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Abstract: Due to the limitations of current technology and budget, as well as the influence of various
factors, obtaining remote sensing images with high-temporal and high-spatial (HTHS) resolution
simultaneously is a major challenge. In this paper, we propose the GAN spatiotemporal fusion model
Based on multiscale and convolutional block attention module (CBAM) for remote sensing images
(MCBAM-GAN) to produce high-quality HTHS fusion images. The model is divided into three
stages: multi-level feature extraction, multi-feature fusion, and multi-scale reconstruction. First of
all, we use the U-NET structure in the generator to deal with the significant differences in image
resolution while avoiding the reduction in resolution due to the limitation of GPU memory. Second,
a flexible CBAM module is added to adaptively re-scale the spatial and channel features without
increasing the computational cost, to enhance the salient areas and extract more detailed features.
Considering that features of different scales play an essential role in the fusion, the idea of multiscale
is added to extract features of different scales in different scenes and finally use them in the multi loss
reconstruction stage. Finally, to check the validity of MCBAM-GAN model, we test it on LGC and
CIA datasets and compare it with the classical algorithm for spatiotemporal fusion. The results show
that the model performs well in this paper.

Keywords: multi-scale; convolutional attention module; spatiotemporal fusion; remote sensing
images; U-NET

1. Introduction

The continuous development of Earth observation technology promotes the increasing
demand for high-temporal and high-spatial (HTHS) remote sensing images [1], which
are mainly used in urban resource monitoring [2], crop and forest monitoring [3], scene
classification [4], surface object detection and segmentation [5,6], carbon sequestration
modeling [7], crop yield prediction [8], and disaster monitoring [9]. However, due to the
limitations of current technology and financial budget, it is difficult to obtain simultaneous
remote sensing images with HTHS requirements using a single satellite product. To solve
this problem, we now combine satellite data from multiple platforms to obtain HTHS
images [10]. For example, combining remote sensing images from the high-resolution
Landsat and moderate-resolution imaging spectroradiometer (MODIS), the access time of
the Landsat series satellites [11] is typically 16 days, and the spatial resolution is 30 m. Such
remote sensing images can be used mainly in precision agriculture, land cover classification,
and other research areas. The period during which MODIS acquires remote sensing images
with low spatial resolution sensors is only one day, and the spatial resolution ranges from
250 to 1000 m [12]. Such images can provide daily remote sensing observations, but it is
difficult to observe the very heterogeneous surface changes.
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The development of deep learning in the field of computer vision has provided a solid
foundation for research in spatiotemporal fusion, so a large number of fusion algorithms
based on deep learning have been proposed by researchers. Most of the proposed fusion
algorithms are based on the deep convolutional neural network (CNN) model. However,
due to the experiential nature of the convolutional kernel, contextual information can only
be partially obtained during the reconstruction process. Subsequently, the generative
adversarial network (GAN) [13] achieved remarkable results in image enhancement [14],
image inpainting [15], and super-resolution reconstruction [16], and gradually applied
them to the field of remote sensing images. For example, many spatiotemporal fusion mod-
els have been proposed: SRGAN [16], STFGAN [17], GANSTFM [18], CycleGANSTF [19],
etc. Although GAN-based spatiotemporal fusion has improved the quality of fusion im-
ages, there are still the following problems: (1) The dependence of input image data on
time sequence. (2) The characteristics of time and space dimensions are vastly different.
Features are complicated. (3) The previous model increases the computation amount of
the model when an attention module is added, which increases the running time of the
model. (4) Most loss functions ignore image features and visual losses, so the final recon-
struction effect does not reach the expected value. This article is committed to solving these
existing problems.

In this paper, we design a novel MCBAM-GAN model for spatiotemporal fusion and
fully consider the above problems. This model is divided into three stages: multi-level
feature extraction, multi-feature fusion, and multi-scale reconstruction. In the genera-
tor, we use the U-NET network model and add a convolutional block attention module
(CBAM) [20], which can extract the texture features of the image multi-dimensionally and
avoid the problem of gradient disappearance and considerable computation to ensure the
robustness of the model. Our main contributions are as follows:

1. MCBAM-GAN the model of spatiotemporal fusion consists essentially of an encoding-
decoding structure. Firstly, the generator part uses the U-NET to deal with the vast
resolution difference. The input image is a pair of coarse and fine images. Three
encoders are used to completely extract the multi-level features of coarse and fine
images. Secondly, the CBAM module and the multi-scale idea are added to the
encoder to completely extract detailed features to provide a good foundation for
the fusion and reconstruction phase, and the model feature representation is further
improved through multi-level feature information. Finally, the multi loss function
is used to calculate the accuracy of the image so that a high-quality HTHS remote
sensing image can be reconstructed. This structure improves the feature learning
ability and has strong generalization.

2. The CBAM module is added to the generator. The core idea of this module is to focus
on the characteristics of the channel and spatial axis, respectively, and to improve
the meaningful characteristics of the channel and spatial axis dimensions by sequen-
tially applying the channel and spatial attention modules. The computational cost is
almost negligible. The whole model reduces the number of parameters and saves
computation time.

3. The model proposed in this paper MCBAM-GAN is compared with the classical
spatiotemporal fusion model on the Coleambally Irrigation Area (CIA) dataset and
the lower Gwydir catchments (LGC) dataset, and our model achieves good results.

The rest of the papers are arranged as follows. In Section 2 related works on spa-
tiotemporal fusion of remote sensing images are summarized and discussed. In Section 3,
we detail an overview of the MCBAM-GAN model framework, generator, discriminator,
CBAM module, etc. In Section 4, we perform ablation experiments and experimental
analysis to verify the effectiveness of the MCBAM-GAN model. In Section 5, we summarize
this paper.



Remote Sens. 2023, 15, 1583 3 of 24

2. Related Works

In recent years, researchers in the field of remote sensing have proposed many fusion
algorithms, which can be divided into five categories: decomposition-based methods,
weight function-based methods, Bayesian-based methods, hybrid methods, and learning-
based methods.

2.1. Decomposition-Based Methods

The decomposition-based methods [21–24] assume that the land cover does not change
between the input and predicted images. Such models based on line-based decomposition
are the first to perform spatiotemporal fusion.The principle of the algorithm is simple and
easy to use. However, due to the low resolution of the coarse image, it is impossible to
accurately decompose each type of surface feature, and it is impossible to obtain good
results in different areas with many land cover types. This method is suitable for scenes
with fewer land cover types. This method mainly uses linear spectral mixing theory
to determine the value of fine pixels by analyzing the composition of coarse pixels and
decomposing these coarse pixels.

