two specific periods, and Ait1 and
Ait2 are the total area of the LULC type i for specific periods t1 and t2, respectively.

3.5. Landscape Metrics for Landscape Pattern Changes

LULC changes are a part of the landscape elements that lead to changes in landscape
patterns, and monitoring changes in landscape patterns in the study area is important for
sustainable landscape planning [51]. Landscape metrics have been widely used to assess
LULC and changes in landscape patterns [24].

To study the fragmentation and heterogeneity of landscape patterns in the study area,
the following factors were selected at the local level: number of patches (NP), largest patch
index (LPI), landscape shape index (LSI), and Shannon’s evenness index (SHEI); and at the
class level: NP, patch density (PD), LPI, percentage of landscape of class (PLAND), and
perimeter area fractal dimension (PAFRAC).

To analyze the landscape composition, NP and PD metrics were used to analyze
fragmentation according to the area and density of each land cover type. To analyze the
configuration of the landscape pattern, LPI, LSI, PLAND, SHEI, and PAFRAC metrics
were used to analyze the heterogeneity and evenness of the landscape according to the
distribution, shape, and size of land cover. All landscape pattern analyses were performed
using FRAGSTATS 4.2, a spatial pattern analysis program for quantifying landscape struc-
ture [22]. Table 2 shows the landscape metric information used for analyzing landscape
pattern changes. The equations for calculating these metrics are as follows [22]:

The patch density was calculated as follows:

PD =
NP
A

× 10, 000 × 100, (5)

where NP is the number of patches, and A is the total landscape area (m2); 0 < PD ≤ 1 × 106.
The largest patch index was calculated as follows:

LPI =
maxn

j=1
(
aij

)
A

× 100 (6)

where max
(
aij

)
is the area of the patch (m2), and A is the total landscape area (m2);

0 < LPI ≤ 100.
The landscape shape index was calculated as follows:
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LSI =
E

minE
, (7)

where E is the total edge length on cell surfaces, and minE is the minimum total edge
length on cell surfaces; LSI ≥ 1.

The percentage of landscape of class was calculated as follows:

PLAND =
Σn

j=1aij

A
× 100, (8)

where aij is the area of each patch, and A denotes the total landscape area; 0 < PLAND ≤
100.

The Shannon evenness index was calculated as follows:

SHEI =
−∑m.

i=1
(Pi × ln Pi)

ln m
, (9)

where Pi is the proportion of class, and m is the number of classes; 0 ≤ SHEI < 1.
The perimeter area fractal dimension was calculated as follows:

PAFRAC =
2
β

(10)

where β is the slope of the regression of the area against the perimeter (logarithm);
1 ≤ PAFRAC ≤ 2.

Table 2. Landscape metric type information used at the local and class levels in Pyongyang.

Landscape
Metrics Abbreviation Description Range Local

Level
Class
Level

Number of patches NP The number of patches NP ≥ 1 O O

Patch density PD The aggregation of different LULC types in
the landscape PD ≤ 1 × 106 O

Largest patch
index LPI

The percentage of landscape covered by the
corresponding largest patch for LULC

class type
0 < LPI ≤ 100 O O

Landscape shape
index LSI

The ratio between the actual landscape edge
length and the assumed minimum

edge length
LSI ≥ 1 O

Percentage of
landscape of class PLAND The proportion of total area occupied by the

LULC class type PLAND ≤ 100 O

Shannon’s
evenness index SHEI

A measure of patch diversity, determined by
the proportional distribution of different

LULC types in the landscape
0 ≤ SHEI < 1 O

Perimeter area
fractal dimension PAFRAC A measure of shape, determined by the patch

complexity of LULC class type in landscapes 1 ≤ PAFRAC ≤ 2 O

4. Results
4.1. LULC Classification Results and Accuracy

Figure 3 shows a map of the land-cover classification results for the study area from
2000 to 2020. After extracting 10,000 sample points for each LULC type (built-up, cropland,
forest, grassland, wetland, bareland, and waterbodies), points were identified that have the
same classification attributes through multi-source LULC products, yielding sample points
that remain constant over the annual variation of the study period. These we refer to as
semi-permanent sample points.

