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Abstract: Flood events have caused huge disasters with regard to human life and economic devel-
opment, especially short-term flood events that have occurred in recent years. Gravity Recovery
and Climate Experiment (GRACE) satellites can directly detect the spatiotemporal characteristics of
terrestrial water storage anomalies (TWSA), which play an important role in capturing flood signals.
However, the monthly resolution of GRACE-derived TWSA limits its application in monitoring
sub-monthly flood events. Therefore, this paper first reconstructs the daily TWSA based on a sta-
tistical model with near real-time precipitation and temperature as input variables, and then three
daily flood monitoring indexes are developed based on the reconstructed TWSA. Furthermore, these
indexes are employed to evaluate the temporal and spatial characteristics of the 2016 short-term flood
event in the Haihe River basin (HRB), including the flood potential index (FPI), water storage deficit
index (WSDI), and combined climate deviation index (CCDI). In contrast to previous studies, the
temporal resolution of TWSA-based indexes is improved from the monthly scale to the daily scale,
which largely improves the temporal characterization of flood monitoring. Results demonstrate that
(1) among ten kinds of “Temperature-Precipitation” combinations, the reconstructed TWSA based
on CN05.1-CN05.1 match well with the GRACE TWSA, as well as publicly available daily TWSA
datasets with a Nash-Sutcliffe efficiency coefficient (NSE) of 0.96 and 0.52 ~ 0.81 respectively. (2) The
short-term flood characteristics can be better characterized by the reconstructed daily TWSA based
on CN05.1-CN05.1, reaching the peak of 216.19 mm on July 20 in the flood center. Additionally, the
spatial characteristics of the equivalent water height (EWH) are detected to evolve from southwest
to northeast during the short-term flood. (3) FPI, WSDI, and CCDI are proven to be effective in
monitoring flood events in the HRB, which validates the reliability of the reconstructed daily TWSA.
Moreover, compared to the 56% and 66% coverage of damage quantified by FPI and CCDI, the
45% damage coverage of the flood mapped by WSDI is more consistent with the governmental
reports within the HRB. This paper is expected to provide a valuable reference for the assessment of
short-term events caused by extreme climate change.

Keywords: GRACE; daily TWSA; flood monitoring; reconstruction model; Haihe River basin

1. Introduction

Global warming has accelerated the water cycle, leading to an increase in the frequency
and severity of droughts and floods, which seriously hinder the development of human
society and the economy [1,2]. Normally, flooding is difficult to evaluate accurately [3],
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and flood monitoring is facing serious challenges under the conditions of extreme climate
change. As one of the flood-prone countries, many areas have suffered from flood damage
in China, such as the Yangtze River basin (YRB) and the Pearl River basin (PRB) [4–6].
According to the Ministry of Water Resources of the People’s Republic of China (MWR),
the economic losses directly caused by floods exceeded 410 billion dollars from 2010 to
2020, and the total number of people affected reached 1 billion [7]. Floods have become
a major meteorological disaster affecting the economic development of China. Therefore,
there is an urgent need to monitor flood events in a timely and accurate manner, which can
help to reduce economic losses and contribute to sustainable development.

Nevertheless, it is challenging to monitor floods based on traditional methods. In situ
stations can provide accurate information about the precipitation and streamflow, however,
uneven spatial distribution makes it difficult to cope with widespread damage [8]. Some
models based on geographic features and hydrological information can detect floods with
high spatial resolution in a timely manner, but they require collaboration among different
software and the support of abundant data [9,10]. In addition, remote sensing technology
provides a new tool for wide-scale flood monitoring, which can accurately portray the
spatial evolution of floods [11,12]. However, this approach is expensive and cannot detect
the water variation of all components in terrestrial areas since it neglects the response of
soil moisture, which is often regarded as a substitute data for flood monitoring according
to some available studies [13–15].

