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Abstract: Remotely sensed spectral diversity is a promising method for investigating biodiversity.
However, studies designed to assess the effectiveness of tracking changes in diversity using historical
satellite imagery are lacking. This study employs open-access multispectral Landsat imagery and
the BiodivMapR package to estimate the multi-temporal alpha diversity in drylands affected by
mining. Multi-temporal parameters of alpha diversity were identified, such as vegetation indices,
buffer zone size, and the number of clusters. Variations in alpha diversity were compared for various
plant communities over time. The results showed that this method could effectively assess the alpha
diversity of vegetation (R2, 0.68). The optimal parameters used to maximize the accuracy of alpha
diversity were NDVI threshold, 0.01; size of buffer zones, 120 m × 120 m; number of clusters, 100.
The root mean square error of the alpha diversity of herbs was lowest (0.26), while those of shrub and
tree communities were higher (0.34–0.41). During the period 1990–2020, the study area showed an
overall trend of increasing diversity, with surface mining causing a significant decrease in diversity
when compared with underground mining. This illustrates that the quick development of remote
sensing and image processing techniques offers new opportunities for monitoring diversity in both
single and multiple time phases. Researchers should consider the plant community types involved
and select locally suitable parameters. In the future, the generation of long-time series and finer
resolution maps of diversity should be studied further in the aspects of spatial, functional, taxonomic,
and phylogenetic diversity.

Keywords: environmental assessment; alpha diversity; remote sensing; mining; vegetation; biodivMapR

1. Introduction

A total of 41% of the Earth’s land is dryland, and 38% of the earth’s population
lives in dryland areas [1]. Nonetheless, ecosystems in dryland provide a lot of important
ecosystem services, such as primary production, food supply, nutrient circulation, water
and soil conservation, habitat, and leisure and recreational opportunities [2,3]. Moreover,
biodiversity in drylands is more sensitive to climate change and other disturbances. In
recent years, drylands have been increasingly disturbed by activities such as urbanization,
mining, and high-intensive agriculture. These disturbances cause vegetation removal, water
consumption, and various types of damage to landscapes, and, consequently, threaten
biodiversity [4,5]. This requires timely monitoring of biodiversity to provide scientific
data in support of land degradation assessment and ecological restoration [5]. Currently,
many studies have conducted rapid and large-scale monitoring of land use change, total
primary productivity, vegetation coverage, surface water, soil, and so on in drylands, but
the monitoring of biodiversity still lacks adequate attention [6].
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Traditionally, the monitoring of biodiversity has been conducted using field surveys
organized by creating and monitoring a sampling quadrat. This kind of field survey usually
covers only a small area, but its disadvantages are high cost, high time-consumption, and
sampling and identification biases [7]. With the rapid development of remote sensing and
image processing technology, more and more remote sensing images are freely available to
use for continuous, large-scale, and remote environmental monitoring. Alpha diversity,
a basic index for biodiversity, indicates the diversity that exists within a typical area or
ecosystem. It is usually measured by the number of species, or the richness of species,
within that ecosystem [8]. Alpha diversity has drawn much attention, given that it has a
strong relationship with ecosystem productivity and resilience. Generally, the diversity
index based on a field survey includes species richness [9], the Shannon–Wiener index [10],
and the Simpson index. References [7,11] proposed a spectral variation hypothesis (SVH)
as a new way to estimate biodiversity from remotely sensed images. According to SVH
theory, remotely sensed images can reflect the spatial variation of the environment, because
they have strong spectral and spatial heterogeneity. This spatial variability is related to
species diversity. Subsequently, SVH theory was adopted by many studies in several
ecosystems to rapidly investigate diversity [12–14]. Based on SVH theory, Féret and de
Boissieu [15] developed the BiodivMapR package in R software to map alpha and beta
diversity from imaging spectroscopy. The BiodivMapR package was successfully applied
to the Amazonian forest [16], temperate mixed forest [17], a savanna [18], and cultivated
areas [19]. It can be seen that remote sensing is becoming a potential approach to address
the challenge of diversity observation across large spatial and time scales [20,21].

