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Abstract: Accurate and efficient large-scale mapping of P. euphratica distribution is of great impor-
tance for managing and protecting P. euphratica forests, policy making, and realizing sustainable
development goals in the ecological environments of desert areas. In large regions, numerous types of
vegetation exhibit spectral characteristics that closely resemble those of P. euphratica, such as Tamarix,
artificial forests, and allée trees, posing challenges for the accurate identification of P. euphratica.
To solve this issue, this paper presents a method for large-scale P. euphratica distribution mapping.
The geographical distribution characteristics of P. euphratica were first utilized to rapidly locate the
appropriate region of interest and to further reduce background complexity and interference from
other similar objects. Spectral features, indices, phenological features, and backscattering features
extracted from all the available Sentinel-2 MSI and Sentinel-1 SAR data from 2021 were regarded as
the input for a random forest model used to classify P. euphratica in the GEE platform. The results were
then compared with the results from the method using only spectral features and index features, the
results from the method that only added phenological features, and the results from the method that
added phenological features and backscattering features by visually and quantitatively referencing
field-surveyed samples, UAV data, and high-spatial-resolution data from Google Earth Data and
Map World. The comparison indicated that the proposed method, which adds both phenological
and time-series backscattering features, could correctly distinguish P. euphratica from other types of
vegetation that have spectral information similar to P. euphratica. The rates of omission errors (OEs),
commission errors (CEs), and overall accuracy (OA) for the proposed method were 12.53%, 11.01%,
and 89.32%, respectively, representing increases of approximately 9%, 17%, and 13% in comparison
with the method using only spectral and index features. The proposed method significantly improved
the accuracy of P. euphratica classification in terms of both omission and, especially, commission.

Keywords: Populus euphratica distribution; large scale; geographic distribution characteristics;
phenological feature; backscattering feature; Sentinel-1/2

1. Introduction

Populus euphratica is a valuable germplasm resource in the oasis ecological zones of
semi-arid and arid desert areas, and it plays an irreplaceable role in maintaining ecological
balance in desert regions [1,2]. Accurate and efficient large-scale mapping of P. euphratica
distribution is of great importance for management and protection, policy making, and
realization of sustainable development goals in the ecological environments of desert
areas. Remote sensing techniques can be used to macroscopically and visually observe
the distribution of P. euphratica, so these techniques are the principal ways of mapping
large-scale P. euphratica distribution. Previous studies on P. euphratica recognition based
on remote sensing techniques mainly focused on small regions [3–6]. Su et al. used
airborne hyperspectral data to classify land cover in the Ejin Banner oasis, where the forest
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is dominated by P. euphratica [7]. Li et al. extracted the distribution of P. euphratica in
the Daliyabui oasis in the hinterland of the Taklimakan Desert from Sentinel-2 data [6].
Peng et al. used multisource remote sensing images to extract P. euphratica distribution
in the Tarim National Nature Reserve [2]. However, there are few studies on large-scale
P. euphratica distribution mapping. Due to the diversity of tree species in large regions, there
are many instances where different objects have the same spectrum or the same objects
have different spectra, as happens in the present case with P. euphratica, Tamarix, artificial
forests, and allée trees [6]. Therefore, the main difficulty in accurately extracting P. euphratica
distribution in a large area is that the spectra are so similar among these different types
of vegetation that it is hard to recognize P. euphratica accurately by depending only on the
spectra, texture, and orientation features.

Aiming to resolve this issue, we first applied the perspective of human cognition to
remote sensing. The basis of human recognition of specific objects is usually a combination
of the features of remote sensing images with geographic features and expert experience.
P. euphratica mainly grows along riparian zones with a corridor distribution. Therefore,
its geographic distribution features can be used to rapidly locate the growing areas of
P. euphratica and, thus, improve the efficiency and accuracy of P. euphratica recognition.
Secondly, vegetation phenology is widely used to improve classification accuracy due
to its unique characteristics [8–11], especially in crop classification [10–12]. Liu et al.
introduced crop phenology derived from Sentinel-2 NDVI time-series data to map large-
scale crops precisely and found that the classification results were improved [11]. Pan et al.
applied the crop proportion phenology index [13] to estimate the planting area for winter
wheat in Tongzhou and Shuyang based on time-series MODIS EVI data, and the results
revealed that combining crop phenological features can facilitate agricultural monitoring
and mapping [13]. It is well-known that phenology based on remote sensing technology
generally employs vegetation indices extracted from medium- and low-spatial-resolution
remote sensing data with a high temporal resolution; e.g., MODIS, the Landsat series, or
Sentinel-2 [14–17]. Therefore, some researchers have discussed the accuracy of phenological
findings derived from different vegetation indices. Experiments suggest that phenological
findings derived from the enhanced vegetation index (EVI) time-series data are more
realistic and accurate [17–19]. Kowalski et al. found that a phenology map produced
using the EVI performed better than the results from the normalized difference vegetation
index (NDVI) based on Landsat and Sentinel-2 data in temperate broadleaf forests [18].
Descals et al. (2020) discovered that the phenological results derived from time-series
Sentinel-2 EVI data were more accurate than those estimated using the NDVI, the green
chromatic coordinate (GCC), and the normalized difference phenology index (NDPI) in
the Arctic [19]. Therefore, time-series EVI data were employed in this study to characterize
land surface phenology and solve the problem of the confusion between P. euphratica and
other vegetation, including Tamarix, artificial forests, and allée trees.

