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Abstract: With the rapid development of hyperspectral imaging technology, object tracking in
hyperspectral video has become a research hotspot. Real-time object tracking for hyperspectral video
is a great challenge. We propose a fast hyperspectral object tracking method via a channel selection
strategy to improve the tracking speed significantly. First, we design a strategy of channel selection to
select few candidate channels from many hyperspectral video channels, and then send the candidates
to the subsequent background-aware correlation filter (BACF) tracking framework. In addition, we
consider the importance of local and global spectral information in feature extraction, and further
improve the BACF tracker to ensure high tracking accuracy. In the experiments carried out in this
study, the proposed method was verified and the best performance was achieved on the publicly
available hyperspectral dataset of the WHISPERS Hyperspectral Objecting Tracking Challenge. Our
method was superior to state-of-the-art RGB-based and hyperspectral trackers, in terms of both the
area under the curve (AUC) and DP@20pixels. The tracking speed of our method reached 21.9 FPS,
which is much faster than that of the current most advanced hyperspectral trackers.

Keywords: channel selection; hyperspectral video; tracking speed

1. Introduction

Object tracking has been a basic and active research topic in computer vision and
pattern recognition, which has a wide variety of application fields and occupies an impor-
tant position in both civilian and military applications [1–3]. The task of object tracking
is to predict the motion state of a dynamic target in the subsequent frames according to
the target’s size and position in the initial or current frame of the video sequence. Ob-
ject tracking methods can be roughly divided into generative methods and discriminant
methods from the perspective of the observation model. Recently, discriminant tracking
methods have gradually occupied the mainstream [4], which achieve satisfactory results
with the help of correlation filtering [5–7] or deep learning [8]. Compared with the deep
learning based object tracking methods, the correlation filtering based methods have great
advantages in speed and they are widely used in applications requiring high real-time
performance [9–11].

The traditional visual object tracker, also known as the RGB-based tracker, uses only
three bands of visible light to track the target, which is still limited by some recognized fac-
tors, such as illumination change, detector jitter, background interference. It is not enough
to describe the physical characteristics of the target in gray or color video, especially in
the reflectivity of the material. RGB-based trackers often become vulnerable in complex
scenes where the background is cluttered and the shape of the target changes significantly.
The accurate description of target characteristics is the key to detecting and tracking. This
problem can be effectively solved by object tracking in hyperspectral videos which provide
joint spectral, spatial, and temporal information, enabling computer vision systems to
perceive the materials of objects besides the shape, texture, and semantic relationship of ob-
jects. In recent years, with the maturity of hyperspectral imaging technology, hyperspectral
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object tracking has gradually received widespread attention [12,13]. Hyperspectral imaging
technology can provide dozens or even hundreds of spectral bands simultaneously for an
interested scene. Hyperspectral data not only have the two-dimensional spatial features of
the object, but also obtain very rich spectral information in the wavelength direction [14].
Hyperspectral videos can make some materials have outstanding manifestation in specific
spectral channels. The deep characterization of target and background in spectrum is very
helpful to improve the performance of tracking. Therefore, the reasonable extraction of the
spectral features in hyperspectral object tracking can effectively improve the accuracy of
tracking algorithm and reduce the target loss caused by weather conditions, equipment
conditions, occlusion, camouflage, and other problems in complex environments [15].

With the gradual popularization of hyperspectral video, more scholars have partici-
pated in the research of hyperspectral video object tracking [16–18]. Hyperspectral object
tracking technology has developed from tracking based on manual features to tracking
based on deep features. In the early research, Banerjee et al. proposed the first hyperspectral
video object tracker, in which they employed the spectral angle mapper to distinguish
target and background [19]. Nguyer et al. combined the mean shift tracker and spectral
reflectance to track the hyperspectral object [20]. However, when using the method, it
is necessary to reduce the dimensionality of the spectral features, which requires a lot
of calculation. In order to track multiple objects, Kandylakis et al. tried to estimate the
background of the hyperspectral video sequences [21]. Recently, Qian et al. extracted
the features of hyperspectral video by using the 3D patches from the target region as
fixed convolution kernels (no training required) and proposed a convolutional network
based hyperspectral tracking (CNHT) [22]. The method inputs the features into the kernel-
ized correlation filter (KCF) tracker [23] rather than the histogram of oriented gradients
(HOG) [24]. However, CNHT only considers fixed positive samples when training the filter
and ignores the influence of negative samples on the tracker, resulting in poor tracking
accuracy when background interference occurs in the task video. For aerial hyperspectral
video, Uzkent et al. designed a tracker based on deep hyperspectral KCF (DeepHKCF). The
tracker uses VGG-Net deep neural network to learn both positive and negative samples,
which can effectively improve the robustness of the tracker and significantly improve the
tracking accuracy of aircraft in low frame rate video [25]. Since DeepHKCF separates
hyperspectral video channels, the complete spatial structure information in hyperspectral
video has not been fully explored, which limits the accuracy and robustness of the tracker
in hyperspectral object tracking. Xiong et al. proposed the well-known material-based
hyperspectral tracking (MHT) method which made full use of the spectral information of
materials in hyperspectral video from three aspects: data set, material feature represen-
tation, and material-based tracking [26]. They combined the factional abundances of the
constituted material components and the spectral-spatial histogram of multidimensional
gradients (SSHMG) as features, and then input them into the background-aware correlation
filter (BACF) tracker [27]. The advantages of MHT make it a typical and competitive
hyperspectral object tracking method. Li et al. introduced an attention-aware ensemble
network (BAE-Net) for deep hyperspectral object tracking with the aid of a deep model
trained on visual video for feature representation [28]. An anchor-free Siamese network
(HA-Net) is proposed for hyperspectral object tracking by Liu et al., in which the spectral
classification branch network from the anchor-free Siamese network is introduced [29].
This branch network can effectively identify objects and utilize the spectral information
in the video sequences. However, the hyperspectral template online update module in
HA-Net increases the computational burden obviously [30]. Furthermore, Li et al. pro-
posed spectral-spatial-temporal attention neural network (SST-Net) [31]. SST-Net uses
convolution and deconvolution structure as well as time attention with RNN structure to
accurately describe the band relationship, thus effectively improving the tracking accuracy
for hyperspectral object. Zhao et al. proposed a transformer-based fusion tracking network
(TFTN), which is a hyperspectral and RGB fusion tracking framework [32]. TFTN constructs
a dual-branch structure based on Siamese network to obtain modal specific representa-
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tion of different modal images. Based on the general framework, the authors proposed
Siamese 3-D convolutional neural network as a specific branch of hyperspectral mode.
This is the first work to combine hyperspectral and RGB mode information to improve
tracking performance, which achieved satisfactory tracking accuracy. So far, although the
hyperspectral community has developed many tracking algorithms and started WHISPERS
Hyperspectral Object Tracking Challenge in 2021 [33], most of the hyperspectral trackers
are computationally expensive and the algorithms run slowly. How to increase the tracking
speed is still a great challenge with practical implications. To deal with this problem, we
propose a fast object tracking method based on the channel selection of hyperspectral video.