Notable progress has been made in the method of estimating diversity indices using
multispectral and hyperspectral imagery. As investigated by Kacic and Kuenzer [22],
the current study on the observation of diversity, based on remote sensing, presents a
strong focus on mono-temporal resolution. Few studies have paid attention to multi-
temporal monitoring. Obviously, mono-temporal observation could provide information
on the change in diversity index, but this limits the detection of a change in diversity and
estimation of a loss or gain [23–25]. This is particularly the case for ecosystems in drylands
under pressure from disturbances, such as mining, erosion, and pollution. As time goes by,
a large number of remote sensing images have been acquired and archived. For example,
Landsat data have more than a 50-year history [26,27]. This provides an opportunity for
the multi-temporal monitoring of diversity. However, studies that discuss the feasibility of
multi-temporal monitoring of diversity using remotely sensed imagery are lacking.

Therefore, we assessed the capability of Landsat and BiodivMapR to track the change
in alpha diversity in drylands under mining disturbance. The main purposes were the
following: (1) to identify the optimal parameters of Landsat and BiodivMapR in the
study area that can be used for monitoring diversity; (2) to investigate the relationship of
estimated alpha diversity and field surveyed data related to the Shannon–Wiener index;
(3) to discuss the effects of vegetation community types on the accuracy of diversity
data; and (4) to detect the change of alpha diversity in the study area. This study aims
at providing scientific and technical support for environmental impact assessment and
management in drylands under mining disturbance.

2. Materials and Methods
2.1. Study Area

The study area was more than 908 km2 and located in the east of the dryland in Asia,
in northern China (38◦52′–39◦41′ N, 109◦51′–110◦46′ E; Figure 1). The local average annual
rainfall is 200 to 500 mm, and the evaporation is 2000 to 3000 mm [4]. This shows that the
study area is a typical dryland environment. The sandy soil supports sparse vegetation,
while a river runs through the middle of the study area. The northern part of the study area
is aeolian sand landform, and the south is loess hilly landform [4]. The study area is rich in
coal resources. More than 52.39% of the study area has been disturbed by underground
mining or surface mining since the 1990s (Figure 1).
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Figure 1. The geographical location of the study area.

2.2. Data
2.2.1. Remote Sensing

This study used four Landsat images, acquired in 1990, 2000, 2010, and 2020, to extract
plant alpha diversity data. The images were recorded by the thematic mapper sensor on
Landsat 5 satellite, except for the 2020 image from Landsat 8/OLI sensor, considering that
the Landsat5 satellite was decommissioned in 2013 (Table 1). The images were selected
from the most mature month of vegetation to avoid impact from phenology and other
factors and were corrected for atmospheric and geometric issues with a spatial resolution
of 30 × 30 m [28].

Table 1. Information for the employed Landsat imagery used in this study.

Name Date Acquired Cloud Coefficient

LT51270331990241BJC00 19900829 0.3%
LT51270332000237BJC00 20000824 0.1%
LT51270332010258IKR00 20100915 0.2%
LE71270332020252EDC00 20200908 0.1%

2.2.2. Field Surveys

In September 2022, a time of peak plant diversity, 63 sampling plots were randomly
established in the entire study area (Figure 1). Four quadrats were established in each
plot, for a total of 252 quadrats that were investigated. For each quadrat, the species,
numbers of individuals of each species, and growth status of the plants were surveyed. The
Shannon–Wiener index was determined using the field data and Microsoft Excel [10], which
accounted for the number of species and their relative evenness. The Shannon–Wiener
index (H’) varied from 0 in plots with one dominant species to an undetermined maximum
in plots with equally abundant species:

H′ = −
N

∑
i=1

piln(pi ) (1)

where N is the total number of species; pi is the abundance value of ith species.

2.3. Methods
2.3.1. Estimation of Alpha Diversity

The present study estimated alpha diversity based on Landsat images using the
package BiodivMapR [15] running in the R Environment [29]. The method can be described
in three steps (Figure 2).
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Figure 2. Diagrammatic representation of the steps used to estimate alpha diversity.

The steps include the following: (1) Image preprocessing was applied to the spectral
data to mask clouds, shade, and non-vegetated pixels. To do this, a thresholding process
was applied to the blue band, near-infrared band and Normalized Digital Vegetation
Index (NDVI, range from −1 to 1) of Landsat images, respectively [30]. In order to reduce
the multiplicative factors caused by light conditions, the spectral data was processed by
continuum removal transformation to highlight the absorption and reflection characteristics
of the spectrum and to normalize them to a uniform spectral background; (2) Principal
component analysis (PCA) was then performed to decrease the spectral dimensionality,
and the first four principal components, including most of the vegetation information, were
selected to form new stack images. A k-means clustering algorithm was used to categorize
image pixels within a user-defined number of clusters of spectral species, and the total
number of spectral species defined within the scene. Here, BiodivMapR assumes that the
spectral space corresponding to a landscape is a combination of subspaces, each of them
related to one or several species sharing similar spectral signatures. Each of these subspaces
can be referred to as a “spectral species” [15]. (3) A distribution pattern of spectral species
was obtained for the scene, and the alpha diversity was computed from this distribution.