As described above, the remote sensing data sources for phenology characterization are
mainly MODIS, Landsat, and Sentinel-2. Due to P. euphratica presenting a small recognition
target, Sentinel-2 data with 10 m spatial resolution were applied in this study. On the other
hand, synthetic aperture radar (SAR) has the capacity for all-weather monitoring, and it has
been proven that SAR backscattering with different wavelengths and polarization models
can contribute to improving accuracy in vegetation classification [11,20]. Therefore, time-
series Sentinel-1 SAR data were also employed in this study. As time-series Sentinel-1/2
data computation at a large scale requires considerable computing and storage resources,
the large-scale P. euphratica distribution was mapped by combining Sentinel-2 multispectral
data and Sentinel-1 SAR data in the Google Earth Engine (GEE) platform [21].

Taking account of the abovementioned considerations, a large-scale P. euphratica map-
ping method based on time-series Sentinel-2 multispectral data and time-series Sentinel-1
SAR data is proposed. Firstly, the geographic distribution characteristics of P. euphratica
were utilized to rapidly locate the region of interest (ROI). Secondly, a Savitzky–Golay (S-G)
filter [22] and linear interpolation were applied to reconstruct the Sentinel-2 EVI. The
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reconstructed EVI was then used to estimate land surface phenology. At the same time,
Sentinel-1 SAR data were averagely composited as monthly backscattering coefficient data.
Thirdly, the land surface phenology and monthly backscattering features, combined with
spectral features and the vegetation indices, were regarded as the input for a random
forest (RF) classification model used to generate the P. euphratica distribution map. The
second and third steps were processed in the GEE to reduce the computational, storage, and
data reprocessing burdens [21]. Finally, the results of the proposed method were compared
with the results of the method using only spectral features and vegetation indexes as input
features for the classification model to evaluate the performance of the proposed method.

2. Study Area and Datasets
2.1. Study Area

P. euphratica is mainly distributed along riparian zones and its distributions show
a corridor shape in the desert regions of western China, northern Africa, and southern
Europe [23]. Approximately 61% of global P. euphratica grows in China, of which 89% grows
in the Tarim River Basin (TRB) in Xinjiang [2,23]. Thus, the TRB was chosen as an example
to study large-scale P. euphratica distribution mapping. The TRB is the most extensive inland
basin in China, located between the Tianshan Mountains and the Kunlun Mountains in
Xinjiang province (Figure 1a). It ranges from 73◦24′18′′E to 96◦26′34′′E and from 34◦30′14′′N
to 43◦54′50′′N, with a total area of more than 400,000 km2. Its river system mainly consists
of the Tarim River, Yarkant River, Hotan River, Kongque River, Cherchen River, and Keriya
River. Its climate is a typical temperate continental climate with significant temperature
differences, low rainfall, and intense evaporation [24]. The average annual air temperature
is about 9–11 ◦C, yearly precipitation is approximately 50 mm, and the potential yearly
evaporation is up to 3000 mm [25,26]. The study area’s vegetation types mainly comprise
farmland, Tamarix, Alhagi, Phragmites, and forests dominated by P. euphratica [24,27].
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Figure 1. Location map of the study area. (a) Location map with the base map composed of a
Sentinel-2 false color image comprising band 8, band 4, and band 3; (b) sparse P. euphratica in
unmanned aerial vehicle (UAV) image and Sentinel-2 image in Bachu; (c) dense P. euphratica in UAV
image and Sentinel-2 image along Yarkant River riparian zone; (d) sparse–dense P. euphratica in UAV
image and Sentinel-2 image in Tarim Park.
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2.2. Datasets

Table 1 briefly describes all the data used in the study, which included Sentinel-2
multispectral image (MSI), Sentinel-1 SAR image, river vector, unmanned aerial vehicle
(UAV) image, and field-surveyed sample data. More detailed notes about the data selection
for P. euphratica ROI detection, mapping, and validation are provided below.

Table 1. Description of datasets.

Dataset Date Band Spatial
Resolution

Temporal
Resolution Usage

Sentinel-2
MSI

All the
available

data for 2021

B2, B3, B4, B8 10 m 5 days P. euphratica
distribution

mapping
B5, B6,

B7, B8A 20 m

Sentinel-1
SAR

All the
available

data for 2021
VV, VH 10 m 3 days

River system
vector data - - - - ROI

detection

UAV image 2021.10 B1, B2, B3,
B4, B5 7 cm - Validation

Field-
surveyed
samples

2021.10 - - - Validation

(1) ROI detection

River vector data were employed to rapidly locate the P. euphratica ROI, and they
are available from the National Cryosphere Desert Data Center (http://www.ncdc.ac.cn,
accessed on 18 December 2022) [28]. The TRB vector data were obtained free from the
National Tibetan Plateau Scientific Data Center (https://data.tpdc.ac.cn/zh-hans/data/d5
acb79d-8ffe-494e-8081-79938d2cb1fe/, accessed on 18 December 2022) [29].

