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Abstract: The extraction of water stream based on synthetic aperture radar (SAR) is of great sig-
nificance in surface water monitoring, flood monitoring, and the management of water resources.
However, in recent years, the research mainly uses the backscattering feature (BF) to extract water
bodies. In this paper, a feature-fused encoder–decoder network was proposed for delineating the
water stream more completely and precisely using both the BF and polarimetric feature (PF) from
SAR images. Firstly, the standard BFs were extracted and PFs were obtained using model-based
decomposition. Specifically, the newly model-based decomposition, more suitable for dual-pol SAR
images, was selected to acquire three different PFs of surface water stream for the first time. Five
groups of candidate feature combinations were formed with two BFs and three PFs. Then, a new
feature-fused encoder–decoder network (FFEDN) was developed for mining and fusing both BFs and
PFs. Finally, several typical areas were selected to evaluate the performance of different combinations
for water stream extraction. To further verify the effectiveness of the proposed method, two machine
learning methods and four state-of-the-art deep learning algorithms were utilized for comparison.
The experimental results showed that the proposed method using the optimal feature combination
achieved the highest accuracy, with a precision of 95.21%, recall of 91.79%, intersection over union
(IoU) score of 87.73%, overall accuracy (OA) of 93.35%, and average accuracy (AA) of 93.41%. The
results showed that the performance was higher when BF and PF were combined. In short, in this
study, the effectiveness of PFs for water stream extraction was verified and the proposed FFEDN can
further improve the accuracy of water stream extraction.

Keywords: water stream extraction; encoder-decoder network; synthetic aperture radar (SAR);
polarimetric feature (PF); backscattering feature (BF); feature combination

1. Introduction

Surface water, including rivers, lakes, reservoirs, and ponds, generally has certain
connectivity and forms a water stream [1]. Extracting the water stream accurately and
completely can provide powerful data for surface water resources management and plan-
ning as well as drought and flood disaster prevention and control [2], which contributes to
socio-economic development and ecological protection [3].

Nowadays, remote sensing technology is regarded as an efficient means for the inves-
tigation of surface water resources and has a high accuracy for the extraction of the water
stream in large-scale images because it can make use of various features [4]. At present,
optical remote sensing [5–8] and digital elevation models (DEMs) [9–12] obtained from
different satellites have been widely used with a range of supervised and unsupervised
methods [13]. However, the optical data can be prone to being affected by clouds, rain,
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and fogs, so it may not be possible to obtain high-quality images at the specific time [14].
Meanwhile, the methods using DEMs also have some problems such as low accuracy in
extracting water bodies [15]. As a result, it is difficult to extract water body by using these
data in specific area or time. Fortunately, synthetic aperture radar (SAR), as an active earth
observation system, can detect targets at all times which are not affected by weather and
meteorological factors and can detect targets at all times [16,17]. Water bodies have a lower
scattering value and present as dark area in SAR images compared with other ground
objects, which make it easy to extract surface water.

Based on these characteristics, scholars have put forward many different water ex-
traction methods, including threshold segmentation [18,19], mathematical statistical algo-
rithms [20], machine learning [21–24], and deep learning [25–27]. The threshold method
determines whether the pixels are water bodies through a suitable preset threshold. This
method is easy to implement, but the setting of suitable threshold is difficult to find [28].
The Wishart classifier utilizes polarimetric information to extract water bodies and has more
accurate extraction results in small areas, but the spatial continuity is weak [29]. Machine
learning methods, such as random forest (RF) [30], support vector machine (SVM) [31],
and Markov random field (MRF) [32], require higher computing power and are always
affected by speckle noise in SAR images, which lead to inaccurate extraction results. The
above methods attempt to establish a mapping relationship to classify each pixel, which is
difficult due to the influence of speckle noise [33]. In recent years, deep learning methods
have overcome these problems because of their powerful feature extraction capabilities.
Convolutional neural networks (CNN), such as U-Net, DeepLab, and others, have achieved
remarkable results [34–37]. Nemni et al. used an improved U-Net to rapidly extract wa-
ter bodies with VV polarization backscattering images of Sentinel-1 [38]. Based on the
DeepLab model, Guo et al. established a new model to quickly extract flooded areas
by using both VV and VH polarization backscattering images [39]. Xue et al., proposed
dense-coordinate-feature-concatenate network (DCFNet) and combines the features of HH
and HV polarization backscattering images [40]. Chen et al., proposed a model named
MSF-MLSAN (multi-scale spatial feature-multi-level selective attention network) to extract
a water body in backscattering images of millimeter-wave SAR data. [41]. Zhang et al.,
proposed a U-Net-based model, WENET, to extract the waterline from Sentinel-1 SAR
images [42]. Baumhoer et al., used a U-Net model to extract the Antarctic coastline for
tracking glacier and ice shelf front movement using Sentinel-1 data [43]. Combining the
holistically-nested edge detection (HED) and U-Net, Heidler et al. recently successfully
extracted the Antarctic coast’s waterline and completed the sea–land classification simul-
taneously for Sentinel-1 SAR imagery [44]. However, these deep learning methods were
mainly focused on the backscattering features (BFs) and select one or multiple BFs as the
input of the model; the polarimetric features (PFs) have not been utilized adequately.