Gravity Recovery and Climate Experiment (GRACE) satellite mission and its successor
GRACE Follow-On (GRACE-FO) can monitor the terrestrial water storage anomalies
(TWSA) by detecting the changes in Earth’s gravity field [16–18]. More importantly, the
TWSA plays an important role in capturing flood signals [19], because it comprises all
the forms of water stored under and above the earth [20,21]. Thus, some TWSA-based
indexes have contributed significantly to large-scale flood monitoring. Specifically, the flood
potential index (FPI) was first proposed based on TWSA by Reager and Famiglietti [22].
They verified its applicability on a global scale by comparing it with the data of hydrology
stations. Subsequently, flood events in different areas were evaluated by FPI and made
good progress. For example, Sun et al. [4] used FPI to explore the 2010 flood event in
the YRB, and demonstrated that FPI can reliably assess extreme hydrological variability
with high temporal and spatial resolution. Idowu and Zhou [23] estimated the 2012 flood
event in Nigeria based on FPI, and the results were generally consistent with the records
of hydrological observatories. In addition, min-max normalization and the probability
density function were used to construct an improved FPI, which achieved reasonable
effectiveness in the PRB [24] and Southwest China [25]. In recent years, GRACE-derived
indexes based on standardized ideas have been used to evaluate extreme climate change.
For instance, the combined climate deviation index (CCDI) was developed by Sinha et al.
to explore extreme climate events in the major river basins within India, which suggested
that CCDI is more efficient in areas with abundant rainfall [26]. Nigatu et al. [27] assessed
eight major flood events in the Nile basin using the water storage deficits index (WSDI),
and the results indicated that WSDI matches well with reality compared with the palmer
drought severity index (PDSI). Additionally, some drought indexes have been developed,
such as the Discrepancy Precipitation Index (DPI) [28] and total storage deficit index
(TSDI) [29], which effectively contribute to the assessment of drought events in different
regions. Unfortunately, the above indexes are limited by the rough temporal resolution
of GRACE TWSA, which makes it difficult to capture the finer characteristics of the short-
term meteorological events, such as the “Zhengzhou 7.20” flood in 2021 [30]. Therefore,
the daily scale TWSA is urgently needed to improve the temporal characterization of
flood monitoring.

To obtain the daily TWSA, a Kalman filter approach based on GRACE data was
utilized to obtain the daily solutions [31], which confirmed that it is helpful in assess-
ing flood events over the Ganges-Brahmaputra Delta in 2004 and 2007 [32]. Moreover,
Xiong et al. [33] developed a daily standardized drought and flood potential index (SDFPI)
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based on the random forest (RF) model and ITSG-Grace2018, which successfully evaluated
the short-term flood and drought events from 1961 to 2015 in the YRB. However, as the
current publicly released daily gravity field solution, ITSG-Grace2018 is not capable of
meeting the near real-time monitoring for flood events, because the latency in the releasing
of data takes several months [30]. Additionally, Jiang et al. [34] combined the Global
Navigation Satellite System (GNSS) and GRACE data to evaluate the change of TWSA in
Yunnan, suggesting that GNSS networks can track TWSA with a daily resolution during
extreme weather events, however, there are difficulties in acquiring GNSS data. Recently,
Humphrey and Gudmundsson [35] established a statistical model according to the hydro-
logical modeling principle, which effectively reconstructed the monthly and daily TWSA
(such as the JPL-ERA5) with the spatial resolution of 0.5◦ × 0.5◦. This model is constrained
by GRACE TWSA and widely applied because of its effectiveness and low cost [36–38].

In this study, a statistical model taking real-time precipitation and temperature as
input variables is used to reconstruct the daily TWSA over the Haihe River basin (HRB),
and reconstructed TWSA are further applied to construct daily monitoring indexes to assess
the short-term flood event that occurred in 2016. The primary objectives of this work are as
follows: (1) to collect meteorological data from different sources and compare reconstructed
TWSA in the HRB based on that information, (2) to evaluate the change in water volume of
the reconstructed daily TWSA, and (3) to evaluate and analyze the effectiveness of daily
flood monitoring indexes in a short-term flood event from the perspectives time evolution
and spatial distribution.

2. Materials and Methods
2.1. Study Area

The Haihe River basin (HRB) is located in North China, between 112◦~120◦E and
35◦~43◦N, with an area of approximately 3.2 × 105 km2 (Figure 1a). Its total topography
is high in the northwest and low in the southeast. The HRB spans eight provinces or
cities (Figure 1b), and the plains area in the southeast is a concentrated area of agriculture
and cities (Figure 1c). There are 234 meteorological stations within the HRB, mainly
concentrated in the North China Plain (Figure 1d). Precipitation mostly occurs in the
flood season (June ~ October), and there is often a high probability of flooding due to
extreme rainfall during this period [39]. Nevertheless, precipitation is less from March
to May when crop water demand reaches its peak. Due to agricultural irrigation, the
water resources are in a deficit state [40,41]. The decrease in water quantity has received
great attention, especially under the influence of human activities [42,43]. However, little
research has been done on the flooding that occurs in this basin. It has been recorded
that the HRB experienced severe flooding in July 2012 [44], July 2016 (http://www.gov.
cn/xinwen/2016-07/21/content_5093878.htm, accessed on 1 July 2022), and July–October
2021 (http://www.hwcc.gov.cn/sxdzt/mt2021hwccfxgz/202110/t20211022_97487.html,
accessed on 2 July 2022).