(2) P. euphratica Mapping

In this study, all the available Sentinel-2 MSI and Sentinel-1 SAR data from 2021
were used for P. euphratica mapping, and they can be freely obtained in the GEE platform.
The employed Sentinel-2 MSI data included both Sentinel-2A and Sentinel-2B surface
reflectance. The data have a blue band (B2: 458–523 nm), a green band (B3: 543–578 nm), a
red band (B4: 650–680 nm), a near-infrared (NIR) band (B8: 785–900 nm), four red-edge
bands (B5: 698–713 nm; B6: 733–748 nm; B7: 773–793 nm; B8A: 855–875 nm), and two
short-wave infrared (SWIR) bands (B11: 1565–1655 nm; B12: 2100–2280 nm) [2]. The
Sentinel-2 MSI data were used to extract spectral features, index features, and phenological
features. Sentinel-1 dual-polarization C-band SAR provides a standard SAR strip map mode
(SM), interferometric wide swath (IW), extra-wide swath (EW), and a wave mode (WV).
IW is the primary acquisition mode for land observation and provides VV + VH dual
polarization. The VV and VH dual polarization data from the IW mode were applied to
extract backscattering features.

(3) Validation

We went to P. euphratica-growing regions, including Shaya, Bachu, the Tarim River
riparian zone, the Xiamale forest farm, and Zepu in the TRB, Xinjiang Province, from
14 October 2021 to 21 October 2021 to collect field-surveyed samples and UAV images. The
field-surveyed sample data included the longitude and latitude of the location, land cover
types, and vegetation types. The UAV images were obtained by launching Wu Inspire-2
UAV flights at 150 m flight heights in P. euphratica distribution regions. The UAV data had
a blue band (B1: 455–485 nm), a green band (B2: 550–570 nm), a red band (B3: 658–678 nm),
a red-edge band (B4: 712–722 nm), and an NIR band (B5: 820–860 nm) with a spatial
resolution of 7 cm. The field-surveyed samples and the UAV data were used to validate the

http://www.ncdc.ac.cn
https://data.tpdc.ac.cn/zh-hans/data/d5acb79d-8ffe-494e-8081-79938d2cb1fe/
https://data.tpdc.ac.cn/zh-hans/data/d5acb79d-8ffe-494e-8081-79938d2cb1fe/
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P. euphratica map of the study area. In addition, high-spatial-resolution images from Google
Earth Map and Map World provided by the National Platform for Common Geospatial
Information Service were also applied to assess the accuracy of the P. euphratica map.

3. Methodology

Progressive information extraction constrained by geoscience knowledge was adopted
here. Given the geographic distribution characteristics of P. euphratica, the river vector
data were first combined to rapidly locate the P. euphratica growing regions, thus avoiding
unnecessary computation and improving the efficiency and precision of classification. Then,
training samples were selected manually from the determined ROI. Subsequently, sensitive
features, including spectra, indexes, phenology, and time-series backscattering coefficients,
were designed based on all the available Sentinel-2 multispectral data and Sentinel-1 SAR
data from 2021 for the ROI. Finally, the random forest (RF) model provided in GEE was used
for training and to predict P. euphratica distribution with a parameter-tuning experiment.
The sequence by which the real ROI was first extracted and then the P. euphratica data were
extracted based on the real ROI was regarded as the progressive information extraction.
Figure 2 shows the method for the large-scale mapping of P. euphratica distribution.
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3.1. ROI Detection Based on Geographic Distribution Characteristics

As described above, P. euphratica is mainly distributed along the riparian zones in a
corridor shape, so the geographic distribution characteristics were utilized to rapidly locate
the real region of interest (ROI) to reduce the impact of other vegetation. Some studies
have suggested that more than 80% of P. euphratica trees are distributed within 3 km of the
Tarim River, and about 99% of P. euphratica trees are distributed within 10 km [2]. First, the
study area was divided into a 0.5◦ × 0.5◦ grid (Figure 3a). For the river vector data located
at the boundary of the grid, some P. euphratica would be missed. Therefore, a buffer zone
with 15 km of the river vector was built to solve the problem. Finally, the 0.5◦ × 0.5◦ grid
layer for the TRB was overlapped with the river buffer layer, and the grids containing the
river buffer were considered as the real ROI for P. euphratica (the green region in Figure 3b).
The area of the real ROI was a quarter of the original study area. ROI detection based on
geographical distribution characteristics can reduce computing time and the number of
other objects easily confused with P. euphratica and significantly improve the efficiency and
accuracy of large-scale P. euphratica mapping.
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3.2. Land Surface Phenology Estimation

All the available Sentinel-2 EVI data for 2021 were used to estimate the land surface
phenology. However, there was some noise in the time-series EVI due to the influence of
clouds and rain, so it was necessary to reconstruct the time-series EVI before estimating the
land surface phenology.

3.2.1. Time-Series EVI Reconstruction Based on S-G Filter

The annual time-series EVI was calculated using Equation (1) [30] after removing the
cloud-based noise from all the available Sentinel-2 MSI data for 2021.

EVI = G ∗ (ρn − ρr)

(ρn + C1 ∗ ρr − C2 ∗ ρb + L)
(1)

where ρb, ρn, and ρr are the surface reflectance of the Sentinel-2 blue band (B2), red band (B4),
and NIR band (B8); G = 2.5; C1 = 6; and C2 = 7.5.