2.2. Weight Function-Based Methods

The weight-based method is a simple model theory that does not need to learn many
parameters from a lot of external data and is therefore fast and stable in most cases.
Gao et al. [25] first proposed a Spatio-temporal adaptive reflection fusion model (STARFM)
based on a weighting function. STARFM uses a weighting function to predict pixels.
The weighting function is calculated from the spectral differences between the data and
the information of the neighbouring pixels. The enhanced STARFM (ESTARFM) [26]
considers the difference between mixed pixels and pure pixels to modify the weight of
STARFM, solve the problem of heterogeneous landscapes, and enhance the ability to
monitor seasonal landscape changes. However, it cannot accurately predict the objects
whose shape changes with time and the boundaries of fuzzy changes. STAARCH [27]
monitors change points from dense time series of coarse images to identify spatial and
temporal changes in landscape at a better level of detail. The algorithm SADFAT [28]
modifies STARFM and improves the accuracy of heterogeneous landscape prediction by
reducing the changes in thermal radiation on fine- and coarse-resolution images through
conversion coefficients. However, the algorithm must specify the window size and number
of land cover categories and ignores mismatches between Landsat and MODIS pixels. Most
weight-based methods are empirical functions that rely on the pixel information of other
input images, so it is difficult to extract accurate information from adjacent images when
there are too many land cover types or abnormal changes, such as sudden changes in land
cover, and the fusion accuracy is low. Moreover, this kind of algorithm cannot reconstruct
details because its weighting model is similar to a low-pass filter, which tends to smooth
some details.

2.3. Bayesian-Based Methods

The focus of the Bayesian-based fusion method is on modelling the relationship
between the observed image and the image to be predicted, taking full advantage of the
temporal and spatial relationship, which reduces the prediction accuracy when the type of
land cover changes. This method is suitable for scenarios that require high model flexibility.
In 2013, the BME algorithm [29] was proposed, which mainly uses the Bayesian maximum
entropy mechanism to avoid the complexity and uncertainty caused by image scaling, solve
multi-scale problems, and capture fine spatial structure, but it can generate noise during
splicing. The NDVI-BSFM algorithm [30] uses constrained decomposition of observation
data to obtain more spatial detail and is less dependent on pending prediction data. STS [31]
can perform different types of fusion tasks by creating relational models and inverse fusion
that is not limited by the number of remote sensing sensors. Bayesian fusion [32] is based
on an observational model and a Gaussian distribution. The model framework is flexible,
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and there is no limit on the number of high-resolution input images. It must effectively
extract mixed spectra and limit the potential of retrieval spectra.

2.4. Learning-Based Methods

The learning-based algorithm establishes the appropriate relationship based on the
structural similarity of fine and coarse-resolution images, and trains the model using
existing datasets to find the relationship between spatiotemporal images. This kind of
algorithm can capture the most important features in prediction, including the change of
land cover type. However, due to the large scale difference between the coarse and fine
images, it cannot accurately maintain the shape of the prediction object, especially that
of the object with irregular surface, which is suitable for scenes with large data samples
and a long time period. We divide learning-based algorithms into two categories: shallow
learning and deep learning. The typical representation for shallow learning method is
sparse representation or dictionary learning. For example, the spatiotemporal reflectance
fusion model (SPSTFM) [33], one-pair learning [34], EBSPTM [35], and other algorithms
have the advantage that they can effectively handle phenological changes and land cover
changes, but the calculational cost is large.

2.5. Hybrid Methods

The hybrid spatio-temporal fusion method combines the advantages of the decompo-
sition method, Bayesian theory, weight function, and learning method to achieve a better
fusion effect. This method mainly deals with the change of different land cover types,
which improves the generalization ability of the model. However, at the same time, it
also increases the complexity of the algorithm, which limits its large-scale application.
This method is suitable for scenarios with high prediction accuracy and unlimited model
complexity. For example, the Spatio-temporal reflection model STRUM [36] proposed
in 2015 fuses the changing pixels in the coarse image by using reflectance separation,
Bayesian framework, and other methods. In order to obtain the reflectance changes of
each type of surface feature information, the model has the advantage of being sensitive
to time changes and has good performance in limited high-resolution image data, while
the disadvantage is that it cannot extract detailed features very well. STIMFM [37] fusion
algorithm adopts spectral decomposition and Bayesian framework, which can achieve high
calculation efficiency and image generation accuracy but needs to solve the land cover
prediction problem over a long period. flexible spatio-temporal data fusion (FSDAF) [38]
combines the two methods of hybrid weighting. The algorithm computes the spectral
change of the uniform region, predicts the spatial change by the interpolation algorithm,
and finally obtains the high-resolution image using the weighted sum of the spectral and
spatial features. The improved FSDAF (SFSDAF) [39] combines sub-pixel fractional change
information to more accurately grasp spectral information changes. In FSDAF 2.0 [40], more
pure pixels are obtained by edge and change detection, which makes the unmixing process
more accurate. At the same time, change detection is also used to generate weights to obtain
a more accurate prediction. This method can effectively balance spatial detail preservation
and spectral change of reconstruction, but the high complexity of the algorithm limits its
wider application.

Deep learning based methods usually use CNN and GAN models, and CNN has
robust feature extraction capability under the supervised learning mechanism [41]. In the
super-resolution reconstruction of remote sensing images at multiple levels, fusion based
on temporal and spatial features has made a breakthrough in recent years, especially in
spatiotemporal fusion based on deep learning. The CNN and GAN models are described
below. The spatiotemporal fusion algorithm based on CNN (STFDCNN) [42] divides the
training phase of this method into two parts. These two parts use the idea of residual
network to focus the network on learning high-frequency details. The depth convolution
spatiotemporal fusion network (DCSTFN) [43] is a doubly branched convolutional network
that effectively fuses spatiotemporal information. It gets by with few reference images
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and model parameters and is very efficient, but must fully extract fine image features.
The extended EDCSTFN [44] added a weight fusion based on double-branch folding. This
model mitigates the land cover change problem and can retain high-frequency information,
but the number of parameters has increased. StfNet [45] mitigates the problem of spatial
information loss in the feature extraction. This method introduces the principles of time
dependence and time consistency, so that the image of the predicted date can be combined
with the image of the previous date and the image of the following date to obtain the final
prediction results. However, some details are lost in the fusion process. There are also
bias-driven spatio-temporal fusion models (BiaSTF) [46], spatial, sensor, and temporal
spatio-temporal fusion (SSTSTF) [47], residual network ResStf [48], multi-scale, extended
convolution DMNet [49], 3D convolution STF3DCNN [50], etc.