2.2. Data
2.2.1. GRACE/GRACE-FO Solutions

The changes of TWS can be derived by GRACE satellites with an unprecedented accu-
racy, and its products are classified into spherical harmonic and mascon solutions [45,46].
Compared to spherical harmonic products, mascon solutions are able to reduce signal
leakage in the sea–land interface and do not require filter methods to eliminate north-south
strip errors [47]. Monthly release-06 (RL06) solutions are utilized in this study, which are
provided by the Center for Space Research (CSR, https://www2.csr.utexas.edu/grace/, ac-
cessed on 1 June 2022) and the Jet Propulsion Laboratory (JPL, https://grace.jpl.nasa.gov/,
accessed on 1 June 2022). To reduce leakage bias, scale factor solutions are used to enrich the
JPL RL06 data, which are provided by the global Community Land Model (CLM4.0) [48,49].

http://www.gov.cn/xinwen/2016-07/21/content_5093878.htm
http://www.gov.cn/xinwen/2016-07/21/content_5093878.htm
http://www.hwcc.gov.cn/sxdzt/mt2021hwccfxgz/202110/t20211022_97487.html
https://www2.csr.utexas.edu/grace/
https://grace.jpl.nasa.gov/
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Figure 1. Information of the Haihe River basin; (a) location; (b) elevation; (c) land cover in 2020;
(d) distribution of meteorological stations.

The TWSA accounts for the anomaly of the equivalent water height (EWH) relative to
the mean baseline from 2004 to 2009. To ensure the accuracy of data, CSR and JPL solutions
are averaged to estimate the TWSA with a spatial resolution of 0.25◦ × 0.25◦. It should
be noted that there is an 11-month data gap between GRACE and GRACE-FO. Many
approaches have been applied to fill this gap and have achieved reasonable performance,
including Long-term Precipitation Driven (LPD) [43,50], Bayesian Convolutional Neural
Network (BCNN) [51], and a Bayesian Framework (BF) [52]. Moreover, the missing data
due to battery management are estimated through linear interpolation [53], information of
the reconstructed TWSA products is shown in Table 1.

Table 1. Information of reconstructed TWSA products in previous studies.

Data Temporal
Resolution

Spatial
Resolution Time Span Cover Sources

LPD_CSR monthly 0.25◦ × 0.25◦ April 2002~December 2019 China [43,50]
LPD_JPL monthly 0.5◦ × 0.5◦ April 2002~December 2019 China [43,50]

BCNN monthly 1◦ × 1◦ April 2002~August 2020 Global [51]
BF monthly 1◦ × 1◦ April 2002~April 2021 Global [52]

2.2.2. Meteorological Data

Daily precipitation and temperature are important driving variables for the recon-
struction of TWSA [35]. Considering the spatiotemporal characteristics of remote sensing
products, five kinds of precipitation and two temperature datasets are collected and classi-
fied into ten “Temperature-Precipitation” combinations. The best-performing combination
for the entire HRB will be chosen as driving data to reconstruct the daily TWSA in grids.
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Precipitation data include the GPM IMERG Early precipitation (GPM) [54], tropical
rainfall measuring mission (TRMM) [55], the Climate Prediction Center gauge-based anal-
ysis of global daily precipitation (CPC), as well as the daily precipitation datasets from
China Meteorological Administration (CMA) and CN05.1. In addition, the temperature
data are provided by CN05.1 and the Global Land Data Assimilation System version 2.2
(GLDAS) [56]. It should be noted that the meteorological stations and topographic features
are considered in CMA and CN05.1 products. Furthermore, CMA stands for the grid
product of daily precipitation, which is spatially interpolated based on 2472 meteorological
stations in China (https://data.cma.cn, accessed on 3 June 2022). Following Xu et al. [57],
the CN05.1 dataset is constructed using the “anomaly approach” during the interpolation,
with the difference being that more stations in China are utilized [58]. In the “anomaly
approach”, a gridded climatology is first calculated, and then a gridded daily anomaly
is added to the climatology to obtain the final dataset. Furthermore, considering the fact
that TRMM has not been updated since 2020, and that the CMA data in 2010 and 2021 are
difficult to collect, the vacancies of TRMM and CMA data are filled with the mean values
of the remaining precipitation products. Meteorological data used in this paper are widely
used, and detailed descriptions can be referred to in earlier studies [59–61].

2.2.3. Auxiliary Datasets

GLDAS does not have a clear vertical division for soil moisture, which is represented
simply by the surface (0~2 cm), root zone (0~100 cm), and profile (varies grid-by-grid)
reservoirs [56]. The sum of the three parts (SM) is treated as one of the auxiliary datasets.
Additionally, the ITSG-Grace2018 provides the Kalman smoothed daily solutions [62,63],
more importantly, it includes the same full hydrologic signal as the official GRACE monthly
product [31]. The daily TWSA from GLDAS is included in the auxiliary datasets in addition
to the JPL-ERA5 reconstructed by Humphrey and Gudmundsson [35]. It is worth noting
that the average values from 2004 to 2009 have been removed from the above data to stay
in step with TWSA. Therefore, these datasets are applied to evaluate the performance
of reconstructed daily TWSA solutions, including soil moisture anomaly (SMA), ITSG-
Grace2018, JPL-ERA5, and GLDAS-TWSA. Table 2 summarizes detailed information on the
above datasets used in this study.