The Savitzky–Golay (S-G) filtering method was proposed first by Savitzky and Go-
lay for the smoothing of time-series data and it is based on a least-squares convolution
method [14,22,31]. It has been widely applied to reconstruct time-series remote sensing
data and is regarded as a practical denoising method for time-series remote sensing im-
ages [14,32]. The S-G filter uses a sliding window size to convolve with the time-series
data. Then, the minimum root-mean-square error (RMSE) was obtained by performing a
weighted polynomial fitting. Equation (2) shows the calculation expression [31].

EVIk, f it =
1

2m + 1

i=m

∑
i=−m

CiEVIk+i (2)

where EVIk, f it is the fitted EVI with the S-G filter, EVIk+i is the original EVI, m is the size
of half a sliding window, 2 m + 1 is the size of a sliding window, and Ci is the filtering coef-
ficient calculated with a polynomial. The size of the sliding window was 2 m+ 1. Every EVI
in the window could be then expressed as EVI = (−m,−m + 1, . . . ,−1, 0, 1, . . . , m− 1, m).
If the n− 1 degree polynomial is used to fit the EVI in the window, there will be 2 m + 1
n-element linear equations (Equation (3)). Furthermore, when 2m + 1 ≥ n, Ci can be deter-
mined with the least-squares method [32]. Therefore, the size of the sliding window (m)
and the number of terms for the smooth polynomial (n) should be determined first, which
usually depends on specific situations. In this work, n = 3 and m = 7.

EVI f it = c0 + c1EVI + c2EVI2 + · · ·+ cn−1EVIn−1 (3)

The first m and last m data of the time-series EVI cannot be fitted, although they
participated in the fitting for the S-G filter. To solve this problem, we extended the an-
nual time-series data for 2021 to include the longer time series from 1 October 2020 to
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1 April 2022. In addition, the time-series EVI cannot be fitted with the S-G filter when
missing values exist. Therefore, a linear interpolation method was adopted to process
missing values before denoising. The detailed steps for the time-series EVI reconstruction
are described below:

(1) Time-series Sentinel-2 MSI data from 1 October 2020 to 1 April 2022 were reprocessed
by removing clouds or cloud shadows and then the time-series EVI was calculated
with Equation (1). Figure 4a displays the time-series EVI without the removal of
clouds or cloud shadows, and the blue points in Figure 4b show the time-series EVI
with the removal of clouds and cloud shadows. It can be seen that removing clouds
and cloud shadows made it possible to remove most of the noise but could cause
some missing values;

(2) A moving average window of 5 days was then applied to generate a 5 day mean
composited time-series EVI to reduce the computational cost of the following S-G
filtering. Orange points in Figure 4b display the 5 day mean composite time-series EVI;

(3) The linear interpolation method was used to estimate the missing values for the 5 day
mean composite time-series EVI to avoid an underdetermined equation occurring in
the S-G filtering. The yellow points in Figure 4b show where the missing values in the
5 day EVI were interpolated;

(4) The S-G filter was adopted to smooth the interpolated 5 day time-series EVI, and the
smooth and continuous time-series EVI was then fitted. Green points in Figure 4b
show the 5 day EVI obtained after S-G filtering;

(5) The daily EVI was finally fitted using the linear interpolation method. The green line
in Figure 4b indicates the daily EVI.
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Figure 4. Sketch maps of time-series EVI reconstruction. (a) All the available Sentinel-2 EVI data
without the removal of cloud/shadow; (b) reconstructed EVI.

3.2.2. Phenology Extraction

The land surface phenology, including the start of season time (SoS), end of season
time (EoS), length of the season (LoS), maximum value of annual time-series EVI data
(MaxV), date of maximum value (DoM), and amplitude of season (AoS), was subsequently
extracted based on the daily EVI in 2021. The SoS is the date when the EVI time series
showed a continuous upward trend, and the EoS is the date when the EVI time series
showed a continuous downward trend. This study used a threshold method [16,19] to
estimate the SoS and EoS. Generally, the date when the EVI increased to 50% of the annual
time-series amplitude was regarded as the SoS, and the date when the EVI decreased to
50% of the annual time-series amplitude was regarded as the EoS [19]. The EVI at the SoS
or EoS was expressed as the threshold µ, and µ was calculated with Equation (4). The LoS
is the length of the period from the SoS to the EoS; that is, LoS = EoS− SoS. The AoS is the
difference between the maximum EVI and the base EVI (BoS). The BoS was expressed as
the average of the minimum EVI on the left of the SoS and on the right of the EoS in this
study. The MaxV is the maximum EVI for the annual time-series data and represents the
vegetation greenness. The DoM is the date when the EVI reached the maximum.

µ = EVImax − EVImin ∗ 50% + EVImin (4)
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where EVImax and EVImin are the maximum EVI and the minimum EVI for the annual
time-series data in 2021, respectively.