A preliminary version of this paper was published in WHISPERS2022 conference [34],
in which the work was only a preliminary study of using channel selection to improve
tracking speed. On the basis of the previous work, we carried out in-depth research in order
to further boost the tracking speed while improving the tracking accuracy. Specifically, we
use two-dimensional entropy instead of image entropy in the calculation of entropy module,
and improve the BACF tracking framework to obtain a feature image with higher quality.

The main contributions of our work are as follows:

(1) We design a channel selection strategy for the hyperspectral video and then input the
selected channels into a BACF tracking framework, which successfully reduces the
massive hyperspectral video input.

(2) We combine the band-by-band HOG (BHOG) and SSHMG in the BACF and capture
the local and global spectral features to obtain a feature image with higher quality,
thus improving tracking accuracy.

(3) Our method achieved the fastest tracking speed and the highest tracking accuracy
on the only hyperspectral video object tracking benchmark dataset currently avail-
able [33].

The rest of this paper is organized as follows. In Section 2, we present the proposed
method and describe the channel selection strategy and the improved BACF tracker in
detail. In Section 3, we present the experiments and analyze the experimental results.
Section 4 contains discussions. We make the conclusions in Section 5.

2. Proposed Method

The proposed method is shown in Figure 1, which consists of two parts—Part 1:
Channel Selection, and Part 2: Improved BACF Tracker. Suppose the hyperspectral video
has M channels and the nth frame image in each channel is denoted as Bn

1 , . . . , Bn
M. Channel

Selection inputs all the hyperspectral video channels and evaluates the quality of each
one. Here the designed Channel Selection uses three special evaluation modules: contrast,
entropy, and difference, and comprehensively selects the most valuable three channels as
the input to the subsequent Improved BACF Tracker for object tracking. We describe the
two parts in detail below.

2.1. Channel Selection

In contrast to traditional RGB video, hyperspectral video provides dozens or hun-
dreds of video channels, bringing massive data to the calculation of object tracking. Due
to the uniqueness of the spectral signature of the substance, the same target will show
different appearances in different channels, which may lead to a different performance
even for the same object tracker. On the other hand, it is necessary to remove the chan-
nels with redundancy related to special targets. In order to reduce computational burden
and improve tracking speed, it is a feasible scheme to select the most representative few
channels from hyperspectral video for object tracking. Therefore, evaluating the quality
of each hyperspectral channel is a key issue. We focus on the intra-channel and inter-
channel characteristics that are helpful for tracking, and design a simple but effective
channel selection strategy. Unlike some existing hyperspectral video trackers that synthe-
size hyperspectral images into pseudo-color images as the input of RGB-based tracker,
our channel selection strategy retains the hyperspectral semantic features of the visual
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layers by evaluating the contrast, entropy, and target-background difference of the input
hyperspectral channels. Specifically, the contrast and entropy modules are used to evaluate
the spatial characteristics of individual channel image, while the difference module focuses
on the spatial-spectral characteristics between channels. Finally, the candidate channels are
obtained by comprehensive use of these three modules.
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Figure 1. The architecture of the proposed method. The method mainly consists of two parts—Part
1: Channel Selection, and Part 2: Improved BACF Tracker. Part 1 is mainly composed of contrast
module, entropy module, and difference module. Channel Selection is responsible for selection of the
most representative few candidate channels from the input hyperspectral video. Part 2 is used to
track the object in the images of the selected channels F. In Part 2, BHOG + SSHMG is designed to
improve the classical BACF tracker.

2.1.1. Contrast Module

The salient information in an image can be described by image contrast. Hence, we
design a new contrast module by calculating the local contrast of an image to perceive the
saliency information. Our contrast module can reflect some spatial structure features in the
channel image. We denote the contrast module as Cn

m which is defined as:

Cn
m =

∑i∈Bn
m ∑j∈wi

(
Bn

m,j − Bn
m,i

)2

S
(1)

where Bn
m,i represents the pixel value of the pixel position i in the channel image Bn

m, and
wi denotes the four-neighborhood (top, bottom, left, and right) centered at i. j is the pixel
in wi. S is the total number of the operations of the numerator part. The larger the value of
Cn

m, the greater the local gray difference, indicating that the channel image Bn
m is clearer.