Table 2. Details of the different datasets used in this study.

Data Short Name Temporal
Resolution Spatial Resolution Time Span

GRACE TWSA
CSR monthly 0.25◦ × 0.25◦ April 2002~January 2022
JPL monthly 0.5◦ × 0.5◦ April 2002~January 2022

Precipitation (PRE)

GPM daily 0.1◦ × 0.1◦ 1 June 2000~10 March 2022
TRMM daily 0.25◦ × 0.25◦ 1 January 1998~1 January 2020

CPC daily 0.5◦ × 0.5◦ 1 January 1979~11 March 2022
CMA daily 0.5◦ × 0.5◦ 1 January 1961~31 December 2021

CN05.1 daily 0.25◦ × 0.25◦ 1 January 1961~31 December 2021
GLDAS daily 0.25◦ × 0.25◦ 1 February 2003~18 January 2022

Temperature (Temp) GLDAS daily 0.25◦ × 0.25◦ 1 February 2003~18 January 2022
CN05.1 daily 0.25◦ × 0.25◦ 1 January 1961~31 December 2021

Daily TWSA

GLDAS-TWSA daily 0.25◦ × 0.25◦ 1 February 2003~18 January 2022

JPL-ERA5 daily 0.5◦ × 0.5◦ 1 January 1979~31 July 2019

ITSG-Grace2018 daily 1◦ × 1◦ 1 April 2002~31 August 2016

Soil moisture anomalies SMA daily 0.25◦ × 0.25◦ 1 February 2003~18 January 2022

The GRACE data was accessed on 18 April 2022.

https://data.cma.cn
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2.3. Methods
2.3.1. Reconstruction of Daily TWSA

GRACE-derived TWS changes are influenced by the combined effects of climate
change and anthropogenic activities [64]. As the basic natural variables, precipitation
and temperature can approximately represent the natural variability of global or regional
TWS [65]. Inspired by the basic principles of hydrological modeling [35], Humphrey
and Gudmundsson reconstructed the climate-driven daily TWSA by building a statistical
model [66], which uses near real-time precipitation and temperature as input variables.
Taking advantage of the relationship between the signals, this model is calibrated by
GRACE TWSA to obtain the daily TWSA with total signal (for short TWSAtotal). Assuming
a linear water storage model, water outputs are directly proportional to the storage and the
residence time of the water store [66]. Based on this method, the model can be formulated
as follow [35]:

TWSA(t) = (TWSA(t − 1)) · e
−1
τ(t) + P(t), (1)

where P(t) and t denote the precipitation and daily time vector, respectively, τ(t) represents
the residence time, and e−1/τ(t) is the consumption function of the water storage, which is
related to temperature and ranges from 0 to 1. To ensure the accuracy of the reconstructed
daily TWSA, the result of the model is further averaged into the “month scale”, and
constrained by the GRACE TWSA, using the following formula [35]:

anom(GRACE(tm)) = β · anom(TWSA(tm)) + ε, (2)

where β is the constrained factor, which also can be called the calibrated parameter. The
anom is the sign of the detrended and deseasonalized. tm and ε denote the monthly time
vector and the error term, respectively. More details about the reconstruction can be found
in Humphrey and Gudmundsson [35].

2.3.2. Time Series Decomposition

The anom processing in Equation (2) can be implemented through time series decom-
position, and the time series of GRACE TWSA can be decomposed into the following
series [45,67].

TWSAtotal = TWSAtrend + TWSAseasonal + TWSAresidual , (3)

where TWSAtotal is the total signal, TWSAtrend and TWSAseasonal stand for liner trend and
seasonal component, respectively. TWSAresidual represents the residual term, reflecting the
inter-annual variation, sub-seasonal signal, and noise. Trends in TWSA largely reflect
long-term changes in water depletion caused by human activities [68], and climate-driven
inter-annual variation in TWSA is typically associated with floods in the mid- and low
latitudes [69]. The high-frequency signals contained in the residual term may be closely
related to short-term events. Therefore, the residual component is separated from the other
components by the least squares method [70].