3.3. P. euphratica Distribution Mapping via GEE
3.3.1. Random Forest Model

Sensitive features for P. euphratica were designed as feature inputs for the RF model
based on time-series Sentinel-2 MSI data and time-series Sentinel-1 SAR data in the GEE
platform. The RF algorithm provided by GEE was then used for model training based
on training samples to generate the classification model, and the P. euphratica distribution
result was finally produced. The key factors that determine the accuracy of a random forest
classifier include input features, training samples, the number of decision trees (n-tree), and
the number of features used for the binary tree of a node (m-try). In theory, the greater the
number of decision trees and features used for a node, the more complicated the RF model
is and the higher the RF classifier’s accuracy. Nevertheless, this also leads to higher costs in
terms of calculation time [33]. Different numbers for n-tree and m-try were debugged to
find the best parameters. Figure 5 illustrates the debugging results for the two parameters.
Figure 5a shows that the overall accuracy was the highest when the number of decision
trees was 125, while Figure 5b shows that the overall accuracy was the highest when the
number of features used for the binary tree of a node was 22. Therefore, the numbers for
n-tree and m-try were set to 125 and 22, respectively, in this study.
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3.3.2. Training Data

The characteristics of the P. euphratica forests appearing in the remote sensing images
were first analyzed by connecting the field investigation samples and the UAV aerial images
of the P. euphratica forests with Sentinel-2 MSI images. Figure 1b–d demonstrate the perfor-
mances for sparse P. euphratica forest, dense forest, and sparse–dense forest, respectively,
with the Sentinel-2 MSI and UAV images. To make the vegetation types that could be easily
confused with P. euphratica clearer, some training data were first generated randomly to
predict a preliminary result. Figure 6 shows some objects easily misclassified as P. euphratica
forests. It was found that allée trees, urban green land, vegetation in wetlands, and some
farmlands could be easily misclassified as P. euphratica forests by visual comparison. There-
fore, when selecting negative samples, it was necessary to focus on allée trees, urban green
land, vegetation in wetlands, and farmland. Only pure pixels of P. euphratica were selected
to avoid pixels near the boundaries of the P. euphratica forests. A total of 5755 samples were
collected for this study, including 2438 positive and 3317 negative samples.
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3.3.3. Sensitive Features for P. euphratica

Spectral features, indices, phenological features, and backscattering features were
designed as sensitive features for P. euphratica in this study. The spectral features included
the surface reflectance of the blue band (B2), green band (B3), red band (B4), NIR band (B8),
and four red-edge bands (B5, B6, B7, B8A) from the Sentinel-2 MSI data. Some indices
calculated with Sentinel-2 spectral bands were also used in this study to enhance the
information for classification, including the NDVI [19], EVI, and normalized difference
water index (NDWI) [34]. The widely used vegetation indexes NDVI and EVI were chosen
for this study. However, since P. euphratica trees grow along riverbanks and some grow
in shallow water in rivers or lakes, the NDWI was also used as an input feature. As
Section 3.2 described, the SoS, EoS, LoS, DoM, and AoS were designed as phenological
features. As phenology extraction involves annual time-series EVI S-G filtering and linear
interpolation with a 10 m spatial resolution, the amount of data and computation required
were tremendous at a large scale. The estimated phenological features were first exported
to ASSETS (a cloud disk assigned to a user) in the GEE platform to avoid problems; e.g.,
running out of memory or calculation over time. All the available VV and VH for the
Sentinel-1 SAR data for each month were averaged as the monthly VV and VH data in 2021.
The monthly VV and VH were designed as backscattering features in this study.

3.4. Assessment

The field-surveyed samples and randomly generated samples were regarded as vali-
dation samples for the assessment of the precision of the proposed method in the work.
Figure 7 displays the distribution of randomly generated samples, field-surveyed samples,
and UAV data. A stratified random sampling method was used to generate validation sam-
ples automatically. Adding 302 field-surveyed samples, a total of 1535 validation sample
data were finally generated, including 702 P. euphratica samples and 833 negative samples.
UAV data and high-spatial-resolution data from Google Earth Map and Map World were
also employed as reference data to quantitatively assess the precision of the results using
the commission error (CE), omission error (OE), and overall accuracy (OA) [33]. It was
assumed that the number of samples correctly identified as P. euphratica was N11, that the
number of samples correctly classified as non-Populus euphratica was N22, that the number
of real P. euphratica samples misclassified as others was N21, and that the number of samples
wrongly predicted as P. euphratica was N12. The expressions for the CE, OE, and OA rates
for P. euphratica are described below.
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Figure 7. Distribution map for validation samples. (a) Validation samples in the study area; (b) field-
surveyed samples in Zepu; (c) field-surveyed samples along the Yarkant River riparian zone; (d) field-
surveyed samples in Shaya; (e) field-surveyed samples in Tarim Park.

Commission error (CE): N12/(N11 + N12), the ratio of wrongly predicted P. euphratica
samples to the total number of samples classified as P. euphratica in the results [33];

Omission error (OE): N21/(N11 + N21), the ratio of real but undetected P. euphratica
samples to the total number of authentic P. euphratica samples [33];

Overall accuracy (OA): (N11 + N22)/(N11 + N21 + N12 + N22), the ratio of correctly
classified samples to the total number of samples [33].