2.1.2. Entropy Module

We believe that using the channels with high information entropy will be more benefi-
cial to object tracking. The two-dimensional entropy of the channel image can reflect the
spatial characteristics of the image gray distribution. The richer the entropy information in
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an image, the more valuable the extracted features are. We denote the two-dimensional
entropy of the nth frame hyperspectral image in the mth channel as En

m.

En
m = −∑i∈Bn

m ∑j∈wi
Pi,jlg

(
Pi,j

)
Pi,j =

f
(

Bn
m,i ,B

n
m,j4

)
wh

(2)

where Bn
m,i represents the pixel value at position i, Bn

m,j4 represents the average value of
pixels in the four neighboring regions of position i. f (i, j) is the number of occurrences of
feature binary

(
Bn

m,i, Bn
m,j4

)
in the image Bn

m, and w and h are the width and height of the
image, respectively.

2.1.3. Difference Module

Highlighting the difference between the target and the background in a hyperspectral
image helps to represent and retain the semantic features between the video channels.
Therefore, we design a difference module to evaluate the difference between the target
and the background in the channel image. The more obvious the difference, the higher the
target detection accuracy in tracking. We use mean and contrast to measure the spatial and
spectral changes of the target area and the background area.

First, separate the target area and the background area from a channel image according
the ground truth. Then calculate the mean and the contrast of the two areas. The contrast
calculation follows Equation (1). The final difference Dn

m of the nth frame in the mth channel
is defined as:

Dn
m = |MTn

m −MGn
m|+ |CTn

m − CGn
m| (3)

in which MTn
m and MGn

m represent the mean value of the target area and the background
area, respectively. CTn

m and CGn
m are the contrast of the two areas, respectively.

2.1.4. The Candidate Channels Selection

Existing hyperspectral video target-tracking tasks usually use fixed-angle cameras to
shoot and then track the target, so the similarity of the background environment in a single
task video will be high. If only the first frame of the video is entered in Channel Selection,
the noise interference cannot be ignored. However, if too many video frames input, the
amount of the computation will increase significantly. By evaluating the quality of a few
initial frames, the representative channels can be selected out. Here we use the first five
frames of the task video to select channels, which can effectively eliminate interference
without affecting the tracking speed.

We comprehensively use the modules of contrast, entropy, and difference, and build
an overall evaluation index (denoted as Pm) to select the most valuable channels. The index
Pm of the first n frames of the channel Bm is defined as follows:

Pm =
5

∑
n=1

(αCn
m + βEn

m + γDn
m) (4)

where α, β, and γ are the weight coefficients of the different modules, respectively. The
value of n ranges from 1 to 5, which means Channel Selection only considers the first five
frames of the hyperspectral video input.

Hyperspectral video has a large number of channels and contains rich spatial-spectral
information. However, useful spectral information related to specific targets is limited. We
believe that a few channels can represent the most useful information. As the first part of
our method, Channel Selection selects the three most valuable channels as the input of the
subsequent BACF Tracker for object tracking. The first three channels with the largest Pm
values are selected as the candidates, denoted as F.

F = {Bmax1, Bmax2, Bmax3} (5)



Remote Sens. 2023, 15, 1557 6 of 20

where Bmax1, Bmax2, Bmax3 are the three channels selected from the M hyperspectral channels
{B1, B2, . . . BM}.

2.2. BACF Tracker
2.2.1. Classical BACF Tracker

Discriminant correlation filter is widely used in object tracking because of its fast
computational speed realized by fast Fourier transform. As an object tracker based on
correlation filtering, BACF has high accuracy and excellent speed. BACF treats all back-
ground patches as negative samples by using a rectangular mask covering the central part
of circular samples [27], thus obtaining more real samples from the background.

The classical BACF learns the filter hk by the following objective function:

E(h) =
1
2

T

∑
t=1

∥∥∥∥∥y(t)−
K

∑
k=1

h>k Pxk[∆τt]

∥∥∥∥∥
2

2

+
λ

2

K

∑
k=1
‖ hk ‖2

2 (6)

where xk and hk refer to the feature image and the filter of the kth channel, respectively. K
represents the number of channels of the feature image, and T is the feature dimension.
y is the desired correlation response and y(t) is the tth element of y. λ is a regularization
operator. P is the binary matrix for clipping the central patch of xk. [∆τt] is a cyclic shift
operator. xk[∆τt] indicates that t step discrete cyclic shift is applied to the feature xk.

2.2.2. Improved BACF tracker

It is commonly known that the quality of the feature image plays a decisive role in
the accuracy of object tracking. For the feature image x, the classical BACF is obtained by
histograms of oriented gradients (HOG) feature extraction. However, HOG feature only
considers the spatial information and ignores the rich spectral information in hyperspec-
tral images, resulting in poor tracking results for hyperspectral video. Fortunately, there
are some new variants based on HOG features for hyperspectral images. In DeepHKCF
method, a band-by-band HOG is designed which adopts HOG feature extraction in each
hyperspectral band and considers the global spectral features of all bands [25]. To highlight
the spectral information of materials, Xiong et al. took into account the local spectral
features of the target and developed a spectral-spatial histogram of multidimensional
gradients (SSHMG) to improve the quality of feature images [26]. Inspired by this, we
combine BHOG and SSHMG to extract both local and global spectral features from hy-
perspectral channel images. Specifically, for the channel images, we first use the BHOG
operator to obtain the feature image considering the global spectrum, and then send the
feature image to SSHMG to produce the final feature image characterized by local spectral
information. Thus, BHOG + SSHMG extracts both the local and global spectral features
from the hyperspectral images to cope with complex scenes, such as fast moving targets,
camouflaged targets, background clutter, and so on. The improved BACF tracker uses
BHOG + SSHMG as the feature extractor to improve the quality of the feature image,
which help to improve the accuracy of object tracking. The corresponding experiments
further demonstrate the effectiveness of our improved BACF tracker. Section 3 gives the
experimental results in detail.