TWSA = a + b · t + c · cos(2θt) + d · sin(2θt) + e · cos(4θt) + f · sin(4θt) + ε, (4)

where t means the time vector relative to 2004, a~f represents the parameters of each
component, respectively. The ε is the same as in Equation (2) corresponding to TWSAresidual
and a + b·t, and the remainder stand for the liner trend and seasonal components, which
correspond to TWSAtrend and TWSAseasonal in Equation (3), separately. In addition, the trend
and seasonal terms decomposed from the GRACE TWSA are interpolated by least squares
to obtain the corresponding daily component, then the residual component is added to
obtain daily TWSAtotal [38].
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2.3.3. Flood Monitoring Indexes

Since the trend component of GRACE TWSA is mainly influenced by anthropogenic
activities, the detrended TWSAtotal is extracted to calculate the daily flood monitoring
indexes [71]. To express the potential to contain and stagnate floods, the TWSA and
precipitation are chosen as input variables [24] and the FPI is calculated as follows:

FPAi,j = Pi,j −
(
max

(
TWSAi,j

)
− TWSAi,j−1

)
, (5)

FPIi,j =
FPAi,j − min

(
FPAi,j

)
max

(
FPAi,j

)
− min

(
FPAi,j

) , (6)

where i and j range from 2004 to 2021 and 1~365/366, which denote years and days
respectively. TWSAi, j means the detrended TWSAtotal and Pi, j represents the precipitation.
FPI emphasizes the probability of flooding under terrestrial saturation, and it implies a
higher flood occurrence when FPI is closer to 1 [22]. Alternatively, other TWSA-based
indexes such as WSDI and CCDI [26,72] are developed based on the standardization, and
both are calculated using the following formulas:

PAi,j = Pi,j − mean
(

Pi,j
)
, (7)

PAR
i,j = PAi,j − mean

(
PAj

)
, (8)

WSDi,j = TWSAi,j − mean
(
TWSAj

)
, (9)

CCDi,j = WSDi,j + PAR
i,j (10)

WSDIi,j/CCDIi,j =
WSDi,j/CCDi,j − mean

(
WSDi,j/CCDi,j

)
sd
(
WSDi,j/CCDi,j

) (11)

where PAi, j is the variation of precipitation relative to the average of the time series, PAj
and TWSAj represent the collections of TWSA and PA on the same day in different years
respectively. For example, when j = 1, the time collection corresponding to the variables
includes 2004.01.01, 2005.01.01, 2006.01.01, · · · · · · , and 2021.01.01. WSDi, j and CCDi, j are
the water storage deficit and the combined climatologic deviation of the specific, respec-
tively [73]. It is worth noting that WSDI and CCDI are calculated based on standardization,
while the FPI is based on normalization, and different results are also caused by whether or
not precipitation is considered. In addition, there is no clear grading about the relevant
daily flood monitoring indexes, so the relative magnitude of the same index is treated as a
reference value for flooding.

2.3.4. Evaluation Metrics

GRACE TWSA are utilized as references to assess the performance of reconstructed so-
lutions. Three metrics are adopted to quantify the performance of reconstructed results, in-
cluding the correlation coefficient (CC), root-mean-square error (RMSE), and Nash-Sutcliffe
efficiency (NSE) coefficient. Detailed processes are depicted as follows [74,75]:

CC =
∑n

i=1
(
Oi − O

)(
Mi − M

)√
∑n

i=1
(
Oi − O

)2
√

∑n
i=1
(

Mi − M
)2

, (12)

RMSE =

√
1
n

n

∑
i=1

(Oi − Mi)
2, (13)

NSE = 1 − ∑n
i=1(Mi − Oi)

2

∑n
i=1
(
Oi − O

)2 , (14)
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where Oi is the GRACE TWSA or the daily TWSA products shown in Table 2. Mi represents
the reconstructed TWSA, the overbar denotes the mean value, and i and n denote i-th
month or day and the total number, respectively. This means that the reconstructed results
show better performance when the value of RMSE is lower, or the value of CC or NSE is
closer to 1 [37]. The overall flowchart of this study is presented in Figure 2.
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3. Results
3.1. Comparisons of Different GRACE-Filled Solutions

Since there is a data gap between GRACE and GRACE-FO from July 2017 to May
2018, it cannot meet the requirement of continuous TWSA solutions from 2004 to 2021.
Therefore, the nearly one-year gap will be filled using the solutions provided by previous
studies [43,50–52], and an important step is evaluating the performance of different prod-
ucts to choose an optimal solution. As shown in Figure 3, the Taylor diagrams illustrate
the relationship between reconstructed TWSA and original CSR and JPL solutions. Both
RMSE and CC metrics perform satisfactorily, with values of 20~30 mm and above 0.93
from January 2004 to June 2017, respectively (Figure 3a,c). As shown in Figure 3b, the red
rectangle represented by BF is the closest to the original CSR solution, with the highest CC
and the lowest RMSE of (0.50 and 27.77 mm). Similarly, the best performance is evaluated
against the original JPL solution with CC and RMSE of (0.71 and 26.90 mm) (Figure 3d),
which means that BF-based results perform best with GRACE-FO TWSA in the HRB. In
addition, the time series of different products are illustrated in Figure 3e, and the BF-based
results display good overall consistency with the original solutions in the HRB, especially
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during the GRACE-FO period. Thus, the BF-based reconstructed TWSA is chosen to fill the
gap from July 2017 to May 2018 in this study.
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3.2. Comparisons of Different Meteorological Products