4. Results and Analysis
4.1. P. euphratica Phenology Analysis

Figure 8h displays Sentinel-2 and UAV images, as well as high-spatial-resolution
images from Google Earth Map and Map World, of P. euphratica, two kinds of farmland,
allée trees, Tamarix, urban green land, and vegetation in wetlands. It shows that the
appearance of P. euphratica in the Sentinel-2 images was very similar to that of the other
kinds of vegetation, except for cotton land (farmland 2). It was difficult to correctly identify
P. euphratica using only spectral and index features. The mean values of the selected regions
(shown as yellow polygons in Figure 8h) were used to show the EVI phenological curves of
the different vegetation types in 2021, as illustrated in Figure 8a–g. It can be seen that the
SoS of P. euphratica was 20 April, the EoS was 1 October, the LoS was 163 days, the DoM
was 28 May, and the AoS was 0.203. Li et al. determined that the SoS was in late April
and the EoS was in October when using time-series Global Land Surface Satellite (GLASS)
LAI to analyze the phenology of P. euphratica in the upper reaches of Tarim River [32]. Our
results are well in line with the results of Li’s team. The DoM for P. euphratica was much
earlier than that for other vegetation types, except for urban green land; for example, it was
nearly two months earlier than those for farmland and Tamarix and more than one month
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earlier than those for allée trees and vegetation in wetlands. The DoM for P. euphratica was
only 6 days earlier than that for urban green land, but its SoS and EoS were approximately
40 days and 25 days later than those for urban green land. The EoS for P. euphratica was
nearly a half a month earlier than for other vegetation types, except for urban green land,
and it was 50 days later than for urban green land. The results indicated that phenological
characteristics could be used to distinguish P. euphratica from other types of vegetation with
which it is easily confused.
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Figure 8. Phenological curves for different types of vegetation: (a) P. euphratica; (b) farmland 1;
(c) farmland 2; (d) allée trees; (e) Tamarix; (f) urban green land; (g) vegetation in wetlands.
(h) Sentinel-2 images, UAV images, and high-resolution images from Google Earth Map or Map
World for the different types of vegetation in (a–g); yellow polygons are the selected regions.

4.2. Performance Analysis of Specific Features
4.2.1. Importance Analysis of Features

RF models can show the importance of input features by assigning a score, so the
importance of the input features for classification was used to compare their performance.
To make the importance scores of these features easier to understand, they were first
normalized, and the sum of the normalized data was limited to 1. Figure 9 shows the
normalized importance of the input features for the RF model. The differences between
the scores for these 40 features were small, and the scores for 37 features were within the
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range [0.02, 0.03]. This indicated that all the used features were important for classification.
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A total of 40 input features were used in the model, and the average importance score
was 0.025. Therefore, features with importance scores greater than 0.025 were considered
more important for the classification of the model than the others. There were 18 features
with scores greater than 0.025, including 2 spectral features (Sentinel-2 band 5 and band 2),
the NDWI, 4 phenological features (AoS, SoS, EoS, and LoS), and 11 SAR backscattering fea-
tures (Sentinel-1 monthly mean VV data for April, May, July, and August 2021 and monthly
mean VH data for April, May, June, July, August, September, October, and December 2021).
Among these features, the two spectral and four phenological features had relatively higher
scores than the backscattering features, and all of them were ranked in the top ten. The re-
sults suggested that the spectral and phenological features exerted a significant influence on
the extraction of the distribution of P. euphratica forests and that incorporating indices and
backscattering features could further enhance the classification precision of the RF model.
When classifying P. euphratica, the Sentinel-2 red-edge band (band 5) and blue band among
the spectral features, the NDWI among the indices features, the phenological features, and
the VH polarized backscattering features for the Sentinel-1 SAR satellite data—particularly
the VH polarized data obtained during August and December—exhibited higher degrees
of sensitivity in recognizing P. euphratica.

4.2.2. Comparison Analysis

In order to explain the performance of the phenological features and backscattering
features in large-scale P. euphratica mapping, three experiments were carried out with
three different sets of input features, holding the other parameters the same. Table 2
listed briefly input features for the three experiments. The input features of experiment
one were only the spectral features and indices, which were described in Section 3.3.3 in
detail. Experiment two added phenological features to the spectral features and indices.
Experiment three employed the method proposed in this paper, and it added phenological
features and backscattering features to the spectral features and indices. The results of the
three experiments were then compared visually.

Table 2. Input features for the three experiments.

ID Input Features

Experiment one Spectral features and indices
Experiment two Spectral features, indices, and phenological features
Experiment three
(the proposed method) Spectral features, phenological features, and backscattering features
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Figure 10 shows the P. euphratica distributions obtained in experiment one, experiment
two, and experiment three in the study area. It demonstrates that the P. euphratica distri-
bution in experiment one was more extensive than that in experiment two, and that in
experiment two was also more extensive than that in experiment three; these distributions
were mainly located in the regions shown as yellow rectangles in Figure 10a. It can be seen
that the land cover in these regions is mainly farmland, urban land, and wetlands, with
fewer P. euphratica trees. The extra P. euphratica distributions obtained in experiments 1
and 2 were not real P. euphratica. The visual comparison suggested that only the addition of
phenological features could solve the issues concerning other vegetation being misclassified
as P. euphratica, at least to a certain degree, but the addition of phenological features and
backscattering features significantly contributed to better identification of P. euphratica trees
and the ability to distinguish them from these other types of vegetation.
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Figure 10. Results of experiment one, experiment two, and experiment three. (a) Sentinel-2 false
color image of the study area, the yellow box represents the extra P. euphratica distribution obtained
in experiment one and experiment two compared with experiment three; (b) results of experiment
one; (c) results of experiment two; (d) results of experiment three.