This paper proposed a deep learning method, which fully integrated BFs and PFs, and
whether the fused features can extract water stream more accurately from Sentinel-1A SAR
images was discussed. First, the BFs of VV and VH were obtained and the PFs were gained
using the model-based decomposition method. Then, a feature-fused encoder–decoder
Network based on U-Net [45] was proposed for extracting and fusing valid water features
from all of the above features to extract the water stream more precisely and connectively.
The main contributions of this paper are:

1. The water features from BFs and PFs are fully integrated by using feature-fused
block and the influence of different combinations on water stream extraction is ex-
plored. Especially, the influence of PFs obtained by the newly model-based decom-
position adapted to dual-pol SAR images was first discussed in the task of water
stream extraction.

2. An effective water stream extraction model FFEDN is proposed. It has an outstanding
capability of feature learning and feature fusing, which improves the extraction accuracy.

The rest of this paper is organized as follows. Section 2 describes the study area and
datasets for data pre-processing, model training, and the accuracy assessment. Section 3
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shows the results of extraction and Section 4 discusses the results as remaining limitations
of our method. Finally, Section 5 summarizes the findings of this paper.

2. Materials and Methods
2.1. Study Area

As shown in Figure 1, Henan Province (110◦21′E–116◦39′E, 31◦23′N–36◦22′N) is lo-
cated in the center of China, which has an area of 167,000 km2. Henan Province is the only
one that spans the Yangtze River Basin, the Yellow River Basin, the Huaihe River Basin,
and the Haihe River Basin, with numerous tributaries crisscrossing the territory. However,
the total amount of water resources is at the middle level of the whole country, and the
per capita water resources are less than 1/6 of the whole country. Meanwhile, there has
been a serious shortage and uneven distribution in space and annual water due to the
influence of latitude and climatic conditions. Therefore, high precision monitoring of the
complete water stream in the study area is of great practical significance for the planning
and utilization of water resources.
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Figure 1. Location of study area in China.

2.2. Data and Pre-Processing
2.2.1. Sentinel-1A Data and Pre-Processing

Sentinel-1A SAR images acquired by the European Space Agency (ESA) have a short
revisiting period of 12 days and a high spatial resolution of 5 × 20 m [46]. The parameters
of the data are shown in Table 1. Single Look Complex (SLC) image, which includes
amplitude and phase information, was chosen because it can provide abundant polarimetric
information. As the scale of Sentinel-1A images can not cover the whole study area, a total
of 14 scene SAR images from 14 May 2021 to 27 July 2021 were selected which can observe
the entire study area. Among them, 13 scene SAR images were selected for model training
and 1 scene SAR images for validation. Finally, 14 scene SAR images were spliced to obtain
the result of water stream extraction in Henan Province.



Remote Sens. 2023, 15, 1559 4 of 28

Table 1. Parameters of Sentinel-1A SAR Images.

ID Time
(M/D/Y)

Range
Spacing (m)

Azimuth
Spacing (m)

Orbit
Direction

Processing
Level

1 14 May 2021 2.33 13.94 Ascending L1-SLC (IW)

2 14 May 2021 2.33 13.95 Ascending L1-SLC (IW)

3 14 May 2021 2.33 13.95 Ascending L1-SLC (IW)

4 14 May 2021 2.33 13.94 Ascending L1-SLC (IW)

5 21 May 2021 2.33 13.94 Ascending L1-SLC (IW)

6 4 June 2021 2.33 13.94 Ascending L1-SLC (IW)

7 4 June 2021 2.33 13.93 Ascending L1-SLC (IW)

8 20 July 2021 2.33 13.95 Ascending L1-SLC (IW)

9 20 July 2021 2.33 13.94 Ascending L1-SLC (IW)

10 22 July 2021 2.33 13.94 Ascending L1-SLC (IW)

11 27 July 2021 2.33 13.95 Ascending L1-SLC (IW)

12 27 July 2021 2.33 13.94 Ascending L1-SLC (IW)

13 27 July 2021 2.33 13.95 Ascending L1-SLC (IW)

14 27 July 2021 2.33 13.93 Ascending L1-SLC (IW)

15 27 July 2021 2.33 13.94 Ascending L1-SLC (IW)

The pre-processing steps for obtaining the BF and the polarimetric matrix from
Sentinel-1A images were shown in Figure 2. For the same steps, the orbit file application,
thermal noise removal, deburst, multi-looking, refined Lee filtering, and range-Doppler
terrain correction were used. It should be noted that the number of range looks and azimuth
looks is 4 and 1 in the step of multi-looking. In addition, the type of filter is refined Lee
and window size is 7 × 7 pixels. Additionally, in the range-Doppler terrain correction, the
shuttle radar topography mission (SRTM) with a resolution of 30 m was used to acquire
the precise geographic information. Each burst was merged which has the effective signal
parts by the operation of deburst. The impact of coherent speckle noise can be reduced
by the multi-looking and filtering operation. Among the steps, the difference lied in that
the output of calibration was σ0 band to obtain the BF, while the output of calibration was
a complex band to obtain the polarimetric matrix. In addition, the coherency matrix was
generated after the deburst to obtain the polarimetric matrix.