Different daily precipitation and temperature products are compared from 2004 to
2021, and the results are shown in Figures 4 and 5. As shown in Figure 4a, five kinds
of precipitation products display similar seasonal variability, with the maximum rainfall
occurring in June~October and the minimum during December~March. Moreover, these
products have the same response to extreme rainfall, such as the maximums in 2012, 2016,
and 2021. The difference is that outstanding performance in the multi-annual maximum
is attained by CPC, while CN05.1 takes the maximum value of precipitation in 2016 and
2021. The CC and RMSE metrics are evaluated during the study period (Figure 4b,c). The
heatmaps suggest that good consistency is observed between GPM and TRMM, CMA and
CN05.1 with the CC and RMSE values of (0.92, 1.37 mm) and (0.90, 1.58 mm), respectively.
However, the precipitation products provided by CN05.1 and CMA show poor agreement
against GPM and TRMM with the CC below 0.73 and RMSE above 2.55 mm. As for the
temperature, GLDAS and CN05.1 reach maximum values in July~August in the HRB.
Additionally, the daily average values of GLADS and CN05.1 are 11.68 ◦C and 10.01 ◦C,
and the former is slightly larger in amplitude than the latter, as shown in Figure 5. Moreover,
the statistical distribution characteristics of the data are provided in Figures S1–S3 in the
Supporting Information.

3.3. Evaluations of the Reconstructed TWSA Solutions

Different temperature and precipitation products are merged randomly, producing
ten kinds of combinations, which include GLDAS-GPM, GLDAS-TRMM, GLDAS-CPC,
GLDAS-CMA, GLDAS-CN05.1, CN05.1-GPM, CN05.1-TRMM, CN05.1-CPC, CN05.1-CMA,
and CN05.1-CN05.1. Figure 6a presents the time series between reconstructed TWSA and
GRACE TWSA at a monthly scale from January 2004 to December 2021. A remarkable
downtrend is observed at the rate of −17.26 mm/year for monthly TWSA in the entire HRB.
Better agreement is observed between GRACE TWSA and reconstructed TWSA with the
NSE of 0.93~0.96, and the highest NSE is obtained by CN05.1-CN05.1 (Table 3). Notably, the
GRACE TWSA in Table 3 stands for the average of CSR and JPL solution, which has been
filled by the BF-based TWSA, and the reconstructed TWSA represents the reconstructed
monthly TWSAtotal or daily TWSAresidual based on ten kinds of combinations.

From the perspective of daily scale, TWSAresidual based on different combinations
present similar daily variations, which show the agreement with the NSE of 0.40 ~ 0.81 in
the HRB against other daily TWSA including ITSG-Grcae2018, JPL-ERA5, and GLDAS-
TWSA. A clear oscillation is shown in ITSG-Grace2018 (Figure 6b). Similarly, the CN05.1-
CN05.1 performs best with the NSE of 0.52 ~ 0.81 from 2004 to 2021. It is worth noting that
the precipitation may contribute more to the model than to temperature. As can be seen
from Table 3, there are little differences in NSE when the same precipitation products are
used, while significant differences are indicated between different combinations, which
include the same temperature and different precipitation. For example, GLDAS-CN05.1
and CN05.1-CN05.1 show similar maximum NSE of 0.80 and 0.81, yet the maximum value
of NSE for GLDAS-CMA is merely 0.60. In addition, the uncertainty based on Tricorn Hat
Method (THM) [76] as well as CC and RMSE metrics are used to evaluate reconstructed
TWSA in addition to NSE, which highlights the superiority of CN05.1-CN05.1 among
the ten kinds of reconstructed results. In conclusion, the CN05.1-CN05.1 combination
is chosen to reconstruct the grids within the HRB due to its better performance on the
monthly and daily scales, and more comparison results are provided in Tables S1–S3 in the
Supporting Information.
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Table 3. NSE between the reconstructed TWSA and GRACE TWSA and daily TWSA products.