Based on the GAN model, it also has many advantages in terms of temporal-spatial
fusion. Zhang et al. [17] proposed a spatiotemporal fusion method STFGAN based on
the generated countermeasure network. Based on SRGAN [16], more detailed features
are extracted, and the prediction results of the generated countermeasure network are
more realistic. CycleGANSTF [19] considers image fusion as a data-enhancement problem
and selects the image with the most information richness as the fusion result. Tan et al.
proposed GANSTFM [18] to alleviate the problem that the model relies too much on the
reference image. Song et al. proposed MLFF-GAN [51] to solve the huge difference between
high resolution and low resolution. In previous models, one or two groups of reference
images are often required, and strict constraints must be applied to the reference images.
In order to deal with this problem and improve the prediction accuracy of the model under
poor conditions, the conditional production countermeasure network and the switchable
normalization module are used to relax the strict constraints on the input image. However,
the model parameters are large and difficult to train. To solve these problems, spatio-
temporal fusion of remote sensing images based on deep learning is currently crucial for
research. For the methods of relevant work parts, we summarized and analyzed according
to the classification, and the details are shown in Table 1. Table 1 mainly introduces some
models of the five categories of methods, but not all of them. In addition, the latest method
based on deep learning is introduced in detail in the article, so it is not added to the table.

Table 1. Classification Comparison of Spatiotemporal Fusion Algorithms for Remote Sensing Images.

Methods Modle Adoption Mechanism Advantages and Limitations Proposed
Year

Decomposition-based methods

MMT [21] Pixel decomposition

The spatiotemporal fusion algorithm based on
decomposition is proposed for the first time; It cannot
solve the problems of large spectral decomposition error
and intra-class deformability.

1999

MSTDFA [22] Decomposed end
element reflectivity

Be able to effectively use time and space changes;
Acquisition time, spectral response function, etc. will affect
the accuracy.

2012

ESTDFM [23] Sliding window, time
weight

The predicted image generated is more consistent with the
real object; Large amount of calculation. 2013

OB-STVIUM [24] Multi-data segmentation
technology

The extraction of pixel information is enhanced to alleviate
the inaccurate prediction of land cover change caused by
different seasons

2015

Weight Function-based Methods

STARFM [25] Mobile window search,
weight function

The first weighted fusion algorithm; Assume that the
coarse resolution image is “pure” pixel, and cannot predict
complex areas

2006

ESTARFM [26] Search window,
conversion factor

Solve the problem of heterogeneous landscape and
enhance the ability to monitor seasonal landscape changes;
Objects whose shape cannot be accurately predicted over
time will blur the changing boundaries.

2010

STAARCH [27]
Monitoring change

points from dense time
series of coarse images

Identify the spatial and temporal changes of the landscape
with a better level of detail. 2009

SADFAT [28] Linear spectral mixing
analysis technology

Improve the accuracy of heterogeneous landscape
prediction;The window size and the number of land cover
categories need to be set, and the mismatch of Landsat to
MODIS pixels is ignored.

2014
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Table 1. Cont.

Methods Modle Adoption Mechanism Advantages and Limitations Proposed
Year

Bayesian-based Methods

BME [29] Bayesian maximum
entropy

Solve multi-scale problems and capture fine spatial
structure; Noise may be generated during splicing. 2013

NDVI-BSFM [30] Constrained observation
data decomposition

Preserve more spatial details and have less dependence on
the forecast data to be determined; Angle effect and
quality control deviation will affect the prediction results.

2016

STS [31]
Establish relationship

model and reverse
fusion

It can complete different types of fusion tasks without
being limited by the number of remote sensing sensors; It
is inefficient and cannot be applied to multi-source
heterogeneous remote sensing images.

2016

Bayesian-fusion
[32]

Establish observation
model and Gaussian

distribution

The framework is flexible, and there is no limit to the
number of high-resolution images input; It can not
effectively extract mixed spectra, which limits the potential
of retrieval spectra.

2017

Learning-based Methods

SPSTFM [33] Sparse representation
It can effectively process images of phenological changes
and land cover changes; The processed image should not
be too complex and take a long time to calculate.

2012

One-pair
Learning [34]

Sparse representation,
high-pass modulation

It can effectively process images of phenological changes
and land cover changes; It is necessary to confirm the
similarity between the reference date and the forecast date
remote sensing data.

2012

EBSPTM [35] Error regularization
It can accommodate the learned dictionary to represent
unknown multi-temporal images; Large amount of
calculation.

2015

Hybrid Methods

STRUM [36] Reflectivity separation,
Bayesian framework

It is sensitive to time change and has good performance in
limited high-resolution image data; Unable to extract
detailed features well.

2015

STIMFM [37] Spectral decomposition,
Bayesian framework

High computational efficiency and high accuracy of image
generation; The problem of land cover prediction with a
long time span cannot be solved.

2016

FSDAF [38] Linear unmixing, weight
fusion

The algorithm is suitable for heterogeneous landscapes
and can predict the change of gradient and land cover
type; The detailed features of the reference image cannot
be fully extracted.

2016

3. Proposed Methods
3.1. Overview

In this paper, a new spatio-temporal fusion method, the MCBAM-GAN model, consist-
ing of a generator and a discriminator is proposed. The generator is designed as a U-NET
network structure, which is mainly responsible for transferring the context information
to a higher resolution layer, and provides high-quality HTHS images through repeated
training, prediction, and fusion of images (see Sections 3.3 and 3.4 below for a detailed
introduction to the model). First, adding multi-scale and convolutional attention modules
in the generator to fully extract image features from multiple dimensions while improving
the feature learning and generalization ability of the whole model. Second, the image input
only needs to predict the time t0, a pair of coarse and fine images to participate in the
spatio-temporal fusion of the whole model, eliminating the restriction on the collection
time of reference images and making the time period of t0 and t1 as small as possible.
The discriminator is constructed by a residual block based on the ResNet [52] network,
which is mainly used to evaluate the generated and actual images. Figure 1 shows the
model diagram of the objective problem to be solved.