In the above process, NDVI threshold, the number of clusters and the total number of
spectral species are important calculation parameters [15]. To identify the optimal NDVI
threshold, a buffer zone of 60 × 60 m was set around each quadrat, and the number of
clusters was set to 50. This study tested the NDVI threshold between 0 and 0.05 with
0.01 steps to mask non-vegetated pixels. Based on the optimal NDVI threshold, we com-
pared the overall accuracy of buffers of 60× 60 m, 90× 90 m, 120× 120 m, and 150 × 150 m
around each quadrat, which corresponded to areas of 2 × 2, 3 × 3, 4 × 4, and 5 × 5 pixels
in Landsat images. For the total number of spectral species, we tested 10, 20, 50, 100, and
150 spectral species during the process of principal component analysis and k-means
clustering, and then compared the overall accuracy.



Remote Sens. 2023, 15, 1554 5 of 16

2.3.2. Accuracy Assessment

In order to evaluate the accuracy, we divided the samples from 252 quadrats into two
groups, one of which was used as training data (140 samples) to estimate alpha diversity,
and the other was used as validation data (112 samples). The training data was used to
determine the best calculation parameters. After estimating the alpha diversity, we used the
fieldd surveyed Shannon–Wiener index from the validation group and the estimated alpha
diversity extracted from the diversity map to calculate the coefficient of determination
(R2) and root mean square error (RMSE). These two indicators were used to evaluate the
accuracy of the estimation of alpha diversity [31,32]. Equations (2) and (3) were used to
calculate R2 and RMSE, respectively, as follows:

R2 = 1−
n

∑
i=1

(ŷi − yi)
2/

n

∑
i=1

(yi − y)2 (2)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

where yi and ŷi are the observations and estimations of the test dataset, respectively, y is
the average of the observations, and n is the number of observations of the test dataset.

To investigate the effects of BiodivMapR parameters and plant community types on
the accuracy of the results, we calculated the coefficient of determination under different
NDVI thresholds, buffer sizes, numbers of clusters, and community types, including pure
tree, mixed forest, pure shrubs, mixed shrubs, and herbs.

2.3.3. Change Detection

After mapping the alpha diversity in 1990, 2000, 2010, and 2020, the imagery difference
method was used to detect the changes for the periods 1990–2020, 1990–2000, 2000–2010,
and 2010–2020. Hot spot analysis in ArcGIS 10.5 (ESRI, Redlands, CA, USA) was performed
to identify the spatial clustering location of high or low values of alpha diversity. In
addition, we extracted the estimated alpha diversity values of typical plant communities in
1990, 2000, 2010, and 2020, to observe the dynamic changes in plant diversity over time.

3. Results
3.1. The Effect of Parameters on Accuracy

Alpha diversity computed by the Landsat image was positively associated with the
field surveyed Shannon–Wiener index, but the accuracy of the estimation of alpha diversity
differed among calculation parameters (Figure 3).

The study found a positive correlation between alpha diversity calculated from Land-
sat images and field-surveyed data. The best results were obtained using an NDVI threshold
of 0.01, a buffer zone of 120 × 120m and clusters of 50 (Figure 3).

According to the effect of BiodivMapR parameters on the accuracy, we estimated alpha
diversity for 1990, 2000, 2010, and 2020 with the parameter values at the highest coefficient
of determination. The highest value of correlation coefficients of alpha diversity and the
Shannon–Wiener index was 0.6827 (Table 2).

Table 2. Summary of linear regressions for Shannon–Wiener index with spectral diversity.