Using the characteristics that cyclic samples can be quickly solved in the frequency
domain, Equation (5) can be converted into frequency domain to process the feature image
extracted by BHOG + SSHMG, and the formula is as follows:

E(h) =
1
2
‖ ŷ− X̂

√
T
(

FP> ⊗ IK

)
h ‖2

2 +
λ

2
‖ h ‖2

2 (7)

where X is the T × KT matrix, defined as X = [diag (x1),..., diag (xK)]. F is orthogonal
T × T matrix, which maps any T-dimensional vectorized signal to Fourier domain. IK is
K × K identity matrix. ˆ and⊗ represent discrete Fourier transformation and the Kronecker
product, respectively.
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The auxiliary matrix ĝ =
√

T
(

FP> ⊗ IK

)
h is introduced here, and the Lagrangian

augmented function is shown as:

L
(

ĝ, h, ζ̂
)
= 1

2 ‖ ŷ− X̂ĝ ‖2
2 + λ

2 ‖ h ‖2
2 +ζ̂>

(
ĝ−
√

T
(

FP> ⊗ IK

)
h
)

+ µ
2 ‖ ĝ−

√
T
(

FP> ⊗ IK

)
h ‖2

2

(8)

where µ is the penalty factor and ζ̂ is the KT × 1 Lagrange vector in Fourier domain.
Equation (7) can be solved iteratively using Alternating Direction Method of Multipliers
(ADMM) [35] technique. For each subproblem, ĝ* and h* have the closed form solutions.
The optimization subproblem ĝ* and h* is omitted here. Readers are advised to read [27]
for more details about the optimization process.

The update strategy of the BACF model is the same linear interpolation method as the
traditional correlation filter:

x̂( f )
model = (1− η)x̂( f−1)

model + ηx̂( f ) (9)

where η is the adjustment ratio, and f is the current frame.

3. Experiment and Results

In this section, we first describe the hyperspectral video dataset and experiment
setting, and then show the ablation studies on different channel selection strategies and
feature extractors, respectively. Finally, we compare our method with both RGB-based
trackers and hyperspectral object trackers. The parameters of the compared methods are
all automatically set the same as the recommendations in their original literature.

3.1. Dataset

As shown in Figure 2, the dataset used in this study is the publicly available hy-
perspectral dataset released as the part of the WHISPERS Hyperspectral Object Tracking
Challenge [33]. The hyperspectral video sequence, false-color video sequence and RGB
video sequence constitute the competition dataset. Each video type contains 50 video
sequences, with an average of 425 frames per video sequence. Hyperspectral videos were
acquired by using XIMEA Snapshot VIS camera with 16 channels at 25 FPS. Each frame
is initially captured in 2D format, with 16 channels arranged in a mosaic pattern. The
hyperspectral bands cover the range from 470 nm to 620 nm and each band image originally
consists of 512 × 512 pixels. The ground truth values of targets in all videos of the dataset
are manually marked by Xiong et al. [26].

3.2. Experiment Setting

In all experiments, the parameter of learning rate is set to 0.004. The weight coefficients
in Channel Selection are set as α = 2, β = 1, γ = 1. All other parameters are set the same
as those in BACF [27]. We conducted all experiments under Matlab2020 in the computing
environment of Intel (R) Core (TM) i9-10900K CPU and NVIDIA GeForce RTX 3060 GPU.
We use the accuracy plots, success plots, AUC score, and DP score to evaluate the tracking
performance of different trackers.

A precision plot records the fraction of the frames whose estimated locations is within
a given threshold distance to the ground-truth centers. The average distance precision (DP)
rate is reported at a threshold of 20 pixels (DP@20pixels). The location error calculation
formula is as follows:

Loc(G, O) = (
D

∑
d=1
|Gd −Od|2)1/2 (10)

where D represents the dimension information of the target, which is generally set to 2 in
the image field, Gd is the center position coordinate of the real target, and Od is the center
position coordinate of the target predicted by the object tracker. The location error threshold
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is the boundary between the real position of the target and the position error predicted
by the tracker. When the location error of the current frame is less than the location error
threshold, the tracking of the frame is considered accurate.
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A success plot describes the percentage of successful frames whose overlap ratio
between the predicted bounding box and the ground truth is larger than a certain threshold,
which varies from 0 to 1. The overlap rate is defined as:

OS =

∣∣Bpre ∩ Bgt
∣∣∣∣Bpre ∪ Bgt
∣∣ (11)

where Bpre is the target prediction box, and Bgt is the real position of the target. The overlap
threshold is the boundary of the overlap ratio. When the overlap ratio is larger than the
overlap threshold, this frame is considered to be successful. The overlap threshold value
range is 0–1. The larger the threshold value, the lower the success rate. A success rate
graph curve can be obtained by referring to different threshold values. AUC score is the
area of the lower curve of the success rate curve.

All the results are presented with one-pass evaluation (OPE); that is, the tracker runs
throughout the test sequence and is initialized from the ground-truth location in the initial
frame. The evaluation indexes employed are the same as those suggested in [36] used for
the object tracking benchmark.
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3.3. Comparison of Different Channel Selection Strategies

As shown in Figure 1, three modules, i.e., contrast, entropy, and difference, make up of
Channel Selection and they work together to select the candidate channels from the input
hyperspectral video. We use the ablation experiments to demonstrate the effectiveness
of our channel selection strategy. The contrast-based strategy, entropy-based strategy,
difference-based strategy, and their combinations are tested individually, and then all
results are compared comprehensively. It needs to be noted here that all the subsequent
tracking steps are the same except for the difference strategy tests.