3.2. Overall Framework of MCBAM-GAN Model

The spatiotemporal fusion algorithm based on the deep learning model effectively
improves the accuracy of spatiotemporal fusion and provides a better HTHS remote sensing
image. Since the spatiotemporal fusion algorithm based on the CNN model is limited by
the size of the convolution kernel and cannot extract global image features, this model must
solve the following problems: How to extract spatiotemporal difference features at a deeper
level; How to extract the global information of two images in the process of time change
and reduce the dependence on time series; How to reduce the computation of the fusion
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model and improve the time efficiency. As shown in Figure 2, that is the overall framework
of MCBAM-GAN. The overall network structure is an end-to-end structure. Based on the
ideas of GAN model, it is mainly divided into two parts: generator and discriminator [13].
The generator is divided into three stages: multi-feature extraction, multi-feature fusion,
and multi-scale reconstruction. In order to reduce the number of input images and the
dependence on time series, the input image of the generator consists of a coarse image
at time t0 and a fine image at time t1. Then, the generator has three encoders to precisely
merge the input thick and thin image pairs. Finally, the coding is complemented by the
CBAM convolutional attention module, which provides adaptive rescling of the spatial
and channel features to enhance the salient regions and extract more detailed features.
The discriminator based on the resnet structure is mainly used to detect whether the input
image is correct or incorrect.

Output

Fine-resolution on

 reference time

Coarse-resolution image

on prediction time 

Reference-insensitive spatiotemporal fusion approach

MCBAM-GAN
Fine-resolution on prediction time 

Inputs

Feature 

Extraction, 

Fusion,

Reconstruction

1t

0t

1t

Figure 1. Objective Problems to be solved in the spatio-temporal fusion model based on deep learning
(the model input uses only one coarse resolution image and another arbitrary fine resolution image
at the prediction date as reference).

Generator Discriminator

C1 

𝐹1

Extraction

Fusion

Reconstruction

C1 

𝐹1

𝐹1

C1 

𝐹t

Fake

Real

Figure 2. MCBAM-GAN overall architecture diagram in which the generator phase consists of
feature extraction, feature fusion and multi-scale reconstruction (see the insensitive model [18] in
the generator phase, where F1 and C1 represent the synthetic fine resolution image and the observed
coarse resolution image at the prediction date and time t1 and t0, respectively). On the input F1 and
C1The features are extracted and fused respectively, and finally the high-quality fine image of the
predicted time is reconstructed.
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3.3. Generator

Since the GAN was proposed, many image-processing models based on GAN have
emerged, and each model has played an influential role in modeling and image process-
ing. GAN consists mainly of a generator-discriminator. Any design based on the GAN
model requires a lot of data support. We achieve the balance between the generator and
discriminator through multiple iterations of training to improve the model performance of
the whole system. Essentially, we can see that the generator and discriminator compete
with each other, and the generator has the same incorrect output as the actual data through
multiple iterations of training. The discriminator distinguishes whether the output data
are actual or false data. Normally, when training the GAN model, we need to make a
complex mapping between the noise data of the generator input samples and the actual
data. The discriminator uses a binary classifier to distinguish between real and fake data.
However, due to many additional constraints on our data during the process of accurate
mapping and classification, the stability of the training model could be better. Therefore,
many researchers are devoted to improving the stability of the model while reducing the
number of parameters. In this model, due to the specificity of the spatiotemporal fusion
input data, we choose the least squares GAN (LSGAN) as the generated confrontation
loss function [53] expressed as Formulas (2) and (3), and the generated confrontation loss
function LMGAN in this paper is expressed as Formula (1), where:

min
G

max
D

LMGAN(D, G) = Ex∼pd(x)[log D(x | y)]

+Ez∼pz(z)[log (1− D(G(z | y)))],
(1)

min
D

VLSGAN(D) =
1
2

Ex∼pd(x)[(D(x)− n)2]

+
1
2

Ez∼pz(z)[(D(G(z))−m)2],
(2)

min
G

VLSGAN(G) =
1
2

Ez∼pz(z)[(D(G(z))− 1)2]. (3)

From a mathematical point of view, generator G uses some noise data z as input to
learn the complex mapping function on the real training sample x, and attempts to map
the distribution of noise data pz(Z) to the distribution of real data pd(x). At the same
time, discriminator D is used as a binary classifier to distinguish the generated pseudo
data G(Z) from the real sample x. In other words, the goal of the generator is to minimize
the distribution distance between G(Z) and x, while the goal of the discriminator is to
maximize the distribution between them.

In the above discussion, we mentioned that the generator of the model in this paper
adopts the U-NET structure. The U-NET is a symmetric network structure that mainly
uses the residual block of the residual network (ResNet) as the basic block. The residual
block can effectively prevent the gradient explosion and gradient loss [54] of the model.
As shown in the overall structure of the generator in Figure 3, in the left structure of the
U-NET network, we mainly perform multiple feature extraction. In the right structure,
we perform multi-feature fusion and multi-scale reconstruction. In the whole network
structure, the size of our convolutional kernel is 3 × 3, and the main task of gencoder
is to completely extract global and local coarse and sparse image features. In the first
phase, gencoder does not perform downsampling to ensure accuracy. With downsampling,
the receptive field increases, the perceptual area per unit area becomes more significant,
and the low-frequency information of the image is better perceived. In the second and third
stages, gencoder then downsampling the image to obtain more low-frequency information.
The main function of the concatenated module is to use different convolution kernels to
extract features at different levels. On the right side of Figure 3, the upsampling operation
is performed, which helps to integrate the information of each phase of downsampling
into the upsampling process and combine the structural information of each level. After
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the multidimensional feature extraction, we need to complete the multiple feature fusion
phase. After the feature extraction module, the algorithm obtains two feature maps that
explicitly extract the complementary information of high spatial-low temporal and high
temporal-low spatial. Considering that the purpose of spatiotemporal fusion is to obtain
remote sensing images with high spatial-temporal resolution at the same time. Therefore,
this paper calls the optimized feature fusion module to fuse the extracted feature images.
Considering that different feature maps have different contributions to the final result, we
use attention feature fusion. To fully fuse the extracted multidimensional features, we
use the attention feature fusion (AFF) [55] module for feature fusion, which replaces the
previous channel cascade method. The structure of the AFF fusion module is shown in
Figure 4. The specific representation is shown in Formula (4).

AFF = M( f1 ⊕ c1)⊗ c1 + (1−M( f1 ⊕ c1))⊗ f1, (4)

where f1 and c1 are two input features, AFF ∈ R(C×H×W) is fusion feature. M( f1 ⊕ c1)
indicates the weight obtained by the channel focus module M (corresponding to the dotted
box in Figure 4), and ranges from 0 to 1. It is composed of real numbers. (1−M( f1 ⊕ c1)),
which corresponds to the dotted arrow in Figure 4, is also composed of real numbers
between 0 and 1. ⊕ means that the elements are added directly, ⊗ means that the elements
are multiplied.