Estimated Value Surveyed Value Correlation Coefficient (R2) p-Value RMSE

Alpha diversity Shannon–Wiener index 0.6827 0.002 5.68
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3.2. The Effect of Plant Community Types on Accuracy

In this study, we compared the accuracy of the estimation of alpha diversity for
different community types, which were classified as pure tree stands, mixed forest stands,
pure shrubs, and mixed shrubs and herbs (Figure 4).
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Among the community types, herbs had the lowest fitting error (RMSE = 0.26), while
the values of alpha diversity ranged from 1.2 to 2.0, indicating that the spectral diversity
of herbs was more homogeneous than the spectral diversity of other community types
analyzed here. The Landsat imagery and BiodivMapR package in R software had a better
capability to reflect the diversity of homogeneous herbs, while the fitting errors of trees
(RMSE = 0.38) and shrubs (RMSE = 0.34) were not as good. For trees, the RMSE between
estimated alpha diversity and surveyed diversity was 0.36 for the pure tree community
and 0.41 for mixed forest. The values of estimated alpha diversity for mixed forests were
generally high, indicating that the level of diversity was higher and more variable for mixed
forests than for pure tree stands. The RMSEs of mixed shrubs and pure shrubs were very
similar, and the estimated alpha diversity values of pure shrubs were in a broad range from
0.4 to 2.0, while the values of mixed shrubs were concentrated between 2.0 and 2.5; this
indicated the higher richness of the shrub community in the study area and the significant
differences in diversity levels.

3.3. Spatial and Temporal Dynamics of Alpha Diversity

Figure 5 shows the alpha diversity of the study area in 1990, 2000, 2010, and 2020. The
values of alpha diversity in 2020 were concentrated in the range of 0.24–2.42, with a mean
and standard deviation of 2.00 and 0.17, respectively. This was in contrast to 2010, showing
an increase of 0.08 in the mean and a decrease of 0.23 in the standard deviation. Meanwhile,
in 2000, the mean and standard deviation were 1.83 and 0.23, respectively, and in 1990, they
were 1.90 and 0.23, respectively.

During the 30 years from 1990 to 2020, the spatial extent of the area where alpha
diversity increased was 567.95 km2, accounting for 62.55% of the study area. Spatially, the
areas with an increase in diversity were mainly located in the northwestern and central
parts of the study area, with a significant increase in alpha diversity in the desert areas
situated in the northeastern region and along both sides of the river, as well as in a small
area overlapping with part of the mining area. The increase in diversity is mainly caused
by many mine restoration projects including reforestation, land reclamation, water and soil
conservation. The area of decreased diversity covered 340.02 km2, accounting for 37.45%
of the total area and was spatially distributed in the southeastern part of the study area,
especially in the area where surface mines exist.

From 1990 and 2000, the study area exhibited an overall decrease in alpha diversity,
with the proportions of the area showing increasing and decreasing alpha diversity cov-
ering 38.17% and 61.78% of the area, respectively (Figure 6). However, the variation of
alpha diversity during this period was small and in the range of −0.7 to 0.7. From 2000
to 2010, 618.55 km2 or 68.12% of the study area experienced an increase in alpha diversity,
while 289.43 km2 or 31.88% experienced a decrease. Spatially, the areas of increased alpha
diversity were mainly located in the northern and western parts of the study area, while
the areas with decreased alpha diversity were located in the southeastern and central parts.
A small number of mining areas and urban construction areas overlapped with the areas
showing a significant decrease, and along both sides of the river in the north overlapped
with the areas experiencing a significant increase. From 2010 to 2020, 524.79 km2 or 57.8%
experienced an increase in alpha diversity, and 383.18 km2 or 42.2% of the total area experi-
enced a decrease. Spatially, the increase in diversity mainly occurred in the northwestern
and central parts of the study area, and the areas with a significant decrease overlapped
with the mining area to a high degree.
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In summary, diversity fluctuated over the 30 years of the present study, with the
10 years from 2000 to 2010 showing a significant increase in diversity, contributing most
to the eventual increase in diversity levels, and the 10 years from 2010 to 2020 showing
some areas with a significant decline in alpha diversity caused by coal mining, which had a
significant impact on the decrease in the levels of diversity.

3.4. Hot and Cold Spots of Diversity Change in the Study Area

Hot spot analysis was performed based on the map of the change in alpha diversity
from 1990 to 2020. Figure 7 shows the hot and cold spot areas of the estimated variation in
alpha diversity for the study area. The hot and cold spot areas stand for the spatial clustering
locations of increases and decreases in alpha diversity from 1990 to 2020. The area of the cold
spots accounted for 21.07% (99%, 95%, and 90% confidence accounted for 1.10%, 5.56%, and
4.41%, respectively) and that of hot spots accounted for 20.82% of the study area (99%, 95%,
and 90% confidence accounted for 14.59%, 3.72%, and 2.50%, respectively).
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Figure 7. Cold and hot spot areas of changes in alpha diversity from 1990 to 2020.