Based on the filtering of semi-permanent sample points, four classes were obtained in
the LULC major category: built-up land, cropland, forest, and waterbodies. This can be
attributed to Pyongyang’s location and agricultural activities. Pyongyang is located in the
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interior of the peninsula, and most of the flat land and forest areas have been reclaimed as
agricultural land and terraced fields [26]. Therefore, in the Pyongyang region, unstable or
extremely small land-cover classes could not be filtered.
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A total of 10 rounds of cross-validation were performed on the LULC results, and the
validation values are presented as the mean and standard deviation of the 2000–2020 accu-
racy metrics. Table 3 presents the range of the accuracy metrics for the classification results
from 2000 to 2020. The overall accuracy of the classification results was 97.66 ± 1.36%, and
the Kappa coefficient was 0.95 ± 0.03.

The consumer accuracies for the built-up area, cropland, forest, and waterbodies
were 96.56 ± 3.44%, 98.29 ± 1.71%, 99.30 ± 0.70%, and 100 ± 0%, respectively, and the
producer accuracies were 92.06 ± 3.89%, 99.05 ± 0.95%, 98.55 ± 1.45%, and 98.21 ± 1.79%,
respectively. These results indicate that the classification results were highly accurate
and that the precision met the criteria specified in the U.S. Geological Survey (USGS)
classification scheme [52]; hence, they were used in the next step of the landscape pattern
change analysis.
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Table 3. Accuracy of the LULC classification results for 2000–2020.

Land Cover User Accuracy Producer Accuracy

Built-up 96.56 ± 3.44% 92.06 ± 3.89%
Cropland 98.29 ± 1.71% 99.05 ± 0.95%

Forest 99.30 ± 0.70% 98.55 ± 1.45%
Waterbodies 100 ± 0% 98.21 ± 1.79%

Overall Accuracy 97.66 ± 1.36% Kappa Coefficient
0.95 ± 0.03

In addition, Google Earth high-resolution images were used to compare the visual
interpretation of the LULC classification result map to improve the reliability of the overall
classification. Figure 4 shows the visual interpretation of the classification result map of
the study area in 2020 compared with the Google Earth high-resolution image. The four
generated land-cover types were highly similar to those found in the actual high-resolution
image and were, therefore, used as data for further analyses.
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4.2. LULC Change-Detection Results

Figure 5 shows the land cover change maps of the study area from 2000 to 2010 and
2010 to 2020. On the whole, the built-up area expanded from 2000 to 2020, mainly from
the main urban area. The forest showed some recovery in various parts of the region from
2000 to 2010, and a clear recovery trend was found from 2010 to 2020. Although cropland
showed some changes from 2000 to 2010, there are no obvious changes in the mountainous
areas of the northeast from 2010 to 2020, and the main changes are concentrated in the
outer areas of the main urban area.

Figure 6 shows, in detail, the land cover spatial transformation map of the study area
from 2000 to 2010 and 2010 to 2020. Combined with Figure 5, we find that urbanization
mainly transforms cropland, and this transformation is clear from 2000 to 2020. As the
capital city of North Korea, Pyongyang shows an obvious trend in built-up expansion, and
the cropland around the urban area that was originally used for agricultural production
has become urbanized. In addition, we found that the transition from cropland to forest
was clear from 2010 to 2020.
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In terms of space, the transformation mainly occurs at the edge of mountainous areas,
such as the east, northeast, and west, indicating terraced fields, which are one of the
agricultural characteristics of North Korea being restored to forest. This can be attributed
to the amendments to the North Korea Forest Law and the implementation of the “10-year
plan for forest restoration” [28].

From 2000 to 2010, the transformation from cropland to forest was not obvious; how-
ever, from 2010 to 2020, the implementation of the amended Forest Law began to show
distinct forest protection effects. Corresponding to the mountain agriculture terrace field,
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the strengthening of forest protection has led to the fact that the terraced field is no longer
an expanding form of agriculture, and many terraced fields have begun to be abandoned
or are not expanding. North Korea’s “10-year plan for forest restoration” afforestation
program started in 2013 and will plant about 6.5 billion trees by 2022 [28]. This is also
consistent with the trend in transformation from cropland to forest between 2010 and 2020.