Figure 3 reports the object tracking performances using different channel selection
strategies. Figure 3a,b are the precision plot and success plot of channel selection strategies,
respectively. We narrow the ordinate range of the experimental result plots to make the
accuracy difference of each channel selection strategy more obvious. On the whole, the
trend of performances of all strategies is consistent. However, the curves display obvious
differences in the 10–50 interval of abscissa in the precision plots and the 0–0.6 interval
of abscissa in the success plots. The reason is that different channel selection strategies
lead to different rationalities of the selected channels. In the plots, the higher the curve
position, the better the performance of the corresponding strategy. The contrast-based
channel selection strategy displays the worst accuracy among all the tested strategies.
The reason is the contrast-based strategy only takes into account the brightness of the
image, but ignores the information richness and the inter-channel characteristics. Although
the performance the entropy-based strategy is higher than that of the contrast-based, its
accuracy is not as good as the other strategies due to its one-sided consideration. The
performance of difference-based strategy is better than that of the contrast- or entropy-
based, which indicates the inter-channel features play an important role in hyperspectral
tracking. Adding contrast index on the basis of target background difference index can
effectively improve the accuracy of object tracking. However, when the entropy indicator
is combined with other indicators, the tracking accuracy does not improve, since it is not
compatible with the contrast or difference indicator alone. In all tests, the strategy of
contrast + entropy + difference achieves the highest accuracy, which proves the advantages
of our channel selection strategy.

Remote Sens. 2023, 15, 1557 10 of 21 
 

 

 
(a) 

 
(b) 

Figure 3. Performances of different channel selection strategies. (a) Precision plots of different chan-
nel selection strategies; (b) Success plots of different channel selection strategies. 

Table 1 lists AUC and DP@20pixels values of different channel selection strategies. 
From the results of the AUC index, difference-based strategy has a greater impact on per-
formance than contrast strategy and entropy strategy. In terms of AUC, the channel selec-
tion strategy of contrast + entropy + difference achieves the highest detection accuracy of 
0.592, which shows that this strategy selects the channels most conducive to object track-
ing. In terms of DP@20pixels, the strategy of contrast + entropy + difference reaches 0.867, 
which verifies correctness of Channel Selection combining three modules. The strategy of 
contrast + entropy + difference achieves the best according to both AUC and DP@20pixels, 
which demonstrates the rationality and effectiveness of the proposed channel selection 
strategy. 

Table 1. Tracking performance comparison of channel selection strategies. The best two results are 
marked with red and blue. 

Strategy AUC DP@20pixels 
contrast 0.563 0.842 
entropy 0.585 0.866 

difference 0.585 0.856 
contrast + entropy 0.563 0.842 

contrast + difference 0.591 0.856 
entropy + difference 0.581 0.842 

contrast + entropy + difference 0.592 0.867 

3.4. Comparison of Feature Extractors 
Feature extraction is a key point in the object tracking process. The better the quality 

of the extracted feature image, the higher the tracking accuracy. The classical BACF 
tracker uses HOG as the feature extractor which only considers the local spatial features 
in visual images. For hyperspectral object tracking, BHOG and SSHMG feature extractors 
are the development and evolution products of BACF, which take into account the global 
and/or local spectral information in hyperspectral images. We combine BHOG and 
SSHMG to obtain the feature image with higher quality. In order to verify the effective-
ness, it is necessary to conduct ablation experiments on different feature extractors. In this 
experiment, we test the performance of seven feature extractors, including HOG, BHOG 
[25], SSHMG [26], HOG combined with BHOG (HOG + BHOG), HOG combined with 
SSHMG (HOG + SSHMG), BHOG combined with SSHMG (BHOG + SSHMG), and HOG 
+ BHOG+ SSHOG. In all tests, except for the different feature extraction methods in BACF, 
all other tracking steps strictly follow the original BACF framework. 

Figure 3. Performances of different channel selection strategies. (a) Precision plots of different
channel selection strategies; (b) Success plots of different channel selection strategies.

Table 1 lists AUC and DP@20pixels values of different channel selection strategies.
From the results of the AUC index, difference-based strategy has a greater impact on
performance than contrast strategy and entropy strategy. In terms of AUC, the channel
selection strategy of contrast + entropy + difference achieves the highest detection accuracy
of 0.592, which shows that this strategy selects the channels most conducive to object
tracking. In terms of DP@20pixels, the strategy of contrast + entropy + difference reaches
0.867, which verifies correctness of Channel Selection combining three modules. The
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strategy of contrast + entropy + difference achieves the best according to both AUC and
DP@20pixels, which demonstrates the rationality and effectiveness of the proposed channel
selection strategy.

Table 1. Tracking performance comparison of channel selection strategies. The best two results are
marked with red and blue.

Strategy AUC DP@20pixels

contrast 0.563 0.842
entropy 0.585 0.866

difference 0.585 0.856
contrast + entropy 0.563 0.842

contrast + difference 0.591 0.856
entropy + difference 0.581 0.842

contrast + entropy + difference 0.592 0.867

3.4. Comparison of Feature Extractors

Feature extraction is a key point in the object tracking process. The better the quality
of the extracted feature image, the higher the tracking accuracy. The classical BACF tracker
uses HOG as the feature extractor which only considers the local spatial features in visual
images. For hyperspectral object tracking, BHOG and SSHMG feature extractors are the de-
velopment and evolution products of BACF, which take into account the global and/or local
spectral information in hyperspectral images. We combine BHOG and SSHMG to obtain
the feature image with higher quality. In order to verify the effectiveness, it is necessary to
conduct ablation experiments on different feature extractors. In this experiment, we test the
performance of seven feature extractors, including HOG, BHOG [25], SSHMG [26], HOG
combined with BHOG (HOG + BHOG), HOG combined with SSHMG (HOG + SSHMG),
BHOG combined with SSHMG (BHOG + SSHMG), and HOG + BHOG+ SSHOG. In all
tests, except for the different feature extraction methods in BACF, all other tracking steps
strictly follow the original BACF framework.