Hot spot areas of alpha diversity were mainly located along the rivers in the center
of the study area and around the sand dunes in the north, with some smaller hot spots
scattered over the entire region. This pattern of hot spots was mainly attributed to the
control of desertification and green engineering. Within the areas with underground and
surface mining, only a few areas were hot spots with an increase in alpha diversity. The
cold spots were mainly located in the urban construction areas around the river and the
surface mining areas. Little overlap was observed between underground mining areas and
cold spots.
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3.5. Changes in Alpha Diversity of Different Plant Communities

The changes in alpha diversity among the 11 typical plant communities in the study
area are presented in Figure 8. Populations of herbs, such as Pennisetum centrasiaticum
and Cleistogenes squarrosa, declined significantly from 1990 to 2000, but this situation
improved after 2000, indicating an improvement in the environment of the study area.

As for shrubs, the alpha diversity of Hippophae rhamnoides increased insignificantly
from 2.11 in 2010 to 2.21 in 2020. The alpha diversity of Artemisia ordosica and Caragana
korshinskii fluctuated, with significant differences (p < 0.05), 1.79 in 2000 and 1.98 in 2020.
In addition, no significant difference was observed in the change in diversity for Salix
mongolica. This suggests that Artemisia ordosica and Caragana korshinskii, as pioneer
species used during ecological restoration, played a significant role in enhancing diversity,
but the enhancement effect of Spiraea mongolica was relatively poor.
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Among the trees, the diversity of pure plantation forests of Pinus sylvestris var. mon-
golica declined from 1990 to 2000 and increased after 2000, while that of the natural mixed
Pinus sylvestris var. mongolica forests continued to rise steadily from 1990. By contrast,
the diversity levels of pure and mixed Populus forests were relatively stable over the entire
study period. This indicates that planting Pinus sylvestris var. mongolica, which grows
rapidly, can help in increasing levels of diversity in a short period of time but with insta-
bility, while Populus has a long growing period and diversity in stands with this species
increases more slowly (Figure 8).

4. Discussion
4.1. Implications for Plant Alpha Diversity Monitoring

Drylands typically have sparse vegetation and low diversity, creating a challenge to
monitoring species diversity over space and time. Current efforts to monitor the envi-
ronment with remote sensing in arid areas have given little attention to diversity. A few
studies have used surrogate variables, such as the NDVI and its derivatives, for estimating
biodiversity [33–37]. In recent years, the method based on the spectral variation hypothesis
for diversity monitoring has gradually gained attention [38]. The present study shows that
the use of Landsat and BiodivMapR can help researchers realize an accurate estimation
of alpha diversity. A buffer size of four times the Landsat image pixel (120 m × 120 m) is
suitable for accurate diversity estimation in low vegetation, heterogeneous areas. Accuracy
of diversity estimation in lush vegetation areas may be low due to the small difference
between pixel texture and spectral characteristics. Community types impact accuracy, with
herb habitats having the smallest error and mixed forests the poorest estimate (Figure 4).
Separate estimation of different community types can improve accuracy [12,13].

The present study shows that using Landsat imagery and the spectral variation hy-
pothesis is effective in tracking change in diversity. The advantage of this method is that it
can quickly identify regions with a loss or gain in diversity. Thus, this method can provide
reliable spatial data for the assessment of land degradation and ecological restoration.
However, the coefficient of determination only reaches 0.68. This is mainly caused by the
fact that the Landsat images have a moderate spatial resolution (30 m × 30 m) and spectral
resolution (7 wave bands for Landsat 5, 9 wave bands for Landsat 8). Landsat images can be
used for distinguishing different plant life forms, such as trees, shrubs and herbs. However,
it is difficult to use Landsat images to identify plant species one by one. In order to evaluate
the diversity of local scales more accurately, hyperspectral data should be considered [20].
In addition, this study recognizes that the diversity of some communities remains stable
over time, but the diversity index of most plant communities changes annually as a result
of ecological succession, human interference, climate fluctuations, and other factors [4,39].
To quantitatively describe the effects of these factors on the inter-annual variation of the
diversity index, it is necessary to, as far as possible, select images with the same imaging
season and time of day and correct the images to eliminate the seasonal fluctuation.