2.2.2. Ground Truth Data and Pre-Processing

In order to obtain a comprehensive and accurate view of the water bodies, the labeling
process of samples can be divided into three steps. The first step was using the traditional
threshold method for preliminary mapping. In the second step, the preliminary mapping
of water bodies was corrected by visual interpretation to obtain more accurate labeling.
Images of the same area and similar dates obtained by Google Earth were used as references.
By comparison, the mistakenly extracted road and hill shade could be removed. Finally,
the binary map was created by setting the pixel values of water and non-water to 0
and 1, respectively.

The sample set was divided into 1024 × 1024 with a 50% overlap area to make the
sample representative and the model stable. In the training process, a total of 1521 sliced
pictures were obtained by the 13 scene SAR images. 80% of the sliced pictures were
randomly selected as training sets and 20% as test sets. Eventually, 1217 pictures were used
as training samples and 304 pictures were used as test samples. By obtaining the binary map
of water or non-water, the parameters of the samples were illustrated in Table 2. Figure 3
shows the BF of VV and VH polarization and corresponding samples of two regions.
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Table 2. Ground truth samples in one scene SAR image in the study area.

Label Type Total Number
of Samples

Number of
Training
Samples

Number of Test
Samples

0 Water 239,232,614 191,386,092 47,846,522

1 Non-Water 1,355,651,482 1,084,521,186 271,130,296

2.3. Water Stream Extraction

The flow chart of the proposed method was presented in Figure 4. After the data
pre-processing, the water stream extraction method was mainly divided into 3 steps. In
step 1, standard BFs were extracted and the PFs were obtained based on the model-based
decomposition of dual-pol SAR data [47]. Additionally, the above features were used to
form five groups of candidate feature combinations. In step 2, FFEDN was proposed based
on U-Net, including feature-fused block, encoder, pyramid pooling module, and decoder
in order to improve the ability to mine and fuse both BFs and PFs, thus, better representing
the characteristics of water bodies. In step 3, the extraction results of the water stream with
different combinations were explored based on FFEDN by quantitative and qualitative
evaluation. Through the analysis of precision and efficiency, the optimal combination
was selected.
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2.3.1. Feature Acquisition and Combination

The BFs of Sentinel-1 with two polarization modes, namely VV and VH, can be
obtained through the pre-processing. The BFs can be calculated as follows:

σVV
0 = 10log10

(
|DNVV |

AVV

)
(1)

σVH
0 = 10log10

|DNVH |
AVH

(2)

where DN is the original value of SAR image and A depends on the lookup table of
auxiliary data.

The Sentinel-1 datasets used in this study were dual-polarimetric images with VV and
VH polarization, for which the scattering matrix is defined as:

S =

[
0 0

SVH SVV

]
(3)

The corresponding target scattering vector k can be expressed as:

k =
(√

2SVH , SVV

)T
(4)

The Sentinel-1 dual-polarimetric SAR data can be represented by the following polari-
metric covariance matrix:

C2X2 = kkγ =

[
c11 c12
c21 c22

]
=

 〈
2|SVH |2

〉 〈√
2SVHSVV

∗
〉〈√

2SVVSVH
∗
〉 〈

|SVV |2
〉  (5)

where γ represents the conjugate transpose and ∗ is the conjugate operator.
To make full use of the polarimetric information of Sentinel-1 images in water stream

extraction, the polarimetric decomposition parameters (volume scattering mv, remaining
scattering ms, and the difference between them mrat) were obtained from Sentinel-1 images
by adopting the newly model-based decomposition adapted for dual-polarimetric SAR
images [46].

Transforming C2X2 into Stokes vector:

S =


s1
s2
s3
s4

 =


c11 + c22
c11 − c22
2Re(c12)
2Im(c12)

 (6)

where Re(c12) and Im(c12) represent the real part and the imaginary part of c12, respectively.
Then, transforming S into the sum of three polarimetric components:

S = mvsv + mssp + nsn (7)

where sv represents an arbitrary volume model, sp represents the polarized Stokes vectors,
n is noise term, sn is a randomly polarized Stokes vector that can be ignored using noise
subtraction techniques [48], mv is the volume scattering component, and ms is the remaining
scattering component.