Figure 4 shows the object tracking performance on different feature extractors. Figure 4a,b
are the precision plots and success plots of feature extractors, respectively. We narrow the
ordinate range of the experimental result plots to make the accuracy difference of each
feature extraction method more obvious. On the whole, the trend of all curves is similar.
There is a distinction shown between curves in the 10–50 interval of abscissa in the precision
plots and the 0–0.6 interval of abscissa in the success plots. This is because different feature
extractors have different feature extraction capabilities. HOG feature extractor provides
the worst accuracy in all extractors, since the original spectrum is very sensitive to light
changes. BHOG considers the global spectral information of all channels to provide better
performance. SSHMG makes use of the local spectral-spatial structure information, so it
outperforms HOG and BHOG. It is easy to find that the object tracking accuracy can be
improved by combining different single feature extractors. The combinations are effective
and feasible for high accuracy. Among them, our BHOG + SSHMG combination achieves
the best results.

Table 2 reports the performances of different feature extractors. In terms of AUC,
the feature extraction method of BHOG + SSHMG achieves the highest accuracy of 0.608,
which shows that combining global spectral information with local spectral information for
feature extraction in hyperspectral video has advantages. With reference to DP@20pixels,
SSHMG achieves the highest accuracy of 0.904, and BHOG + SSHMG achieves 0.903.
This shows that using local spectral information has great advantages in average distance
accuracy. For individual feature extractor, HOG runs the fastest, while SSHMG is the
slowest. For the combination of feature extractors, the more combinations, the slower
the operation speed. HOG + BHOG + SSHMG runs the slowest. It is worth noting that
the BHOG + SSHMG feature extractor achieves the highest accuracy, which proves that
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the method combining local spectral information extraction and global spectral feature
extraction is more conducive to object tracking in hyperspectral video.
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Table 2. Tracking performance comparison of feature extractors. The best two results are marked
with red and blue.

Feature Extractor AUC DP@20pixels FPS

HOG 0.581 0.854 86.460
BHOG [25] 0.591 0.856 48.683

SSHMG [26] 0.603 0.904 39.106
HOG + BHOG 0.588 0.880 33.829

HOG + SSHMG 0.601 0.901 32.671
BHOG + SSHMG 0.608 0.903 21.928

HOG + BHOG + SSHMG 0.607 0.887 20.576

In order to display the effectiveness of different feature extractors more intuitively,
Figure 5 shows the response results of the classical BACF and our improved version.
Figure 5b,c depict the responses of HOG feature image and BHOG + SSHMG feature
image, respectively. When the color difference between the background region and the
target region is larger, the tracking results have higher robustness and accuracy. It can
be seen that when using the HOG feature, the color difference between the target region
and the background region is small. The yellow dots occupy a large proportion in the red
background region, which indicates that the HOG feature has low accuracy. In contrast, the
color difference of BHOG + SSHMG is very large, in which the yellow dots are fewer and
concentrated around the target region. Therefore, our improved BACF has higher accuracy
and robustness than the classical.

3.5. With and Without Channel Selection Strategy

In this experiment, we explore the impact of our channel selection strategy on hy-
perspectral object tracking. For the same object tracker, we compare the tracking results
of using our channel selection strategy and not. The tracking method is based on our
improved BACF in which BHOG + SSHMG is used as the feature extractor.

Figure 6 shows the tracking performance comparison. As is shown in the figure,
tracking with our strategy is the black curve, and the yellow curve is the tracking without
any channel selection. It can be seen that the black curve is higher than the yellow one,
which means tracking with our channel selection strategy has obvious advantages in both
success rate and the accuracy. Tracking without channel selection considers too much
spectral information in feature extraction, which leads to information redundancy and
reduces the accuracy.
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Figure 5. Response of different feature extractors. (a) Original image; (b) Response of HOG;
(c) Response of BHOG + SSHMG. In the figure, the red rectangular area is the search range of
the tracker for the target at the current time, i.e., the background area. The black rectangle represents
the location of the target predicted by the tracker, which is the target area. Within the predicted box,
the closer the pixel is to green, the more likely it is to belong to the target. When the color difference
between the background area and the target area is large, it indicates that the tracker is robust in
tracking the targets.
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Table 3 reports the objective scores of the tracking results. Our channel selection
helps AUC and DP@20pixel increase by nearly 7.04% and 7.63%, respectively. More
importantly, the tracking speed has been greatly improved. FPS increased from 6.376 to
21.928, achieving an increase of 244%. From the comparison experiments, we can conclude
that the channel selection is an effective way to improve the tracking speed for hyperspectral
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video. Furthermore, our channel selection strategy is effective in both tracking accuracy
and speed improvement.

Table 3. Tracking performance comparison with and no channel selection.

Trackers AUC DP@20pixels FPS

Ours 0.608 0.903 21.928
No channel selection 0.568 0.839 6.376

3.6. Quantitative Comparison with RGB Object Trackers

With the help of the rich spectral information in hyperspectral videos, hyperspectral
object tracking can effectively address the problems encountered in RGB object trackers
and improve the tracking accuracy. Therefore, we compare the proposed tracking method
with some existing RGB object trackers to verify its ability to face complex situations. Since
all RGB trackers are designed for traditional color video, we use false color generated by
hyperspectral video to test them in the comparison experiment.