The detailed maps for the three experiments were visually compared to further an-
alyze the performance of the phenological and backscattering features. Figure 11 dis-
plays the detailed maps for experiment one, experiment two, and experiment three for
regions without P. euphratica distribution. Experiment one misclassified some urban
green land (Figure 11a), vegetation in wetlands (Figure 11b), and farmland and allée trees
(Figure 11c) as P. euphratica. Experiment two, with only phenological features added, dra-
matically reduced misclassification for some urban green land, farmland, and Allée trees, as
Figure 11a,c show, and it slightly reduced misclassification for some vegetation in wetlands,
as Figure 11b shows. Experiment three, however, with backscattering features also added,
further reduced misclassification compared to experiment two, especially for vegetation
in wetlands. Moreover, experiment three, with the addition of phenological features and
backscattering features, significantly improved identification of P. euphratica and reduced
misclassification of these other types of vegetation in comparison to the results for experi-
ment one. The compared results indicated that phenological features performed well in
distinguishing P. euphratica from some urban green land, farmland, and allée trees, but
the backscattering features performed better than the phenological features in distinguish-
ing P. euphratica from some vegetation in wetlands. Therefore, adding phenological and
backscattering features can effectively reduce misclassification errors involving P. euphratica
and other vegetation.
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Figure 12 shows detailed maps of the experiment one, experiment two, and experi-
ment three in areas that were presented as mainly consisting of P. euphratica. Figure 12a
shows a visual comparison of generally dense P. euphratica forests. It demonstrates that
dense P. euphratica forests were correctly predicted in these three results. However, some
sparse P. euphratica forests were not detected in experiment one but were detected in experi-
ments 2 and 3 (as the purple ellipse shows in Figure 12a). As the yellow ellipses show in
Figure 12a, some farmland and grassland were misclassified as P. euphratica in the results
from experiment one, while only a minority of these types of vegetation were misclassified
as P. euphratica in the results from experiment two, and they were all correctly identified in
the results from experiment three. Figure 12b displays a visual comparison of P. euphratica
and farmland. There are large areas of farmlands in Figure 12b. Some farmland areas were
misclassified as P. euphratica in experiment one, and a few were misclassified as P. euphratica
in experiment two, but they were correctly predicted in experiment three (as shown by the
yellow ellipses in Figure 12b). Figure 12c shows a visual comparison of sparse P. euphratica
forests. The comparison results revealed that only adding phenological features made it
possible to detect P. euphratica in sparse forests, as did adding phenological features and
backscattering features, but that adding phenological features and backscattering features
made it possible to distinguish P. euphratica from farmland more effectively than only
adding phenological features.
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for a sparse forest.

The results of the visual comparison revealed that the method used in experiment
three could not only correctly distinguish P. euphratica from other types of vegetation but
could also detect P. euphratica well in sparse forests. In conclusion, the method proposed
in this paper with phenological and backscattering features as input for the RF model
performed much better than the method with only spectral features and index features.

4.3. Validation

Table 3 shows the confusion matrix for the precision validation of experiment one,
experiment two, and experiment three. It was generated by referencing the field-surveyed
samples, UAV images, and high-spatial-resolution images from Google Earth Map and Map
World. The CE, OE, and OA rates for experiment one, experiment two, and experiment three
were finally calculated from the confusion matrix (Table 3), as listed in Table 4. The method
using only spectral data and indices misclassified some farmland, allée trees, urban green
land, and vegetation in wetlands as P. euphratica, and its OE and CE reached higher than 21%
and 28%, respectively, while its OA was only 76%. The OE, CE, and OA rates for the method
with the addition of phenological features were 13.25%, 19.34%, and 84.43%, respectively,
which were increases of approximately 8%, 9%, and 8% in comparison to the results for
experiment one. The OE, CE, and OA rates for the method proposed in this paper were
12.53%, 11.01%, and 89.32%, respectively, which were increases of approximately 1%, 8%,
and 5% in comparison to the results for experiment two and of approximately 9%, 17%, and
13% in comparison to the results for experiment one. The results indicated that only adding
phenological features could reduce not only omission errors but also commission errors,
while adding backscattering features could further improve the classification accuracy
for commission. Therefore, the phenological and backscattering features adopted in the
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proposed method had good effects on P. euphratica classification at a large scale, and they
significantly improved the accuracy for large-scale P. euphratica distribution mapping.

Table 3. Confusion matrix for experiment one, experiment two, and experiment three. P.E., P. euphratica;
NON, non-P. euphratica.

Experiment One Experiment Two Experiment Three
P.E. NON P.E. NON P.E. NON

Reference
Data

P.E. 553 217 609 146 614 76
NON 149 616 93 687 88 757

Table 4. Accuracy rates of experiment one, experiment two, and experiment three.

Experiment CE (%) OE (%) OA (%)

Experiment one 28.18 21.23 76.16
Experiment two 19.34 13.25 84.43
Experiment three (the proposed method) 11.01 12.53 89.32