Drylands have been increasingly affected by human activity over time. For example,
mining activities have shifted from humid to remote arid areas in the past 20 years [5,40,41].
Environmental impact assessments previously focused on land use and vegetation changes
but modern restoration efforts aim to restore habitat structure and function [42–45].

Diversity is an important indicator of the structure and function of mine ecosys-
tems [46]. In this study area, the stripping of surface vegetation by surface mining directly
led to a reduction in alpha diversity, over and above the impact of underground mining,
occurring more slowly. The present study shows that diversity monitoring with the help of
remote sensing data provides a new perspective on impact assessments in mining areas
and can be used as a new indicator. It should be emphasized that remote sensing data
should be used to complement, not replace, in situ data on biological diversity.
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4.2. Research Limitations and Future Work

There are a few limitations when using Landsat imagery and BiodivMapR to reveal
vegetation diversity that need to be recognized. First, optimization of the BiodivMapR
calculation parameters needs further enhancement. In this study, the detected diversity
values between remote and in situ surveys had the highest accuracy values when using an
NDVI threshold of 0.01, a 120 × 120 m buffer, and 50 clusters to calculate alpha diversity.
At the NDVI threshold of 0.01 it is easy to recognize non-vegetation pixels from the image.
However, plant community type, short-term precipitation, land use, and other factors can
affect vegetation growth, so further calibration is required when applying remote sensing
images acquired in different seasons or other timestamps in different spectral bands to
calculate alpha diversity. Second, due to the long revisit period of Landsat and its optical
imaging, there are less available Landsat images in some areas, which reduces the temporal
and spatial resolution of diversity assessment. Third, the field survey data only covered
2020; this study lacked field survey data for accuracy assessment in past periods, including
1990, 2000, and 2010.

In view of these shortcomings, more research work needs to be completed. Remoted
sensing based on unmanned aerial vehicles (UAVs) has developed rapidly in the past
decade. UAV remote sensing has the advantages of low cost, being fast and easy to repeat,
and is widely used in ecosystem monitoring [47,48]. In particular, the application of laser
light detection and ranging (LiDAR) and hyperspectral imaging has further enhanced the
capability of UAV remote sensing in diversity monitoring and ecosystem research [49,50].
In the future, UAV-based LiDAR and hyperspectral imaging could be used to estimate
alpha diversity with finer spatial and temporal resolutions. Moreover, using temporal
remote sensing data and spatiotemporal big data computing tools, such as the Google
Earth Engine, to generate regional or global diversity sequence maps is a potential direction
for future research [22,51,52]. This can provide rich data for monitoring and modeling
global change. In addition to the alpha, beta, and gamma diversity indices from the
spatial hierarchical perspective, other aspects of functional (structural, biophysical, and
biochemical), taxonomic, phylogenetic, and genetic diversity deserve attention [53].

5. Conclusions

The goal of this study was to assess the capability of Landsat and BiodivMapR to
track change in alpha diversity in dryland under mining disturbance. To achieve this
objective, the alpha diversity in 1990, 2000, 2010, and 2020 was estimated. Then, the effects
of calculation parameters and vegetation community types on the accuracy of the data
were discussed.

The results showed that using Landsat imagery and the BiodivMapR package in R
software can be effective in assessing alpha diversity. The overall correlation coefficient
between alpha diversity and surveyed diversity was 0.6827 in the study area. The sensitive
parameters included the NDVI threshold, buffer size, and the number of clusters analyzed.
Among the community types, the smallest error in alpha diversity estimation was found in
herb habitats, followed by shrub, and the poorest was in mixed forest. Based on the dynam-
ics of multiple temporal maps of alpha diversity, hot and cold spots of diversity change
can be easily spatially identified, to provide data useful for environmental assessment. It
was found that although the study showed an overall increasing trend in diversity, surface
mining, rather than underground mining, had caused a significant decrease in diversity.

The results indicate that Landsat data can be used to assess diversity and its changes
in drylands, but the resolution of diversity maps is limited; multi-source data fusion and
the production of a long-term time series of diversity maps should be considered in the
future. There is a need to explore the uses of remote sensing to estimate other aspects of
diversity, such as structural, biophysical, and biochemical diversity over space and time.
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