In this experiment, we compare our tracker with five advanced RGB-based trackers,
including BACF [27], KCF [23], DSST [37], C-COT [38], and CF-Net [39]. KCF, DSST, and
BACF are object trackers based on manual feature extraction, while C-COT and CF-Net
are based on depth feature extraction. KCF is a kernel correlation filter in which kernel
techniques are applied to realize nonlinear classification boundary. DSST describes a scale
adaptive tracking method, in which two discriminant correlation filters are learned for
target position and scale estimation, respectively. BACF aims to reduce the KCF boundary
effect caused by the periodic assumption on training samples by regularizing the correlation
filter according to the spatial distribution. Deep learning-based object trackers represent
another kind of advanced tracking methods. C-COT trains the convolution operator in the
continuous space domain to achieve the integration of multi-resolution feature maps. CF-
Net is an end-to-end tracker in which the correlation filter is interpreted as a differentiable
layer in a deep neural network.

Table 4 reports the tracking performance of all compared methods. The results show
that the KCF method gives unsatisfactory AUC and DP@20pixels scores due to the limited
consideration of the size estimation. When an object has the appearance similar to the
background, it cannot detect keys. BACF [27] integrates background information to learn
more discriminant filters, so as to obtain better tracking performance. Our method and
C-COT achieve the best two AUC scores of 0.608 and 0.557, respectively. Compared with
BACF, the AUC and DP@20pixels scores of our method is improved by 6.4% (0.544 to
0.608) and 8.7% (0.816 to 0.903), respectively. It demonstrates that our improved BACF is
effective. In addition, when compared with other trackers, our tracker ranks first in a series
of thresholds, which means that our method can better utilize the rich spectral information
in hyperspectral video. The reason for RGB object trackers obtaining lower performance is
that the tested hyperspectral dataset contains scenes with camouflaged targets or scenes
with background clutter. The improvement of tracking performance requires more spectral
information, which is ignored by the RGB-based trackers.

Table 4. Tracking performance comparison with RGB object trackers. The best two results are marked
with red and blue.

Trackers AUC ∆AUC DP@20pixels ∆DP

Ours 0.608 +6.4% 0.903 +8.7%
BACF [27] 0.544 - 0.816 -
KCF [23] 0.408 −13.6% 0.583 −23.3%
DSST [37] 0.442 −10.2% 0.705 −11.1%

C-COT [38] 0.557 +1.3% 0.869 +5.3%
CF-Net [39] 0.543 −0.1% 0.872 +5.6%
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3.7. Hyperspectral Trackers Comparison

In this experiment, we compare with CNHT [22], DeepHKCF [25] and MHT [26]
hyperspectral trackers to verify the performance of our method. Figure 7 depicts the
evaluation results of all hyperspectral trackers in precision plot and success plot. Figure 7a,b
are the precision plots and success plots of hyperspectral trackers, respectively. The higher
the curve position, the better the performance of the tracker. It can be seen that the
performance of CNHT is worst and our tracker achieves the best. Since DeepHKCF does
not fully consider the spectral characteristics of hyperspectral video, it results in low
accuracy. Although the performance of MHT method is close to that of ours, there is still a
gap between them.
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Table 5 lists the numerical evaluation results of all hyperspectral trackers. CNHT
obtains the worst AUC score of 0.183, because it only considers the fixed positive samples
when learning the convolution filter. Compared with CNHT, DeepHKCF uses positive
and negative samples to learn discriminant feature representation. Therefore, the AUC
and DP@20pixels scores of DeepHKCF increase to 0.313 and 0.550, respectively. Among all
trackers, our tracker has the best accuracy performance. Compared with the MHT method,
the AUC and DP@20pixels values of our method are improved by 2.2% (0.586 to 0.608) and
2.3% (0.880 to 0.903), respectively. This proves that our tracker is suitable and effective for
object tracking in hyperspectral video. In terms of running speed, MHT, DeepHKCF, and
CNHT have similar FPS, belonging to the same order of magnitude. The running speed of
our method has changed significantly, reaching 21.928 FPS, more than twice as fast as MHT.
The reason for their low running speed is that both DeepHKCF and MHT use convolutional
networks and CNHT has too many convolution layers when learning the convolution filter.
In contrast, our proposed channel selection strategy can greatly reduce the amount of data
used for tracking calculation and significantly improve the running speed.

Table 5. Tracking performance comparison with hyperspectral trackers. The best two results are
marked with red and blue.

Trackers AUC ∆AUC DP@20pixels ∆DP FPS ∆FPS

Ours 0.608 +2.2% 0.903 +2.3% 21.928 +13.343
MHT [26] 0.586 - 0.880 - 8.585 -

DeepHKCF [25] 0.313 −27.3% 0.550 −33.0% 7.965 −0.620
CNHT [22] 0.183 −40.3% 0.343 −53.7% 8.101 −0.484
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3.8. Visual Comparison with Hyperspectral Trackers

We select six video sequences (ball, basketball, coke, paper, fruit, and kangaroo) to compare
four hyperspectral trackers including CNHT, DeepHKCF, MHT, and our method. These video
sequences have different typical difficulties, such as occlusion, fast motion, rotation, and so on.
Figures 8–13 show the visual tracking results of the hyperspectral trackers.
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Figure 8 shows the tracking results of the ball video sequence. Occlusion is the
difficulty of this video. From the tracking results, it can be seen that occlusion happens in
the middle sequences. In the initial tracking, all trackers can accurately track the target.
However, after the hand completely covers the ball in the video, all the compared trackers
mistakenly use the hand as the feature to update the template, resulting in the tracking of
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the hand as the target in the subsequent video, which ultimately leads to the reduction of
tracking accuracy. Our tracker correctly updates the template after the complete occlusion,
and successfully continues to track the ball after the ball reappears, thus achieving higher
tracking accuracy.