Table 4 shows the rate of change in the area of each land-cover type from 2000 to 2010
and from 2010 to 2020. The built-up area increased from 8.26% to 9.49%, the cropland area
decreased from 66.68% to 61.31%, the forest area increased from 11.96% to 14.17%, and
waterbodies increased from 3.08% to 3.10%. Overall, this is consistent with the land-cover
change, and conversion trends are shown in Figures 5 and 6. Built-up areas and forests
both showed increasing trends, cropland showed a decreasing trend, and waterbodies did
not change significantly.

Table 4. Area change ratios of land-cover types in 2000–2010 and 2010–2020.

Land Cover Built-Up Cropland Forest Waterbodies

2000 to 2010

Built-up 8.26% 2.13% 0.02% 0.09%
Cropland 3.33% 66.68% 2.78% 0.20%

Forest 0.00% 1.32% 11.96% 0.00%
Waterbodies 0.09% 0.06% 0.00% 3.08%

Total (%) 100%

2010 to 2020

Built-up 9.49% 2.06% 0.05% 0.08%
Cropland 2.93% 61.31% 5.87% 0.07%

Forest 0.02% 0.56% 14.17% 0.01%
Waterbodies 0.06% 0.19% 0.02% 3.10%

Total (%) 100%

4.3. Landscape Pattern Change

To study the fragmentation and heterogeneity of landscape patterns, NP, LPI, LSI, and
SHEI were selected at the local level, whereas NP, PD, LPI, PLAND, and PAFRAC were
selected at the class level. As shown in Table 5, From 2000 to 2020, NP increased from
9304 to 16,538, indicating increasing fragmentation of the Pyongyang landscape. The LPI
decreased from 18.53% to 15.33%, indicating that the maximum patch area at the landscape
scale gradually decreased. The increase in SHEI from 0.61 to 0.71 indicates that the evenness
of the Pyongyang landscape increased, whereas the NP and LPI suggests that the landscape
fragmentation in Pyongyang also increased. The corresponding LSI and SHEI increased,
and heterogeneity, and evenness also increased.

Table 5. Landscape pattern changes at the local level in Pyongyang, North Korea.

Local Level Landscape Metrics

Year NP LPI LSI SHEI

2000 9304 18.53% 22.85 0.61
2010 11,559 17.88% 27.65 0.65
2020 16,538 15.33% 34.84 0.71

Table 6 shows the changes in landscape patterns in the study area from 2000 to 2020 at
the class level. Built-up area, cropland, and forest landscape patterns changed significantly,
whereas changes in waterbodies were not significant.

The NP of built-up areas increased from 5167 to 5829 and then decreased to 5768 from
2000 to 2020; although there was a decrease in NP from 2010 to 2020, it was not significant.
The increase in PD from 1.87% to 2.08% is also consistent with the increase in fragmentation.
PAFRAC decreased from 1.32 to 1.26, indicating that built-up areas were expanding in a
progressively regularized form.
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Table 6. Landscape pattern changes at the class level in Pyongyang, North Korea.

Class Level Class Metrics

Year Class NP PD LPI PLAND PAFRAC

2000 Built-up 5167 1.87% 1.72% 4.45% 1.32
2010 Built-up 5829 2.11% 3.19% 4.96% 1.34
2020 Built-up 5768 2.08% 4.07% 5.31% 1.26

2000 Cropland 2450 0.89% 18.53% 30.99% 1.28
2010 Cropland 2743 0.99% 17.88% 29.80% 1.32
2020 Cropland 5768 2.08% 15.33% 27.22% 1.32

2000 Forest 1324 0.48% 1.87% 5.64% 1.27
2010 Forest 2641 0.95% 2.53% 6.27% 1.30
2020 Forest 4464 1.61% 1.74% 8.54% 1.32

2000 Waterbodies 363 0.13% 1.22% 1.37% 1.37
2010 Waterbodies 346 0.13% 0.71% 1.43% 1.38
2020 Waterbodies 538 0.19% 0.62% 1.39% 1.32