Therefore, two items should be considered as follows:

S = mv


1
±0.5

0
0

+ ms


1

cos2α
sin2αcosδ
sin2αsinδ

 (8)
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{
α = 1

2 cos−1
(

s2
s1

)
δ = arg(s3 + is4)

(9)

where α and δ are the ratio parameters, symbol + is for H transmit, and − for V.
According to the above formulas, mv and ms can be calculated as follows.

mv = ± 2Re(c12)

arcsin
(

cos−1
(

c11−c22
c11+c22

))
arccos(arg(2Re(c12) + 2Im(c12)))

(10)

ms = c11 + c22 −mv (11)

The mrat can be calculated as follows:

mrat = mv −ms (12)

Subsequently, the three extracted PFs were obtained by decomposition.
After BF and PF were obtained by pre-processing, five combinations shown in Table 3

were formed for the extraction of the water stream. In previous studies, water extraction
was based on BF. In order to effectively verify the performance of the model after adding
PF, combination A was BFs. Different PFs, which represent different characteristics of the
water body, were added to form different combinations.

Table 3. Five Candidate Feature Combinations.

BF PF

σVV
0 σVH

0 mv ms mrat

Combination A
√ √

Combination B
√ √ √

Combination C
√ √ √

Combination D
√ √ √

Combination E
√ √ √ √ √

2.3.2. FEEDN Model

FFEDN was built to obtain a more accurate result of the water stream by fusing and
using the BFs and PFs. The structure of FFEDN, shown in Figure 5, consisted of four main
components: feature-fused block, encoder block, pyramid pooling module, and decoder
block. Feature fusion [49] and the encoder–decoder framework [50–53] were widely used
in deep learning, which had proved to be effective for feature mining and fusing with
different images and resolutions. The encoder–decoder framework was adapted as the
backbone network and the skip connection was used between the encoder and decoder to
obtain features with different resolution scales. The pyramid pooling module lay between
the encoder and decoder part. The attention block is mainly inspired by the attention
gate model [54], which is used to identify the irrelevant part of the model and learn the
characteristics related to the task. The FFEDN attempted to mine water features of BFs and
PFs and combine them together effectively, and the features of different scales were fused
through encoder–decoder to improve the ability to extract the water stream.

In the feature-fused block, convolutional filters were set up to further mine the deep
and correlation information from BFs and PFs. After the convolution layer, the batch
normalization (BN) layers and ReLU activation function followed, respectively, which
can improve network generalization capabilities and effectively avoid the problems of
gradient explosion and gradient disappearance [55]. The fused feature maps were fed into
the encoder and compressed into a potential space representation.
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As shown in Figure 6, the pyramid pooling module (PPM) [56,57] fuses features of
four different scales (1 × 1, 2 × 2, 3 × 3, and 6 × 6). The outputs of different levels contain
the feature maps with different sizes. To maintain the weight of the global feature, the 1 × 1
convolution after each pyramid level was used to reduce the dimensions to 1/N of the
original features, where N is the size of the pyramid level. Then, the bilinear interpolation
upsampling was used to restore the channel dimension of the low-dimensional feature
map to the original feature map. Finally, different levels of features were concatenated
as the final global feature of pyramid pooling. The pyramid pooling module collected
multi-level features of multi-scale water bodies, such as lakes or small rivers with different
characteristics, and combined them with the original feature map extracted for the encoder.
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Then, the decoder aimed to reconstruct the spatial representation, which mapped
the feature vectors back to the original input image size. The skip connection between
the encoder and decoder is developed to provide rich fundamental information. At last,
a water–non-water binary map was generated by convolution operation with the kernel
size of 1 × 1. Especially, as shown in Figure 7, the attention block (ABL) [58,59] was used
in the decoder to make the network focus on water stream extraction by identifying the
irrelevant part and learning the characteristics related to the task. The g represents the
gating signal output from the downsampling layer and X1 represents the feature map of the
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upsampling layer passed by the skip connection. DConv2d represents the mean pool after
using the dilated convolution kernel. Then, the gate signal and feature map are connected
and the ReLU activation function, dimension reduction, and Sigmod activation are used.
The results are the dot multiplied with X1 to obtain the features concerned.
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It should be noted that the proportions of water and background pixels were imbal-
anced, thus, using Dice loss which was designed to address the extremely imbalanced
samples [60] to solve the problem. In the task of water bodies extraction, the Dice loss
function was as follows:

LDice = 1− Dice (13)

where LDice represents the Dice loss and Dice represents Dice coefficient. Using LDice ε [0, 1]
to balance the importance of water and non-water pixels which can avoid non-water pixels
dominating the gradient. Larger Dice puts more weight on water pixels.

The calculation equation of the Dice coefficient was as follows:

Dice =
2(A ∩ B)
|A|+ |B| (14)

where A ∩ B specifies the intersection of the generated results and the ground truth value
and |A| and |B| represent the pixel number of the extraction results and ground truth,
respectively. The extraction performance was better when the Dice coefficient was higher.

In summary, the FFEDN model contained four blocks: feature-fused block, encoder
block, pyramid pooling module, and decoder block. The feature-fused block was used to
extract and fuse the water features from different kinds of features. The encoder block,
which extracts features using convolution, increased the receptive field by the pool layer.
The pyramid pooling module could realize multi-scale feature extraction from the feature
map of both small rivers or large water bodies with different characteristics. In the decoder,
through deconvolution and the attention block, the features were reproduced, and the
upsampling was restored to the original size of the input. The process used supervised
learning to discover internal correlations between the BF and PF and extract as much useful
information as possible. The detailed parameters of FFEDN are shown in Table 4.