Figure 9 shows the tracking results of the basketball video sequence. The basketball
sequence shows the tracking of a basketball in a daily scene whose difficulties of tracking
are the fast moving small targets and the background interference. From the tracking
results, we can see that the compared trackers have good target tracking effect in the first
50 frames of the video. When the video exceeds 50 frames, they all fail. The reason is
the small target, i.e., the basketball, is very close to the background and moves very fast,
which makes trackers unable to adapt to the change of the target and mistakenly track the
background as the target. Our tracker can successfully track the basketball in the first two
thirds of the video, which shows that our tracker has more advantages in tracking small
fast moving targets. However, in the last third of the video (from around frame 0110), when
the pitcher throws the basketball, all the trackers fail to track and our tracker takes the
pitcher’s hand as the predicted target.

Figure 10 shows the tracking results of different trackers on the coke video sequence.
The coke video shows a rotating target, i.e., a coke can, with background clutter. The
difficulties of tracking this video sequence come from the target rotation and the background
interference. From the tracking results, it can be seen that compared with the first two video
sequences, all the target trackers dealing with this video have a relatively good tracking
effect. CNHT tracker has the weakest robustness for target rotation and gets the worst
tracking result. Among them, the MHT tracker and ours have the best tracking effect,
always closest to the center of the ground truth. From the tracking results of the coke
sequence, we can see that our tracker has high robustness against background interference
and target rotation.

Figure 11 shows the tracking results of the paper video sequence. The paper video
sequences provide scenes with camouflaged targets. The difficulty of tracking this video
sequence is target rotation and similar background interference. As shown in Figure 11,
DeepHKCF and CNHT both have the result of short-term target loss, which shows that
the two trackers have poor robustness to the scene, where target rotation and similar
background exist simultaneously. Our method performs better than the MHT method when
the paper rotates. For the paper sequence, our method achieves the best tracking results,
whose target box is very close to the ground truth. This is because our method considers
both the local and global spectral features in the scene to overcome the interference from
the background.

Figure 12 shows the tracking results of the drive video sequence. The drive video
shows the translation and rotation of the target with background clutter. The difficulties
of tracking the drive sequence are the target rotation deformation and the background
interference. From the tracking results, it can be seen that CNHT lost the target in the early
stage of the video sequence, and whose tracking ability to the target deformation caused
by the target rotation is poor. In all tracking methods, the target box of our method is
always closest to the ground truth, which means our method is the most accurate for target
tracking. The results of the drive video sequence demonstrate that our method has strong
processing ability for target deformation and background interference.

Figure 13 shows the tracking results of the kangaroo video sequence. The kangaroo
video shows the tracking of a selected target in a group of fast moving kangaroos. The diffi-
culty of tracking the video sequence is the identification of similar targets and the target’s
fast movement. For the kangaroo sequences, the CNHT method fails. Due to considering
the local spectral features, MHT shows better identification ability than DeepHKCF. The
target box of our method shows closer to the ground-truth center than MHT and achieves
the best tracking effect. This demonstrates that our method has high robustness to the
rapid moving target and the background interference.
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From the display results of six videos, the visual comparison results of four hyper-
spectral trackers are consistent with the quantitative conclusions. The CNHT method has
the worst tracking result. Our method and MHT have better tracking accuracy than the
other two methods. Our method is the most accurate and has good robustness to the
background clutter and camouflaged objects, since more spectral information is considered
in building feature image. Benefiting from the channel selection strategy, our method has
more advantages than MHT in tracking fast moving small targets.

4. Discussion

For hyperspectral object tracking, we propose a fast tracking method via channel
selection. It is our initial goal to improve the tracking speed and make the tracking more
practical. First, we design a new channel selection strategy to evaluate the quality of
the hyperspectral channels from both intra-channel and inter-channel aspects. The most
valuable few channels are selected from hyperspectral video avoiding the redundancy
caused by some existing hyperspectral trackers focusing on the spectral information of all
channels. Compared with all channels in videos, less channels are conductive to improving
tracking speed. However, the number of the selected channels that can be used without
reducing the tracking accuracy is worth further discussion. In this study, we limit the
number to three, taking into account both tracking speed and tracking accuracy. The
experimental results show that the three channels are competent for the hyperspectral
object tracking task. Moreover, the second goal of our work is to improve the tracking
accuracy on the basis of high tracking speed. Therefore, we improve the classical BACF
tracker by modifying feature extraction, making the BACF framework more suitable for
hyperspectral data. Specifically, we combine BHOG and SSHMG to form a new feature
extractor which can extract the local and global spectral information from the hyperspectral
channels in addition to the HOG spatial features. Although the combination of BHOG
and SSHMG can effectively improve the accuracy, it may cause some spectral information
to be reused, resulting in slow speed. How to extract features more effectively is still an
important problem we need to consider.

From the perspective of practicality, the channel selection strategy in our method
is portable. Channel Selection + Tracker can be easily and flexibly generalized to more
advanced RGB-based tracking frameworks to build excellent hyperspectral object trackers.

It is worth mentioning that there are few publicly available hyperspectral video
datasets for testing object tracking. Insufficient training data can seriously interfere with
the accuracy and generalization of the tracking models. The “data hungry” problem causes
the poor performance of deep learning based trackers. Using channel selection strategy for
hyperspectral object tracking is an effective alternative and a promising idea.

5. Conclusions

We design a fast object tracking method for hyperspectral video. Although the pro-
posed method is simple, it has achieved satisfactory results in hyperspectral videos. The
proposed method first reduces the number of the input channels of hyperspectral video
through a new channel selection strategy. Then the selected few channels are input to
our improved BACF tracker. The channel selection and the improved BACF improve the
tracking speed and the tracking accuracy, respectively. The experimental results show
that our method outperforms the state-of-the-art hyperspectral trackers in both speed and
accuracy. In the future work, we will deploy our tracking framework to FPGA system to
make the tracking research more practical.
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