The NP of cropland increased from 2450 to 5768, and PD increased from 0.89% to
2.08%, indicating that fragmentation was severe and had increased. The LPI decreased
from 18.52% to 15.33%, and PLAND decreased from 30.99% to 27.22%, indicating that
the cropland area gradually decreased, and fragmentation increased, which is consistent
with the LULC change detection discussed above in Section 4.2. The PAFRAC increased
from 1.28 to 1.32, indicating that the reduction in cropland area and fragmentation caused
cropland to become more complex in shape. Combined with the results shown in Figure 5,
this also indicates that forest recovery led to the spatial transformation of cropland, which
tended to exhibit fragmentation.

The NP of forests increased from 1324 to 4464, and PD increased from 0.48% to 1.61%,
indicating that fragmentation was severe and gradually increased. The LPI increased from
1.87% to 2.53% and then decreased to 1.74%, and the PLAND increased from 5.64% to
8.54%. The increase in PAFRAC (1.5%) indicates that the reclaimed forest from 2000 to 2010
was rehabilitated in multiple locations from 2010 to 2020, resulting in an increasing trend
in the overall forest area despite the decrease in the area of major patches. The increase in
PAFRAC (from 1.27 to 1.32) also indicates the spatial distribution and growth of forests,
resulting in a complex shape.

5. Discussion

Pyongyang, the capital city of North Korea, experienced pronounced changes, such
as city expansion and forest restoration, from 2000 to 2020. The main LULC changes
observed in Pyongyang are urban expansion and forest restoration. Both changes are
largely correlated with cropland conversion. Forest restoration primarily occurred between
2010 and 2020, with a focus on suburban and mountainous regions. This suggests that
terraced fields were converted to forests as a result of afforestation policies.

The spatial impacts of these changes have led to increased regional fragmentation,
with forest restoration and reduction in cropland being the primary drivers. From 2000 to
2010, the built-up area in Pyongyang exhibited fragmented increase, followed by a period
of stabilization from 2010 to 2020 with a slight decrease in the degree of fragmentation.
Conversely, during the same time period, the development of the main urban area of
Pyongyang became more compact, indicating that urban expansion is not the primary
factor affecting fragmentation.

Specifically, the percentage of the built-up area increased from 8.26% to 9.49%, with a
total increase of 1.26%. The spatial analysis of LULC changes revealed a clear trend of an
outward expansion of the built-up area in the main urban area. According to the Major
Statistical Indicators of North Korea [53], the total population of Pyongyang increased
from 2,777,000 in 2000 to 3,084,000 in 2020, and the urbanization rate increased from 59.412
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in 2000 to 62.381 in 2020. This is consistent with the growth trend of built-up areas and
expansion of the main urban area of Pyongyang. The cropland area decreased from 66.68%
to 61.31%, with a total decrease of 5.37%.

The forest cover increased from 11.96% to 14.17%, with a total increase of 2.21%. From
2000 to 2010, the conversion of cropland to forest was 2.78%, and that of forest to cropland
was 1.78%; the forest-to-cropland conversion was 1.32%. However, from 2010 to 2020,
cropland-to-forest conversion was 5.87%, whereas forest-to-cropland conversion was only
0.56%. This indicates that there was no significant forest-to-cropland conversion trend from
2010 to 2020, whereas a significant cropland-to-forest conversion was observed, and the
forest recovery trend was pronounced.

Corresponding to the spatial transformation map of LULC changes, the cropland
was converted to forest throughout Pyongyang between 2010 and 2020. According to the
North Korean Industrial Statistics [54], agricultural production in North Korea is a key
source of economic income, and the flat terrain areas in Pyongyang are well-suited for
the reclamation and expansion of cropland. As cropland serves as the main income and
livelihood of North Korea, deforestation and terracing are practiced [28].

North Korea has recently been focusing on enhancing forest protection [27], and
Pyongyang has a high capacity for economic development and policy implementation [55].
The formal enactment of the Forest Law in 1992, the additions and amendments to the
Forest Law in 2001 and 2005 [28], and the reported success of the afforestation industry
in North Korea in 2013 [56] are consistent with the observed LULC trends and the LULC
spatial transformation map.