Conv Gencoder Concatenated

Pixeshuffle AFF

Coarse on prediction

Fine on randomly

Reconstruction

1x

2x

3x

Multiple Loss Reconstruction

Figure 3. Overall structure of the generator (x1, x2, x3 represent different scale features, respectively).
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Figure 4. Structural diagram of AFF fusion module. f1 and c1 are two input features, C× H ×W are
represent the channel, height and width of the image, M( f1 ⊕ c1) indicates the weight obtained by
the channel focus module,⊕means that the elements are added directly, ⊗means that the elements
are multiplied.

The generator consists of two building blocks: an encoder and a decoder. The encoder
mainly extracts standard high-pass features over the main branch, and the decoder restores
the original data while recovering the data for dimensionality reduction processing. In the
structure of this generator, we mainly describe the encoder. As shown in Figure 5a, an ar-
bitrary fine-resolution image is input through the main branch. The coarse resolution of
the prediction time is input through the horizontal branch, generating fine intermediate
features. From Figure 5a, it can be seen that the principal component consists of a switch-
able normalization [56] and leaky recognized linear unit (LeakyReLU) [57] function with
two cycles. In the middle, a convolution operation with a step size of 2 and a convolutional
kernel size of 3× 3 is performed to reduce the feature size. In the horizontal branch, we use
3× 3 convolution operations twice to obtain coarser spectral information, and add a flexible
CBAM module to adaptively rescale the spatial and channel features without increasing
computational complexity to enhance the salient regions and extract more detailed features.
In the concatenated block used in the generator decoder (as shown in Figure 5b), we use
a 1× 1 convolution operation in the horizontal branch, mainly to adjust the channel of
feature mapping to match the balanced output. At the end of the encoder, we match the
extracted fine, coarse, abstract, and multi-level features and merge them with the decoder.
In the whole generator, we use switchable normalization (SN) from feature extraction to
fusion. There are four reasons for selecting SN. First, switchable normalization is a learnable
normalization method driven by task and data, which can learn different normalization
layers of deep neural network; Second, SN is an end-to-end learning method. It can learn
important weights in the network and switch at will; Third, SN uses three different ranges
to calculate statistics (mean and variance), including channel, layer and small batch. It
is robust for various batch sizes and can maintain high performance even in the case of
small batches. Third, SN has no sensitive hyper-parameters, and the whole network is
lightweight. At the same time, after normalization, we use the leaky corrected linear unit
(LeakyReLU) function to ensure that the weight is updated and maintained throughout
the network propagation process. Formula (5) indicates that switchable normalization
normalizes the detailed features of the reference image in phase i, Formula (6) indicates that
the end-to-end PixelShuffler module is used to upsample the spatiotemporal features in
phase i and i + 1, and Formula (7) indicates that the multi-level features obtained in phase i
and i + 1 are fused. Feature fusion throughout the generator can be expressed as follows:

A = SwitchNorm(X f ,i), (5)
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B = ∑ PixeShu f f le

(∑ Conv(X f ,i+1))× Conv(A),
(6)

D = Concat(A, B, AFF), (7)

wherein, X f ,i represents the detail features of the reference image at stage i, and X f ,i+1
represents the spatio-temporal feature mapping after the output of stage i + 1.

Coarse on predictionFine on randomly

SwitchNorm

LeakyRelu

Conv3

SwitchNorm

LeakyRelu

Conv3

Adjusted fine features Coarse features

Conv3

LeakyRelu

CBAM

Architecture of Gencoder

Concatenated features

LeakyRelu

Conv3

LeakyRelu

Adjusted fine features

Conv1

（a） （b）

Figure 5. (a,b) Encoder structure diagram in generator structure. CBAM represents convolution block
attention module, Conv3 represents 3× 3 convolution operations twice to obtain coarser spectral
information, Conv1 represents 1× 1 convolution operation in the horizontal branch, mainly to adjust
the channel of feature mapping to match the balanced output.

3.4. Discriminator

The discriminator refers to the GAN-STFM model [18] and is a binary classifier con-
sisting of resnet residual blocks (D-resBlocks). As shown in Figure 6, the first input of
the discriminator is a pair of coarse images c1 and f1 at prediction time t0 or a prediction
image. Since we want to reduce the dependence of the whole model input image on the
time series, we use the coarse image of the prediction time as the primary training data
set in the training process. Second, as shown in Figure 6b, we use the main branch and
transverse branch in each D-resBlocks, and use spectral normalization to stabilize the whole
confrontation process. Finally, the conditional input of the discriminator is downscaled to
different scales, the coefficients are set to 0.5 and 0.25, and a multi-scale discriminator is
used to quickly improve the initial image.
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Figure 6. Structure diagram of the Discriminator model. ((a) in the figure shows the overall structure
diagram of the discriminator, in which the input of the original discriminator is sampled at three
levels with factors of 1, 0.5, and 0.25 to train the multi-scale discriminator. D-ResBlock is the residual
block used in the discriminator. The details of these basic building blocks are shown in Figure (b).
The input of the original discriminator is sampled at three levels with a factor of 1, 0.5, and 0.25 to
train the multi-scale discriminator).

3.5. Convolutional Block Attention Module

The actual convolutional operation extracts features by mixing cross-channel and
spatial information. Therefore, we introduce the convolutional block attention module
(CBAM), a flexible module. The detailed module structure is shown in Figure 7. The core
idea of this module is to focus on the “what” and the “where” of the channel and spatial
axis, respectively, and to enhance the meaningful features of the channel and spatial axis
dimensions by sequentially applying the channel and spatial attention modules. The com-
putational cost is almost negligible [20]. In this paper, the CBAM module is added to the
model generator, which is mainly used to extract more detailed features and improve the
representation ability of the convolutional network. Secondly, CBAM can maintain the
balance and stability of the network during the game between the two networks (note that
the CBAM module added to the generator is not applied to the last convolutional layer of
the generator, because the generator generates images after the last convolutional layer.).
The specific focus process of CBAM is shown in Formulas (8) and (9):

F′ = Mc(F)⊗ F, (8)

F′′ = Ms(F′)⊗ F′. (9)

Given an intermediate feature map as input F ∈ iC×H×W , CBAM successively derives a one-
dimensional channel map Mc ∈ iC×1×1 and two-dimensional spatial map Ms ∈ i1×H×W ,
and F11 is the final refined output.

Feature maps

Spatial attention

Channel attention
Refined feature maps

Figure 7. The CBAM module is structured as follows.
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3.6. Multiple Loss Function

In this model, the idea of multiple loss is adopted. The loss of the image itself includes
feature loss (LFeature), spectral angle loss (LSpectrum), and visual loss (LVision) [44]. In each
scale extraction process, the loss is calculated once and added in the reconstruction phase.
Therefore, the total loss LMS in this paper is defined as follows.