5. Discussion

The results of the analysis of the features indicated that all the spectral features,
indices, phenological features, and backscattering features used played important roles
in the classification of P. euphratica. The spectral features and phenological features had
significant influences on the extraction of P. euphratica forests, and incorporating indices
and backscattering features further enhanced the classification precision. Sentinel-2 band
5 and band 2 were the spectral features most sensitive to P. euphratica. Previous studies
have found that Sentinel-2 band 5 responds best among the red-edge bands for vegetation
observation [11,35]. Regarding spectral indices, the NDWI was more sensitive than the
NDVI and EVI in extracting P. euphratica. The main reason was that P. euphratica trees mainly
grow along riverbanks, and some even grow in water. The NDVI and EVI are often the
preferred indices for vegetation classification. However, perhaps due to the incorporation of
various vegetation-related features in this study, such as red-edge bands and phenological
characteristics, the importance of the NDVI and EVI was relatively lower compared to the
NDWI. The selected phenological features, including the SoS, EoS, LoS, and AoS, were
highly sensitive in the extraction of P. euphratica. Compared with the results obtained when
only using spectral data and indices, the OE, CE, and OA rates obtained with the method
involving only the addition of phenological features were improved by approximately 8%,
9%, and 8%, respectively. This indicated that the accuracy of P. euphratica classification in
terms of omission and commission errors could be improved by about 8% after adding
phenological features. It was found that the phenological characteristics for the different
types of vegetation were unique, as discussed in Section 4.1. Therefore, the inclusion of
phenological features can improve the classification accuracy for vegetation to a certain
extent. Some other studies have also pointed out that phenological features can effectively
improve the accuracy of vegetation classification [36,37]. In terms of backscattering features,
Sentinel-1 SAR VH polarization data were more sensitive than VV polarization data for
P. euphratica extraction. With the addition of backscattering features and phenological
features, the OE, CE, and OA rates for P. euphratica extraction were improved by about 1%,
8%, and 5%, respectively. It can be concluded that backscattering features improved the
overall accuracy by approximately 5%, especially for P. euphratica commission, while they
had no significant effect on P. euphratica omissions. Blaes et al. revealed that optical remote
sensing data make the dominant contribution to mapping accuracy, and SAR data can be
used to further enhance mapping accuracy by over 5% by comparing optical images with
SAR data [17]. Therefore, it can be inferred that the precision of distribution mapping of
P. euphratica in large areas can be substantially enhanced by incorporating phenological
and backscatter features, as introduced in this study.
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The comparison and validation results suggested that the proposed method could
significantly improve the accuracy of P. euphratica classification in terms of omission and,
especially, commission. The improvement in the OE rate was much lower than for the
CE rate, which was mainly caused by the scale effect with remote sensing images. Figure 13
shows the mapping results for P. euphratica forests with different densities; on the left is the
UAV image, and on the right is the result with 10 m spatial resolution. The P. euphratica
trees in the Sentinel-2 image of the dense forest were ideally classified (Figure 13b,c), but
the P. euphratica trees in the Sentinel-2 image of the very sparse forest were not detected
(Figure 13a,b). The reason for this was that the crowns of P. euphratica trees are so tiny
that they present very mixed pixels in remote sensing data with 10 m spatial resolution
when P. euphratica is distributed very sparsely. Combining higher-spatial-resolution remote
sensing data, such as that from SPOT-5/6 or Gaofen-1/2, can improve sparse P. euphratica
detection. The geographical distribution characteristics of P. euphratica, phenological fea-
tures, and backscattering features were utilized to greatly reduce the interference from
other vegetation types, but a few regions were still misclassified as P. euphratica. Most of
the isolated misclassified pixels could be treated as noise resulting from the pixel-based
classification method and could be removed through the post-classification process.
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Although the proposed method was studied by taking the TRB as an example, it could
be applied to map P. euphratica distributions in larger regions based on subzones, such
as at the national or global scales, due to the discontinuities of P. euphratica distributions.
It can adapt the phenological differences for different regions and ensure the accuracy
of P. euphratica distribution mapping in larger regions. To prove the feasibility of our
proposed method for subzone concepts, we plan to conduct mapping experiments involving
P. euphratica distributions at the national or global scales in the future.

6. Conclusions

Due to the difficulties of large-scale P. euphratica distribution mapping, a new method
was proposed in this paper. The geographical distribution characteristics of P. euphratica
were first utilized to rapidly locate the real ROI, and then spectral features, indices, phe-
nological features, and backscattering features derived from all the available Sentinel-2
MSI and Sentinel-1 SAR data for 2021 were used as the input for an RF model to classify
P. euphratica in the GEE platform. The results were finally compared through visual and
quantitative evaluation with the results for the method using only spectral features and
indices and for that only using phenological features.

(1) The geographical distribution characteristics of P. euphratica growing along riverbanks
in a corridor shape were used to rapidly locate the real ROI based on river vector data.
Then, the complexity of the background and interference from similar objects could
be significantly reduced;

(2) The spectral features and phenological features made dominant contributions to the
accurate extraction of P. euphratica, and adding indices and backscattering features
could further enhance the classification precision. Phenological features could enhance
the accuracy of P. euphratica classification in terms of omission and commission errors
by about 8%. Adding backscattering features made it possible to further improve the
accuracy of P. euphratica commission by approximately 8% while having little effect
on P. euphratica omissions;

(3) The method of adding phenological and time-series backscattering features made it
possible to correctly distinguish P. euphratica from other vegetation types that have
similar spectral features to P. euphratica; e.g., some farmland areas, urban green land,
Tamarix, allée trees, and vegetation in wetlands;

(4) The proposed method’s OE, CE, and OA rates were 12.53%, 11.01%, and 89.32%,
respectively, which represented increases of approximately 9%, 17%, and 13% in com-
parison to the method using only spectral features and indices. It greatly improved
the accuracy of P. euphratica classification in terms of both omission and, especially,
commission. The increased OE rate was much lower than the CE rate, which was
mainly due to the scale effect associated with remote sensing images.
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