A distinct change in the landscape pattern in Pyongyang was observed from 2000 to
2020. At the landscape level, NP increased from 9304 to 16,538, with a total increase of
7234, and LPI decreased from 18.53% to 15.33%, with a total decrease of 3.2%. Overall, NP
showed a distinct increasing trend, whereas LPI showed a decreasing trend, indicating
severe fragmentation. Cropland NP showed an increasing trend from 2450 to 5768, with a
significant area reduction in the largest patch. This could be attributed to the Forest Law
and the outward expansion of the main urban area in Pyongyang, which increased the
degree of cropland fragmentation.

Correspondingly, forest NP increased from 1324 to 4464, and forest fragmentation also
increased. Analysis of LSI and SHEI at the landscape level revealed that LSI increased from
22.85 to 34.84 and SHEI increased from 0.61 to 0.71—that is, the increase in heterogeneity
and evenness indicates the fragmentation trend of forest and cropland. At the class level,
PAFRAC decreased from 1.32 to 1.26 in built-up areas, increased from 1.28 to 1.32 in
cropland, and increased from 1.27 to 1.32 in forest land, indicating that the built-up area
had a simplified shape under human influence, whereas the shape of forest and cropland
tended to be complex.

In general, the outward expansion of the main urban area in Pyongyang during the 20
year study period led to the conversion of a portion of cropland to built-up land, and the
growth and expansion of the city during this period led to changes in the natural ecosystem
services of the area, resulting in a more fragmented landscape pattern. According to the NP,
LPI, LSI, and SHEI landscape metrics, Pyongyang showed a high degree of fragmentation,
and the heterogeneity tended to increase. The reduction in cropland and restoration
of forests had clear impacts on the landscape heterogeneity. In the landscape pattern
analysis at the class level, built-up areas were more aggregated, and the fragmentation and
heterogeneity of forest and cropland increased.

One limitation of this study was that, due to the relative inaccessibility of North
Korea, it was not possible to verify these findings on the ground. This same fact, however,
highlights the importance of the present study as one of the few ways of monitoring
land-use changes in inaccessible regions.
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6. Conclusions

In this study, we quantified the landscape pattern changes in Pyongyang from 2000 to
2020. Sample points were constructed using multi-source LULC products, and LULC clas-
sification was performed based on the random-forest algorithm and remote-sensing data.
The classification results were verified using confusion matrices and visual interpretations.
Based on the LULC result map, the landscape pattern was quantified and monitored using
landscape metrics. The landscape metrics used at the local level included NP, LPI, LSI, and
SHEI, and, at the class level, NP, PD, LPI, PLAND, and PAFRAC were used.

Spatial scale is one of the key factors in landscape ecology. The landscape pattern
depends on the scale, and the resolution, accuracy, and continuity of LULC used for analysis
can affect the monitoring results. Consistent and continuous LULC classification results
can stably monitor trends in landscape pattern changes without excessive fluctuations of
abnormal values. The results of the analysis show that forest restoration and a decrease in
cropland were mainly responsible for the intensification of fragmentation in Pyongyang’s
landscape, while the expansion of the city was not the main factor affecting fragmentation.

We observed that the development of Pyongyang has the following characteristics:

1. The flat ground areas have been fully utilized, allowing for ample room for future
development.

2. The main urban area has been developed in a compact manner, which is beneficial in
slowing down the trend of urban fragmentation.

3. The expansion of the main urban area has resulted in the conversion of surrounding
cropland into built-up areas, and making full use of the landscape resources of the
Taedong River.

In addition, there has been a noticeable restoration of forests in the eastern regionl
however, these tend to be dispersed and fragmented, which has adverse effects on the
ecological environment. However, simply understanding the trends of land-use change and
the trends of fragmentation in the landscape pattern is not sufficient. To make appropriate
sustainable development plans, it is necessary to understand the causes of LULC change.
The lack of literature and data due to political reasons in North Korea does not allow for an
analysis of the main drivers and causes of changes in space. In the future, analysis at the
spatial dimension or comparison with South Korea, which has a similar geography and
climate should be performed to fully explore the factors influencing the changes.
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