Table 4. Parameters of FFEDN.

BFs (1024,1024,2) PFs (1024,1024,3)

Conv2D
Filters = 64, kernel_size = 3,

activation = ‘ReLU’, BatchNormalization
(1024,1024,64)

Conv2D
Filters = 64, kernel_size = 3,

activation = ‘ReLU’, BatchNormalization
(1024,1024,64)

Conv2D
Filters = 64, kernel_size = 3,

activation = ‘ReLU’, BatchNormalization
(1024,1024,64)

Conv2D
Filters = 64, kernel_size = 3,

activation = ‘ReLU’, BatchNormalization
(1024,1024,64)
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Table 4. Cont.

BFs (1024,1024,2) PFs (1024,1024,3)

Layer Parameters Output shape

Concat (1024,1024,128)
MaxPooling2D Kernel_size = 2 (512,512,128)

Conv2D Filters = 256, kernel_size = 3, activation =
‘ReLU’, BatchNormalization (512,512,256)

MaxPooling2D Kernel_size = 2 (256,256,256)

Conv2D Filters = 512, kernel_size = 3, activation =
‘ReLU’, BatchNormalization (256,256,512)

Up-Sampling Kernel_size = 2 (512,512,512)
Pyramid Pooling Module Kernel_size = 1,2,3,6 (512,512,512)

Attention Block (512,512,512)

Conv2D Filters = 256, kernel_size = 3, activation =
‘ReLU’, BatchNormalization (512,512,256)

Up-Sampling Kernel_size = 2 (1024,1024,256)

Conv2D Filters = 128, kernel_size = 3, activation =
’ReLU’, BatchNormalization (1024,1024,128)

Conv kernel_size = 1, activation = ’Sigmod’, (1024,1024,1)

2.3.3. Optimal Combination Selection

In order to select the optimal combination, confusion matrix was used to evaluate the
extraction results. As shown in Table 5, the definitions of the four indicators were given in
the confusion matrix.

Table 5. Confusion matrix.

Generated Label

Water Non-Water

Ground truth
Water True Positive (TP) False Negative (FN)

Non-Water False Positive (FP) True Negative (TN)

Precision, recall, intersection over union (IoU), overall accuracy (OA), and average
accuracy (AA) were chosen as evaluation indicators to carry out quantitative analysis. The
calculations of them were illustrated in the Equations (15)–(19), respectively. High precision
means that the extraction results are more accurate. A high value of recall means that the
model can find more water bodies in the image. IoU represents the overlap ratio of the
model extraction results.

Precision:
Precision =

TP
TP + FP

(15)

Recall:
Recall =

TP
TP + FN

(16)

IoU:
IoU =

TP
TP + FP + FN

(17)

OA:
OA =

TP + TN
TP + FN + FP + TN

(18)

AA:

AA =
1
2

(
TP

TP + FN
+

TN
FP + TN

)
(19)
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The McNemar test [61] was used to access the statistical significance of differences
in the extraction accuracy. McNemar’s test principle is based on the evaluation of a
contingency table with a 2 × 2 dimension considering only correct and incorrect points for
two different methods. (Table 6).

Table 6. Data layout for McNemar test between two extraction results.

Extraction Result 2

Correct Incorrect Total

Extraction Result 1
Correct f11 f12 f11 + f12

Incorrect f21 f22 f21 + f22
Total f11 + f21 f12 + f22 f11 + f12 + f21 + f22

In the relative comparison between different combinations in our manuscript, the
chi-square (χ2) has one degree of freedom and uses exclusively discordant samples as
shown in Equation (20):

χ2 =
( f12 − f21)

2

f12 + f21
(20)

3. Results
3.1. Implementation Details

All of the experiments were completed in the TensorFlow environment with GeForce
RTX 3080Ti and 64G RAM. The FFEDN was trained by an Adam optimizer [57,58] which
has computational efficiency and low memory requirements. The weight decay was set
to 0.004 and the learning rate was set to 0.0001. The model was trained on 100 epochs to
obtain the final results and the batch size was 32. The hardware and software configuration
of the network was presented in Table 7.

Table 7. Hardware and software configurations of the experiments.

Configuration Version

GPU GeForce RTX 3080Ti
Memory 64 G

Language Python 3.8.3
Frame Tensorflow 1.14.0

The FLOPs of FFEDN were 62,049,671 and the model size was 359 MB. On average,
it took around 4–5 h to train the model. To ensure a fair comparison, all parameters were
set as the same in all experiments. Figure 8 showed the loss and accuracy plot for FFEDN
obtained on training and validation images of the SAR sub-image dataset.