LMS = αLFeature + βLSpectrum

+γLVision + δLMGAN ,
(10)

LFeature =
1
N

N

∑
i=1

[ fEncoder(x)− fEncoder(y)]
2, (11)

LSpectrum = I − fEncoder(x) · fEncoder(y)∥∥∥ fEncoder(x)

∥∥∥‖ fEncoder(y)‖
, (12)

LVision = I − [IM(x, y)]αM

·
M

∏
i=1

[ci(x, y)]βi [si(x, y)]γi ,
(13)

where α, β, γ, and δ are the weighting coefficients. LFeature detects perceptual differences
and generates high-quality images. It can be computed using an associated automatic
encoder that reduces the differences of an abstract high feature level. LSpectrum is shown
in Formula (12). Cosine similarity is used to reduce and control the spectral distortion
between different wavebands. LVision is used to retain more detailed ground texture from
the computer vision of view and provide an intuitive effect to the user.

4. Experiment and Result Analysis
4.1. Datasets, Experiment Setup and Evaluation Indicators

In this paper, we use two open-source datasets, namely, the Coleambally Irrigation
Area (CIA) dataset and the lower Gwydir catchments (LGC) [58], to test the effectiveness of
this model. The main characteristics of the CIA dataset are as follows: The dataset includes
17 pairs of cloud-free Landsat MODIS image pairs, with a date range from October 2001 to
May 2002. The primary image type is the summer crop acreage image dataset. Over time,
the phenological image features in the dataset become apparent, and the image size is
1720× 2040. The main features of the LGC dataset are: The dataset contains 14 pairs of
MODIS Landsat images. Since the site was hit by a flood disaster in 2004, the spatiotemporal
features are obvious. The date range is from April 2004 to April 2005, and the image size is
3200× 2720.

The experimental idea of this paper is to perform ablation experiments according to
the MCBAM-GAN model and to check the robustness of our model by gradually increasing
multi-scale, CBAM and multi-scale CBAM with respect to the original model. Second,
the feasibility of this model compared with the classical model comparison algorithm is
demonstrated by quantitative analysis. Finally, the model in this paper is analyzed in detail
by the qualitative evaluation of the local area of the image and the thermal dispersion
diagram. In the implementation of the model, we use the Python programming language to
develop the PyTorch framework based on deep learning. For training, the model uses the
Adam optimization method to update the model parameters. The initial learning rate is set
to 2× 10−4 and the batch size is set to 8. In the training process, we input a pair of reference
and predicted images. Considering the large memory requirement of the computer, we
train the images in blocks. The size of the cropped images is CIA (128× 128) and LGC
(256× 256). Our whole model uses 80% of the dataset for training, 10% for verification,
and 10% for testing to prove the fusion and reconstruction ability of the model.

In this paper, six comprehensive indicators are used for quantitative evaluation meth-
ods. They are peak signal-to-noise ratio (PSNR), structural similarity (SSIM), spectral
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angle mapper (SAM), relative dimensionless global error in synthesis (ERGAS), and spatial
correlation coefficient (CC), root mean square error (RMSE) [1]. The closer the SSIM value,
the higher the similarity between the two images. A smaller RMSE and ERGAS represent
better fusion results.

4.2. Ablation Experiments

In this paper, some ablation experiments are performed on the model to discuss the
improvement effect of multi-scale, convolutional block attention modules, multiple loss
functions, etc. on the overall spatiotemporal fusion model and network performance.

4.2.1. Multi Scale Ablation Experiments on LGC and CIA Datasets

The MCBAM model in this paper is a generator discriminator structure. In the U-
NET network structure of the generator, we add multi-scale ideas, CBAM modules and
other structures to extract the temporal, spatial and spectral features of the image in a
multidimensional way. Multiple loss calculation is performed in each scale to provide a
good basis for the final reconstruction and loss addition.

Previous spatio-temporal fusion models based on deep learning focus on extracting
temporal and spatial features and neglect the details of texture features. The idea of
the multi-scale model is to introduce images of different sizes into the downsampling
process and perceive the images of different scales to improve the universality of the
network. At the same time, as the depth of the network increases and the size of the
receptive field increases, a multi-scale idea is developed to process and preserve large-
scale semantic features to extract richer texture features. In Table 2, 1 represents one scale,
2 represents two scales, and 3 represents three scales. To achieve the expected effect and
to account for model parameters and efficiency, we use only three scales. The results in
Table 2 show that the multi-scale and multi-stage fusion effectively improve the prediction
accuracy. The PSNR and SSIM evaluation indicators for the CIA and LGC datasets show
significant improvement.

Table 2. Quantitative Results of Multiscale on CIA and LGC Datasets.

Data Depth PSNR SAM SSIM ERGAS CC RMSE Para (M) Time (S)

CIA

1 30.9142 0.0906 0.8857 1.3908 0.7864 0.0286 14.3080 11.7240

2 33.3317 0.0687 0.9074 1.1296 0.8545 0.0217 14.7475 10.9963

3 34.0120 0.0581 0.9160 1.0355 0.8825 0.0200 14.8750 14.9800

LGC

1 32.5540 0.0600 0.9394 0.8993 0.8373 0.0235 14.3080 125.01

2 35.9597 0.0429 0.9576 0.7003 0.8996 0.0159 14.7475 125.33

3 37.2547 0.0369 0.9639 0.6072 0.9252 0.0137 14.8749 166.41

4.2.2. Adding Ablation Experiments of Different Modules to LGC and CIA Datasets

This ablation experiment is used to add and test different modules to different datasets.
This model mainly consists of six modules: (1) multi-scale module only; (2) CBAM
module only; (3) multi-scale module and CBAM module; (4) multi-scale module and
AFF fusion module; (5) multi-scale module, CBAM module and AFF fusion module;
(6) multi-scale module, CBAM module, AFF fusion module, and multiple loss. For details,
see Tables 3 and 4.

From Tables 3 and 4, we can see that the more modules we gradually add to the model,
the better the network model works. This is because each module plays a crucial role in
feature extraction, feature fusion, and reconstruction. From the table, we can also see that
the performance of the CBAM module alone is better when only multi-scale modules are
used, and the model parameters are almost the same. The result of using multi-scale and
CBAM modules simultaneously is better than that of using CBAM and multi-scale modules
alone. This is because the CBAM module extracts features from the mixture of channel and
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spatial information to obtain more helpful information and produce high-quality images.
By gradually increasing the modules, the overall evaluation indicators of our model are
better than those of the individual modules, which shows that the final generation of
high-quality images is closely related to each stage of feature extraction, feature fusion,
and multi-scale reconstruction. The running time of our model on the LGC dataset is higher
than on the CIA dataset because the image size of the LGC dataset is 3200 × 2720, which
proves that differences in data size lead to differences in time.