NSE GRACE TWSA Daily TWSA Products

GLDAS-GPM 0.94 0.40~0.60
GLDAS-TRMM 0.96 0.50~0.75

GLDAS-CPC 0.96 0.41~0.57
GLDAS-CMA 0.95 0.49~0.60
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CN05.1-TRMM 0.96 0.53~0.75
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CN05.1-CMA 0.95 0.48~0.63

CN05.1-CN05.1 0.96 0.52~0.81

4. Discussions
4.1. Evolution of the Rainfall Process

It is reported that the rainfall gradually increased from 17 July to 18 July 2016, and
reached its peak on 19 July, with the maximum precipitation over 600 mm at multiple local
points (http://www.gov.cn/xinwen/2016-07/21/content_5093878.htm, accessed on 10
June 2022). The Haihe Water Conservancy Commission issued continuous flood warnings
(http://www.hwcc.gov.cn/wwgj/haiweiyw/201607/t20160719_56444.html, accessed on
10 June 2022) and subsequently declared the first flood event in 2016. This flood caused
huge economic losses in Hebei, Henan, Beijing, and Tianjin within the HRB as recorded by
the “2016 Bulletin of Flood and Drought Disasters in China” [77].

To further understand the process of rainfall, the GPM precipitation data is used to
depict the daily rainfall distribution map with a spatial resolution of 0.1◦ × 0.1◦ from 17
July to 21 July. As shown in Figure 7, the precipitation space moves from southwest to

http://www.gov.cn/xinwen/2016-07/21/content_5093878.htm
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northeast, covering almost the whole basin. The plains area in front of the mountain is
treated as a flood center including counties or districts of Anyang, Handan, and Xingtai,
which was seriously damaged according to the “2016 Bulletin of Water Resources in Hebei
and Anyang” [78,79].
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4.2. Application of the Reconstructed daily TWSA

The detection of water volume change is essential for understanding and predicting
flood events [4]. To evaluate the performance of the reconstructed daily TWSA, the recon-
structed daily TWSA based on CN05.1-CN05.1 is used to evaluate water volume change
during the 2016 short-term flood event. Figure 8a shows the residual variations of different
products in the flood center, and it can be seen that reconstructed daily TWSA exhibits the
strongest reaction with a maximum value of 216.19 mm. Figure 8b intuitively displays the
specific change values from 18 July to 20 July, and the reconstructed daily TWSA rises by
168.83 mm in EWH during this period, followed by SMA and GLDAS-TWSA at 154.44 mm
and 82.86 mm. Correspondingly, JPL-ERA5 and ITSG-Grace2018 perform poorly, with only
37.56 mm and 7.73 mm.

The spatial distribution of EWH is further shown in Figure 9. It can be seen that
CN05.1-CN05.1, GLDAS-TWSA, and SMA are all able to track the movement of gridded
precipitation and react to it in a timely manner from 17 July to 21 July, while JPL-ERA5 and
ITSG-Grace2018 fail to work. The spatial distribution maps of increased EWH for different
products are shown inside the red frame from July 18 to July 20. Similar to the change of
time series in Figure 8, only CN05.1-CN05.1, SMA, and GLDAS-TWSA observably increase
in the flood center. Although the SMA is larger than CN05.1-CN05.1 and GLDAS-TWSA,
the reconstructed daily TWSA is stronger in the flood center from the view of responding
to water volume change. In brief, compared to other daily products, reconstructed daily
TWSA can sensitively capture the information on water volume changes caused by extreme
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rainfall, and perform a better response in time and space. That means the reconstructed
daily TWSA possesses a crucial feature for monitoring flood events.
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4.3. Spatiotemporal Analysis of the Short-Term Flood Event in 2016
4.3.1. Temporal Variation of the Flood

To verify the accuracy of reconstructed results, three kinds of indexes based on recon-
structed daily TWSA are constructed with the temporal and spatial resolutions selected
as daily and 0.25◦ × 0.25◦, including FPI, WSDI, and CCDI. The spatiotemporal evolution
of the 2016 short-term flood event is evaluated by these indexes, and Figure 10 shows the
temporal variation of FPI, WSDI, and CCDI from 1 January 2004 to 31 December 2021.
Obviously, the three indexes accurately evaluate flood events that occurred in the HRB in
2012, 2016, and 2021, which are marked in gray. WSDI is consistent with FPI and CCDI in
the description of flood in HRB, with similar peaks and troughs. It indicates that the flood
indexes based on reconstructed daily TWSA have shown great potential for monitoring
flood events in the basin. However, since these daily indexes are developed with different
variables and approaches, FPI, CCDI, and WSDI differ in magnitude. For instance, com-
pared to FPI and CCDI in the 2016 flood event, WSDI calculated only by TWSA does not
respond significantly in its own range.