3.2. Evaluation of Different Combinations with FFEDN

There were 14 images in the experiment, 13 of which were used to train the FFEDN
model. After training the model, the remaining SAR image not included in the training
process was used for validation. In the task of water stream extraction, the fine water bodies
were easily omitting, the shadows were lightly classified as water bodies, and the small
rivers were easily extracted incompletely. All the above phenomena will lead to inaccurate
results of water stream. Thus, three different areas were selected, namely, rural (Region
A), hilly (Region B), and urban (Region C) which includes water bodies with different
characteristics, as shown in Figure 9a–c, respectively. The selected area was 1024 × 1024,
as shown in the orange rectangle in Figure 9. The relatively complete water stream can be
constructed if the water bodies can be extracted in the different areas.
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3.2.1. Qualitative Evaluation

The five combinations shown in Table 3 were used as the inputs of FFEDN and the
optimal one was explored through qualitative evaluation and quantitative evaluation,
respectively. The extraction results of Region A, B, and C using different combinations were
shown in Figure 10.

Whether in Region A, B or C, when the Combination C was used as input, the extracted
results were more refined and complete. In Region A, as shown in Figure 9c, both the
large water bodies and fine water bodies were extracted more completely and accurately.
In Region B, as shown in Figure 10(c2), especially in the orange rectangle, the erroneous
extraction of hilly shadows as water was effectively reduced. In Region C, marked with
blue rectangle in Figure 10(c3), the small rivers flowing through the urban area could be
effectively extracted.
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Figure 10. Water extraction results of FFEDN with different combinations in three selected regions.
(a1–a3) The results of Combination A. (b1–b3) Results of Combination B. (c1–c3) Results of Combina-
tion C. (d1–d3) Results of Combination D. (e1–e3) Results of Combination E.

For Combination A, there were errors of false and missing information in extracting
fine water bodies, as shown in Figure 10(a1). The shadow of hills was extracted mistakenly
as a water body in the Region B marked with a yellow rectangle, as shown in Figure 10(a2).
The river in Region C was not extracted connectively, as shown in the blue rectangle
in Figure 10(a3). For Combination B, the fine water stream is extracted accurately to a
certain degree compared with Combination A, as shown in Figure 10(b1). However, the
shadows were still mistakenly classified as a water body in Figure 10(b2). The results of
river extraction in the Region C were more accurate which also had a missing extraction in
the blue rectangle in Figure 10(b3). For Combination D, the extraction result in Figure 10(d1)
was complete. However, the hilly shadow was still wrongly classified as a water body in
Figure 10(d2) and the river flowing through the Region C in Figure 10(d3) was not correctly
identified to some extent. For Combination E, the fine water body, hilly shadows, and small
rivers were not correctly extracted.

3.2.2. Quantitative Evaluation

The validation samples were fed into the FFEDN, then the outputs of models were
compared with the labels to generate confusion matrices, which were shown in Figure 11.
According to the confusion matrices, the different combinations were quantitatively evaluated.

The results were listed in Table 8. Among them, the indicator values were lowest when
using Combination A as input. The precision, recall, OA, and AA were around 80% and
the IoU was lower than 70%. Combination C achieved the best accuracy which precision
scored 95.21%, recall scored 91.79%, IoU scored 87.73%, OA scored 93.35%, and AA scored
93.41%. This was because the scattering type of water body in the SAR image is surface
scattering which can be represented by ms. Therefore, the indicator value was highest
when using Combination C as input. Precision of Combination B was 83.52% because mv is
different from the characteristics of water body in the SAR image. Precision, recall, IoU,
OA, and AA of Combination D were lower than Combination C 5.48%, 10.13%, 7.96%,
13.05%, 8.56%, and 8.82%, respectively. This was because the features of mv and mrat have
a negative influence on water extraction, resulting in low indicator values. Precision, recall,
OA, and AA of Combination E were all above 85%, but the IoU was still low which was
due to the negative effects of mv and mrat.

McNemar test results highlight that the extraction results between different Combina-
tions. The chi-square value between Combination A and other Combinations (B, C, and
D) were given in Table 9. The χ2 values were larger than 3.84 and the results confirm the
better performance after fusing BFs and PFs.
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Table 8. Results of quantitative evaluation by different combination.

Precision Recall IoU OA AA

Combination A 81.63% 79.50% 67.43% 80.29% 80.31%

Combination B 83.52% 87.73% 74.79% 85.92% 86.01%

Combination C 95.21% 91.79% 87.73% 93.35% 93.41%

Combination D 89.73% 81.66% 74.68% 84.79% 85.13%

Combination E 88.14% 87.02% 77.90% 87.50% 87.50%

Table 9. Result of McNemar test.

χ2-Value

Combination A and B 52.67

Combination A and C 107.92

Combination A and D 61.75

Combination A and E 56.01
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3.3. Ablation Study of FFEDN with Feature Combination C

In order to verify each improvement measures’ effectiveness in FFEDN, the experi-
ments were conducted. The ablation study contains two parts: pyramid pooling module
and attention block. The baseline was FFEDN with the feature Combination C as input.
Table 10 showed different strategies for the ablation study.