Table 3. Ablation experiments on CIA dataset.

DataSet
Model

PSNR SAM SSIM ERGAS CC RMSE Para (M) Time (S)
Multi-Scale CBAM AFF-Fusion Multi-Loss

CIA

X × × × 33.6311 0.0619 0.9114 1.0835 0.8704 0.0209 14.7120 14.0100

× X × × 33.7348 0.0599 0.9115 1.0850 0.8671 0.0207 14.5982 14.7200

X X × × 33.7416 0.0627 0.9119 1.0678 0.8701 0.0207 14.9041 12.4100

X × X × 33.8511 0.0622 0.9132 1.0978 0.8732 0.0204 14.7312 14.1060

X X X × 33.7914 0.0631 0.9137 1.0722 0.8735 0.0206 14.8664 14.3500

X X X X 34.0120 0.0581 0.9160 1.0355 0.8825 0.0200 14.8750 14.9800

Table 4. Ablation experiments on LGC dataset.

DataSet
Model

PSNR SAM SSIM ERGAS CC RMSE Para (M) Time (S)
Multi-Scale CBAM AFF-Fusion Multi-Loss

LGC

X × × × 36.6563 0.0419 0.9594 0.6465 0.9180 0.0146 14.7119 135.15

× X × × 36.7236 0.0422 0.9586 0.9483 0.9170 0.0145 14.5982 133.59

X X × × 36.7410 0.0416 0.9595 0.6531 0.9200 0.0145 14.9041 132.51

X × X × 36.7436 0.0418 0.9609 0.6538 0.9164 0.0145 14.7311 151.61

X X X × 36.7465 0.0408 0.9625 0.6217 0.9219 0.0145 14.8663 156.60

X X X X 37.2547 0.0369 0.9639 0.6072 0.9252 0.0137 14.8856 166.41

4.3. Detailed Analysis of the Model on the CIA Dataset
4.3.1. Quantitative Results Analysis on CIA Dataset

To prove the validity of the MCBAM-GAN model proposed in this paper, we selected
five methods, STARFM [25], FSDAF [38], DCSTFN [43], DCSTFN [44], and GANSTFM [18],
for comparison with the dataset CIA. STARFM and FSDAF are both traditional methods
with good performance. EDCSTFN and GANSTFM are classical methods based on deep
learning, EDCSTFN is a framework using CNN, and GANSTFM uses the architecture of
GANs. The specific quantitative analysis is shown in Table 5.

As shown in Table 5, six common evaluation indicators are selected from an objective
perspective to compare and evaluate our proposed model and the classical model. The
final results show that our proposed spatio-temporal fusion model achieves the optimal
values of global indicators and most local indicators. We compare the deep learning based
CNN structure model with deep learning based GAN structure model, and our model
shows good performance. Firstly, we owe this to the powerful model performance of
confrontation network generation and the ability to generate more explicit and authentic
samples. Secondly, our model adds a CBAM module to extract more detailed features while
reducing the input of image pairs. Finally, we add the concept of multi-scale sampling in
the process of generating the U-NET structure, extract features of different scales at each
stage and perform multiple loss operations to provide sufficient conditions for the final
reconstruction. At the same time, we can see that our model has an advantage in terms
of time consumption, since our model reduces the number of network layers and thus
shortens the runtime of the model.
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Table 5. compares MCBAM-GAN with some of the most advanced models in the CIA dataset.
The values in bold are the best results.

Method PSNR SAM SSIM ERGAS CC RMSE Para (M) Time (S)

STARFM [25] 32.7311 0.0745 0.8914 1.2473 0.8358 0.0233 - 808.56

FSDAF [38] 32.9512 0.0721 0.8914 1.2251 0.8424 0.0227 - 1067.51

DCSTFN [43] 30.8206 0.0638 0.9040 1.8215 0.7563 0.0294 0.71 20.50

EDCSTFN [44] 33.2827 0.0678 0.9094 1.1988 0.8580 0.0217 1.07 30.93

GANSTFM [18] 33.6542 0.0651 0.9082 1.1298 0.8590 0.0209 16.26 22.65

OURS 34.0120 0.0581 0.9160 1.0355 0.8825 0.0200 14.87 14.98

4.3.2. Qualitative Result Analysis on CIA Dataset

To visually represent our experimental results. Figures 8–10 show the comparison
results of FSDAF [25], STARFM [38], DCSTFN [43], EDCSTFN [44], GANSTFM [18] and
the MCBAM-GAN model proposed in this paper for the dataset CIA.

Figure 8 shows the local experimental results we obtained with the CIA dataset. We
have extracted some prediction results for display. Below that, “Observed” represents the
actual observed image, the first line represents the predicted image of the model, the second
line represents the difference between the predicted result and the actual observed value,
the third line represents the normalized vegetation index (NDVI) of the predicted value,
and “Our” represents our MCBAM-GAN method. From the overall effect picture, it can be
seen that our proposed method has excellent visual experience, and the definition is much
closer to the original image. Figure 8 shows almost the same model image and the actual
image. We have added multi-scale ideas at each stage of feature extraction, feature fusion,
and reconstruction. We also extracted coarse, fine, and spatio-temporal features of different
dimensions. However, from the perspective of the spectrum, the traditional methods are
more advantageous. To achieve a subjective evaluation effect, we extracted and enlarged
some areas, as shown in Figure 9. The first line represents the prediction results of each
model, the second line represents the magnified representation of the yellow box, the third
line represents the difference between the magnified area and the actual observed value,
and the fourth line represents the NDVI of the magnified area. From the figure, it can be
seen that the areas with dense STARFM and FSDAF features are the reason why traditional
methods focus only on temporal and spatial features and ignore the details of texture
features. The methods based on deep learning, such as EDCSTFN and GANSTFM, can
not only predict dense areas but also clearly identify the differences between different
color areas and predict farmland, roads, and other information more accurately. However,
the results show that the effect on irregular areas could be better. The reason is that the CIA
dataset mainly contains crop phenology dataset, including many farmland planting and
irrigation areas. Figure 10 compares the thermal scatter plots of the predicted results of
each model in the CIA dataset. In Figure 10, each row represents different models. A total
of six models are shown in the figure. Each column represents the thermal scattering
diagram of each model in four bands. The thermal scatter graph is mainly used to locate
and count targets. It can be seen that the “point cloud” of our method is sparse in each
band, indicating that the prediction results of our method are closer to the actual observated
values and also indicating that our method is more robust in dealing with complex changes.
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Figure 8. Show the results in a partial enlargement of the CIA dataset. (Each column in the figure
represents the predicted image of each model, “OURS” represents the MCBAM-GAN model, and
“observed” represents the actual label.)