4.3.2. Spatial Distribution of the Flood

Figure 11 shows the spatial distribution of FPI, WSDI, and CCDI from 17 July to 21 July
in 2016. Three daily indexes reveal the process of flood spreading from the southwest to
the northeast, which is consistent with the record of the government-issued “2016 Bulletin
of Flood and Drought Disasters in China” [77]. In addition, the spatial evolutions of FPI
and CCDI are very similar and perform more significantly than WSDI in the entire basin,
which corresponds to the temporal variation. Specifically, the three indexes are similar in
the spatial scale on 17 and 18 July, foreshadowing flood events only in the south of the
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basin. Nevertheless, the difference between WSDI and other indexes becomes apparent
from 19 July, and precipitation contributes markedly to FPI and CCDI as seen on 20 and
21 July.
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To present the coverage of damage during the short-term flood, the increase of three
indexes is evaluated as shown in the red frame from July 18 to July 20. In line with FPI and
CCDI, this flood event is also detected by WSDI, which shows that the short-term flood
has damaged the coastal area in western Liaoning province (http://www.gov.cn/xinwen/
2016-07/21/content_5093443.htm, accessed on 12 June 2022) and most regions of Hebei
province [78]. More specifically, the (number of the red grids/number of total grids) ×
100% is utilized to simply quantify the proportion of area damaged by flooding in the HRB.
Obviously, the severity of this flood may have been overestimated by the FPI and CCDI,
both of which show flooding spreading to Chengde in the northern HRB with values of 56%
and 66%, respectively. Unfortunately, this phenomenon is less consistent with the records
of the “2016 Bulletin of Water Resources in Chengde” [80], which highlights that there was
no flood in Chengde and that only the east of the city was disturbed by the rainstorm. In
contrast to FPI and CCDI, the spatial distribution of WSDI matches well with the in situ
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records of the Water Resources Bulletins, and the quantified results show that 48% of the
basin was damaged by this flood.
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4.4. Response of Different Components of Soil Moisture in the Flood Event

Extreme climate change is easily understood through soil moisture, which usually
contains several components with various depths [81]. Figure 12 displays the variation of
three parts of soil moisture in the flood center from 15 July to 26 July 2016. It is obvious
that great changes have taken place in the soil moisture profile with inter-day variation
values of 52.46 mm and 31.92 mm from 18 July to 20 July, as well as changes in root zone
soil moisture. It is noted that the greatest decline of EWH is observed in the root zone
since the flood gradually recedes on 21 July, indicating that the damage from this flood
occurred mainly in the root zone. This flood destroyed different parts of the soil with
varying degrees, which poses a challenge for soil restoration in the future.
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5. Conclusions

In order to overcome the shortcomings of the rough temporal resolution of GRACE
TWSA, this study constructs three daily flood monitoring indexes based on reconstructed
daily TWSA. Near real-time “Temperature-Precipitation” combinations are input into a
statistical model to reconstruct the daily TWSA from 2004 to 2021, and the daily TWSA
reconstructed by the best solution is then compared with other daily products in EWH.
What is more, the daily TWSA-based FPI, WSDI, and CCDI are used to evaluate the short-
term flood event in temporal evolution and spatial distribution. The primary conclusions
are summarized:

1. Compared to the GRACE TWSA and other daily TWSA products, daily TWSA re-
constructed based on CN05.1-CN05.1 perform best with the NSE of 0.96 and 0.52 ~
0.81 among the ten combinations. The daily TWSA reconstructed by CN05.1-CN05.1
better reflects the dramatic increase of EWH than GLDAS-TWSA, JPL-ERA5, and
ITSG-Grace2018 during the 2016 short-term flood event. In addition, the precipitation
variable may contribute more to the model than temperature by comparing different
reconstructed results.

2. Three daily flood monitoring indexes developed by reconstructed daily TWSA iden-
tify three recorded significant flood events in July 2012, July 2016, and July~October
2021 in the HRB. Moreover, FPI, WSDI, and CCDI reveal the fact that the spatial
distribution in the 2016 short-term flood event extends from the southwest to the
northeast, which is consistent with the track of the rainfall center. The spatiotem-
poral performance of FPI, WSDI, and CCDI validates the effectiveness of the daily
flood monitoring indexes, which greatly improves the temporal characterization of
flood monitoring.

3. During the 2016 short-term flood event, FPI and CCDI may have spatially overesti-
mated the damage coverage of the flood with values of 56% and 66%, respectively.
Importantly, the spatial impact of the flood assessed by WSDI is more consistent
with the government report, and the quantified results show that 48% of the basin is
damaged by the flood. Moreover, different parts of SM are compared, indicating the
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damage of this flood occurred mainly in the root zone. This paper not only contributes
a method to GRACE TWSA for monitoring short-term flood events but also provides
a potential reference for TWSA to be applied to short-term studies in more fields (e.g.,
sub-monthly evolution of drought and crustal movement). Notably, limited by input
variables, the methodology is only applicable to areas where rainfall and temperature
are the main factors affecting TWSA.
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the daily TWSA products in the Haihe River Basin. Table S1: CC, NSE and RMSE values between
reconstructed monthly TWSAtotal and GRACE TWSA. Table S2: CC, NSE and RMSE values between
reconstructed daily TWSA and Daily TWSA products at residual term. Table S3: Uncertainty among
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