Table 10. Different strategies for the ablation study.

Method PPM ABL

Strategy A FFEDN

Strategy B (w/o) PPM -

Strategy C (w/o) ABL -

Strategy D (w/o) PPM and ABL - -

3.3.1. Qualitative Evaluation

The extraction results of the different strategies were shown in Figure 12. After
removing the PPM from FFEDN, the details such as small rivers tributaries in the middle of
the rivers were missed, as shown in Figure 12(b3). When ABL was removed, the extraction
result in Region B was not accurate with classifying shadows as water bodies, as shown in
Figure 12(c2). When both PPM and ABL were removed, the model only can produce low
confidence predictions and blurred boundary.

3.3.2. Quantitative Evaluation

As can be seen from Table 11, after removing the PPM, the precision, recall, IoU, OA,
and AA of the water extraction task were decreased by 6.04%, 6.25%, 12.72%, 8.15%, and
11.49%, respectively. After removing the ABL, the indicators were decreased as well. When
the model was trained without PPM and ABL, the indicators were lowest. Both PPM and
ABL improved the performance of FFEDN.
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3.4. Evaluation of Different Methods with Feature Combination C
3.4.1. Compared Methods

In order to verify the effectiveness of the methods proposed, several machine learning
methods and deep learning methods were selected for comparison. The classical machine
learning methods (RF, SVM) and some CNN-based methods (U-Net, U-Net-Resnet [62],
MSF-MLSAN [41] and WENET [42]) were selected. SVM is a supervised classification
method for binary cases. It uses a subset of training samples (called support vectors) close
to the decision boundary to calculate the linear decision hyperplane. RF is a classifier
that consists of many decision and regression trees to train and predict the classification
results. The U-Net and U-Net-Resnet model were widely used for feature extraction and
water extraction. MSF-MLSAN [41] was proposed to extract water bodies in mountain
regions by using millimeter wave SAR images and had achieved potential performance.
WENET [42] integrates the features of SAR images at different scales for water extraction.
The hyperparameters of the SVM and RF were listed in Table 12.

Table 12. Hyperparameters of the SVM and RF.

Classifier Parameters Description Value

SVM C
Kernel

Penalty coefficient
Kernel function

2
Rbf

RF N_estimators Number of decision trees 550

3.4.2. Qualitative Evaluation

The extraction results of the seven methods selected above were shown in Figure 13.
All methods extracted water accurately in a large area and the proposed method had the
best effect, especially mapping the water bodies in Region B and drawing small rivers
flowing through the Region C thoroughly, as shown in Figure 13(a2,a3). For machine
learning methods, as shown in Figure 13(b1,c1), RF and SVM can also extract small water
bodies. However, the two methods mistakenly extracted hilly shadows as water, as shown
in Figure 13(b2,c2). Meanwhile, as shown in Figure 13(b3,c3), the results presented a
missing extraction phenomenon of relatively small rivers as shown in the blue rectangle.
For deep learning methods, the water body in Region A was extracted accurately as
shown in Figure 13(d1–g1). As shown in Figure 13(f2,g2), MSF-MLSAN and WENET
mapped the water body in Region B accurately without extracting shade mistakenly.
Meanwhile, the other deep learning methods also extracted hill shade mistakenly. As
shown in Figure 13(d3–g3), the four deep learning methods presented a missing extraction
phenomenon of relatively small rivers as shown in the blue rectangle, which was due to
the influence of urban buildings or trees.

3.4.3. Quantitative Evaluation

The validation images were fed into the models, then the outputs of models were
compared with the labels to generate confusion matrices, which are shown in Figure 14.
According to the confusion matrices, the methods were quantitatively evaluated. The
results were listed in Table 13.
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Among them, the proposed FFEDN achieved the best accuracy. Precision scored
95.21%, recall scored 91.79%, IoU scored 87.73%, OA scored 93.35%, and AA scored 93.41%.
The machine learning methods cannot effectively establish a mapping relationship to
classify each pixel, so values of indicators were lowest. Especially in the Region B and
Region C, complex scenarios made them more difficult to extract water accurately. For
deep learning methods, the indicator values improved compared with machine learning
methods. The precision of U-Net and U-Net-ResNet was 87.85% and 84.99%, respectively,
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which indicates that the encoder–decoder network can fuse abstract high-level information
and detailed low-level information. MSF-MLSAN and WENET performed well and the
indicators were higher. However, compared with the proposed method, the other deep
learning methods can not map a complete water stream because the water bodies in
complex scenes were difficult to extract.