Figure 9. The global rendering result of the CIA dataset.
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Figure 10. Thermal scattering results for the CIA dataset. (Each column corresponds to the compari-
son of each band. The abscissa is the band of the predicted image, and the ordinate is the band of the
real image.)

4.4. Detailed Analysis of the Model on the LGC Dataset
4.4.1. Quantitative Analysis of the Model on the LGC Dataset

Similarly, we will compare and analyze the MCBAM-GAN temporal-spatial fusion
models and FSDAF [25], STARFM [38], EDCSTFN [44], and GANSTFM [18] with the
LGC dataset. Since the LGC dataset was acquired in 2004, the collected image contains
the temporal and spatial features of the image which are more obvious and have a wide
range of spectral information changes. As a result, the LGC dataset has good advantages
in quantitative and qualitative analysis. The transmitted quantitative analysis is shown
in Table 6.

Table 6. compares MCBAM-GAN in LGC datasets with some of the most advanced models. The value
of the thick body is the best result.

Method PSNR SAM SSIM ERGAS CC RMSE Para (M) Time (S)

STARFM [25] 35.6750 0.0439 0.9549 0.7357 0.9000 0.0165 - 2410.56

FSDAF [38] 35.5282 0.0456 0.9488 0.7387 0.8984 0.0169 - 4208.82

DCSTFN [43] 34.2191 0.0435 0.9485 0.8810 0.8949 0.0195 0.71 224.03

EDCSTFN [44] 35.5021 0.0515 0.9585 0.8180 0.9195 0.0168 1.07 338.16

GAN-STFM [18] 36.6308 0.0423 0.9587 0.6872 0.9169 0.0147 16.26 170.71

OURS 37.2547 0.0369 0.9640 0.6073 0.9252 0.0137 14.87 166.41

It can be seen from Table 6 that the overall evaluation indicators of our model are
better than those of the other five classical models. We believe that the reason for this is
twofold: First, the input of images is lower than other models and the selection of reference
images is not subject to several constraints, which increases the flexibility of the model.
Second, we use the U-NET and the CBAM module in the generator to increase the balance
of the network and make the network run more stable. Among others, PSNR and SSIM are
significantly improved, which makes the final generated image closer to the original image
in terms of visual experience. It should be noted that our model is superior to the other
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models in terms of performance and parameters. This is because we reduce the number of
network layers, ensure performance and save computer resources.

4.4.2. Qualitative Analysis of Models on LGC Datasets

Figures 11 and 12 show the visual impact of each model on the LGC dataset. From the
results in Figure 11, it can be seen that the output image of the STARFM model contains
too much noise, which can be considered as the reason that the model is an earlier spatio-
temporal fusion algorithm, that lacks the detection regional boundary space features such
as rivers and roads. However, the model is good at processing spectral information. From
the output image of the FSDAF model, it can be seen that the deviation to the region is
striking because the algorithm cannot adapt to the dynamic features and repeatedly splits
the invariant pixels. The deep learning based on algorithm has obvious errors for dark
areas because the deep learning based on model largely depends on the learning experience.
It can also be seen from the figure that the overall statistical features of the prediction time
of the proposed model fusion image are more similar to the actual image, which means
that the overall difference is negligible. This is due to the fact that the model complements
the ideas of multi-scale and CBAM to fully extract multi-level features. As for the NDVI
value, our model is closer to the actual value. From Table 6, PSNR and SSIM of our model
are significantly higher than those of other models, indicating that our model extracts more
structural information and texture details. Figure 13 compares the plots of the thermal of
the predicted results of each model in the LGC dataset. From the figure, it can be seen
that the “point cloud” density of all models is high, which we believe is a feature of the
LGC dataset. Our model has a higher density, which indicates that the image resolution
is improved in the reconstruction stage, which may facilitate target detection in the final
remote sensing images.

Figure 11. Local magnification of the LGC dataset shows the results.
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Figure 12. Global rendering result of the LGC dataset.

Figure 13. The results are shown in the thermal scatter plot of the LGC dataset.

5. Conclusions

This paper proposes a spatiotemporal fusion model MCBAM-GAN based on multi-
scale and CBAM convolutional attention. The proposed model consists of a generator
discriminator. The generator backbone network is a U-NET network divided into three
stages: multi-feature extraction, feature fusion, and image reconstruction. The idea of multi-
scale and CBAM is introduced into the generator. First, the features are extracted at different
levels by different scales. Then, the CBAM module enhances meaningful features in channel
and spatial axis dimensions by sequentially applying channel and spatial attention modules
with negligible computational load to prepare the later fusion. We use the AFF fusion
module to replace the previous channel cascade method in the fusion phase. Finally, image
reconstruction is performed using multiple loss functions to comprehensively consider
the reconstruction of image features, vision and other aspects. In the experimental part,
we performed quantitative and qualitative analyzes using ablation experiments and the
classical SSTARFM, FSDAF, EDCSTFN, and GAN-STFM models. The results showed that
our proposed model is more robust. Spatiotemporal fusion is always a difficult problem in
super-resolution remote sensing reconstruction. Next, we will study it from two aspects.
First, we will develop and propose a lightweight and universal model from the model
perspective to reduce the constraints of the model to the input image. Second, we will
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analyze the unique attributes of each data set and investigate each kind of dataset that can
finally be applied to the actual scene.
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GAN generative adversarial network
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STARFM spatio-temporal adaptive reflection fusion model
FSDAF flexible spatio-temporal data fusion
SPSTFM spatiotemporal reflectance fusion model
STFDCNN spatiotemporal fusion algorithm based on CNN
DCSTFN depth convolution spatiotemporal fusion network
BiaSTF bias-driven spatio-temporal fusion models
SSTSTF spatial, sensor, and temporal spatio-temporal fusion
LSGAN least squares GAN
ResNet residual network
AFF attention feature fusion
LeakyReLU leaky recognized linear unit
PSNR peak signal-to-noise ratio
SSIM structural similarity
SAM spectral angle mapper
ERGAS relative dimensionless global error in synthesis
CC spatial correlation coefficient
RMSE root mean square error
NDVI normalized vegetation index
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