To objectively assess the model ability of each method, a visual comparison of the accu-
racy evaluation indicators precision, recall, IoU, OA, and AA were presented in Figure 15.
The OA can be ranked in the following order: FFEDN > MSF-MLSAN > WENET > U-Net-
ResNet > U-Net > RF > SVM. It demonstrated that the deep learning methods outperformed
the machine learning methods on the task of water stream extraction. Furthermore, the
proposed network model outperformed other models.
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3.5. Extraction Result of Study Area

As shown in Figure 16, using the proposed model, FFEDN, the final water stream of the
study area was extracted from the stitched image of the 14 SAR images. It can be shown that
rivers, lakes, reservoirs, and ponds were all extracted. The regional distribution of water
resources in Henan Province was uneven. The plain areas of eastern and northern Henan
were densely populated, which were the main grain producing areas. However, the serious
shortage of water resources in this area directly restricted the sustainable development of
the local national economy. Accurate extraction of the water stream can provide powerful
data for surface water resources management and planning as well as drought and flood
disaster prevention, and it can also contribute to social and economic development and
ecological protection. The Landsat-8 optical image on 18 May 2021 with cloud cover of
0.13% was used for qualitative evaluation. The band combinations of the Landsat-8 image
can extract specific information to help better understand the ground objects. The image
of bands B4 (Red), B3 (Green), and B2 (Blue) combination was defined as a pseudo-color
image, as shown in Figure 16b. As shown in Figure 16b–d, compared with the optical
image and the ground truth, the tributaries were extracted accurately, thus, constructing
a more connective water stream. The code of the implemented methods is available at
https://github.com/yuandadada/SARwater (accessed on 15 November 2022).

https://github.com/yuandadada/SARwater
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4. Discussion

In this work, the water stream extraction method using BF and PF was carried out.
First, the BFs were extracted and PFs were obtained through model-based decomposition.
Then, a new model FFEDN was developed for the water stream extraction task, which
mined and combined water features from both BFs and PFs. Lastly, by comparing the
results of the water stream extraction with different combinations, the optimal one was
chosen. The results showed that the extraction results were improved indicating that PF
can effectively manifest the physical scattering mechanism of water bodies in SAR images.
To further verify the effectiveness of the proposed method, two machine learning methods
and the other four deep learning methods were chosen to compare with FFEDN and the
results demonstrated the validity of FFEDN in the extraction of the water stream. The
water stream of the study area was extracted by the method proposed in this paper.

First of all, the model-based decomposition of dual-pol SAR data was used to extract
the polarimetric features from Sentinel-1A SAR data. Other decomposition methods, such
as Freeman and Yamaguchi, have been widely used in many applications. However, most
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of these methods were designed to be used with quad-pol data and always lead to the loss
of polarimetric information when decomposing the dual-pol SAR data. Fortunately, the
model-based decomposition used in this paper can extract important underlying physical
information from Sentinel-1A images, providing the data for the correct interpretation of
parameters of different polarimetric components.

Moreover, this paper demonstrated that the FFEDN outperformed the machine learn-
ing methods SVM and RF, and deep learning methods U-Net, etc. Based on the optimal
feature, the most representative machine learning methods and deep learning methods, RF,
SVM, U-Net, U-Net-Resnet, MSF-MLSAN, and WENET, were chosen for comparison. As
can be seen in Figure 13, the two machine learning methods did not achieve good results in
both simple and complex environments. The deep learning methods achieved good results
in the water extraction when the scene was not complicated, but the extraction accuracy in
the hilly area affected by shadows and buildings was lower, so these deep learning methods
found it impossible to form a connected water stream. In addition, the comparative deep
learning methods did not input the PFs when establishing the model. In particular, the
proposed FFEDN showed good extraction performance in every scene, exceeding 95%,
91%, 87%, 93%, and 93% of precision, recall, IoU, OA, and AA, respectively.

However, the local rivers may have had seasonal cut offs at the time of data acquisition
and the extracted water stream may not be accurate. This problem should be considered
and overcome by using multi-temporal data in the same area. Meanwhile, because of the
small shape and narrow width of lakes and rivers are similar to the spatial resolution of
the SAR images. Another work direction is to apply the proposed method with higher
resolution SAR data to extract the water stream more connectively.

5. Conclusions

In this study, a deep learning method was proposed for water stream extraction named
FFEDN using Sentinel-1A SLC images. The method first obtained the BFs and the PFs from
Sentinel-1A images using model-based decomposition. Then, based on U-Net, FFEDN was
constructed. Next, BF and PF, which formed different combinations, were used as inputs to
FFEDN to select the optimal features. Finally, through qualitative analysis, the accuracy,
integrity, and connectivity of the extracted water body were analyzed and the optimal
feature combination was selected. Through a comparison with two machine learning
methods and four other deep learning methods, the application potential of the proposed
method in water stream extraction was verified. The proposed method achieved the best
results in both qualitative and quantitative analysis. Therefore, FFEDNN was used to
extract the water stream of Henan Province and the results were analyzed accordingly.

Furthermore, a few interesting things were found in this paper. For example, the
combination of BF and PF can obtain higher extraction accuracy.

This study demonstrated the significance of PFs from Sentinel-1 data. Meanwhile,
deep learning methods had great potential for water stream extraction. In the future, with
the continuous optimization of decomposition methods and deep learning models, water
streams will be extracted more accurately.
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