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Abstract: Airborne laser scanning (ALS) technology is fully implemented in forest resource assess-
ment processes, providing highly accurate and spatially continuous results throughout the area
of interest, thus reducing inventory costs when compared with traditional sampling inventories.
Several approaches have been employed to estimate forest parameters using ALS data, such as
the Area-Based Approach (ABA) and Individual Tree Crown (ITC). These two methodologies use
different information processing and field data collection approaches; thus, it is important to have
a selection criterion for the method to be used based on the expected results and admissible errors.
The objective of this study was to compare the prediction errors of forest inventory attributes in the
functioning of ABA and ITC approaches. A plantation of 500 ha of Pinus radiata (400–600 trees ha−1)
in Chile was selected; a forest inventory was conducted using the ABA and ITC methods and the
accuracy of both methods was analyzed. The ITC models performed better than the ABA models
at low tree densities for all forest inventory attributes (15% MAPE in tree density—N—and 11% in
volume—V). There was no significant difference in precision regarding the volume and basal area
(G) estimations at medium densities, although ITC obtained better results for density and dominant
height (Ho). At high densities, ABA performed better for all the attributes except for height (6.5%
MAPE in N, 8.7% in G, and 8.9% in V). Our results showed that the precision of forest inventories
based on ALS data can be adjusted depending on tree density to optimize the selected approach
(ABA and ITC), thus reducing the inventory costs. Hence, field efforts can be greatly decreased while
achieving better prediction accuracies.

Keywords: precision forestry; laser scanning; LiDAR; remote sensing; forest inventory; model-based
inference; modeling

1. Introduction

Three-dimensional (3D) data obtained from remote sensing in the forestry sector is
already a reality that is gradually replacing the traditional tools used in forest inventory [1].
In this respect, remote sensing, which is carried out by freely accessing different spatial and
temporal resolution satellite images, along with airborne laser scanning (ALS) technology,
is leading to a change in forest inventory [2–4]. ALS technology has been fully validated as
a more accurate and less expensive alternative to classic forest inventory. Detailed three-
dimensional information regarding the structure of forests is especially useful for forest
management inventories (e.g., mean tree height, basal area, and stem volume), logistics
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of forest planning, forest fire prevention, structural monitoring, or forest health, among
others [5]. ALS technology is being used at different scales, and there have been studies at
individual tree, plot, or stand levels allowing forest inventories and monitoring at different
spatial resolutions [6]. Moreover, new high-ALS spatial and spectral resolution sensors,
algorithms, and computing capacity permit the coverage of large areas, providing accurate
information concerning dasometric variables [7].

Two different forest inventory approaches have mainly been applied to date, de-
pending on the ALS point density and the inventory accuracy required: the Area-Based
Approach (ABA, [8]) and the Single-Tree Approach (Individual Tree Crown—ITC, [9]). The
main characteristic of the ABA methods is that forest inventory attributes are obtained from
ALS height metrics at pixel scale, usually by considering a surface area of between 250 and
750 m2. Regression models based on a sample of field plots and ALS observations are then
related to obtain mean stand values [10]. The area-based approach is the most common
method for predicting forest attributes (e.g., density, dominant height, basal area, and
diameter distributions, among others) [8,11]. ABA is faster and makes it technically easier
to calculate cloud metrics, in addition to being cost-effective for both computation and
laser data collection, thus making ABA the approach most frequently used for inventory-
managed forests [11]. However, high-precision georeferenced field data are necessary for
adjusted ALS based on regression models to calibrate the link between laser-derived height
measurements and forest inventory attributes. Moreover, information cannot be obtained
from each individual tree, and it obtaining the distribution of diameter classes is complex.
The individual tree crown approach is, on the contrary, based on the segmentation of
the ALS-derived canopy height model and produces predictions for each tree inventory
attribute, such as the stem diameter and tree height [12,13]. The ITC approach can also be
used to estimate individual tree quality attributes, such as the pruning height [14], and, by
aggregating individual trees, other dasometric variables, such as the diameter distribution
classes, dominant height, or basal area [15,16]. The main limitations of the ITC approach
are related to the percentage of trees detected [17], as sometimes only the largest trees are
identified [18]. ITC additionally requires the georeferencing of each individual tree on the
calibration plots, a high density of ALS points (5–10 points m−2), and a longer processing
time, thus increasing labor and the cost of forest inventories [17].

The accuracy of the most common forest attributes predicted using the ABA and ITC
approaches has been the subject of numerous studies [15,18]. Previous results have shown
that both approaches did not significantly differ in average errors when estimating the mean
stand characteristics (e.g., average diameter, height, and basal area), whereas ITC produces
systematic errors for tree density. For instance, Packalén and Maltamo [19] reported RMSE
values of 49.1% with ITC and 27.3% with ABA, while Peuhkurinen et al. [20] and Vastaranta
et al. [21] reported only slightly higher RMSE values for basal area and volume estimates
with ITC than those with ABA. Additionally, previous studies have pointed out that the
ABA and ITC approaches might achieve higher accuracy rates in uniform even-aged forest
plantations, thus reducing estimation errors and inventory costs [22]. This is because ITC
frequently relies on models of canopy height, and suppressed trees are not identified [23].

However, few of those studies made use of data collected as part of large-area oper-
ational inventories and compared the prediction accuracies under different silvicultural
conditions. Our objective was, therefore, to compare the performance of the ABA and
ITC approaches in predicting the timber volume (V) and basal area (G) of Pinus radiata
D. Don. plantations in Chile using high-resolution ALS data (15 points·m−2). To achieve
this objective, (i) a forest inventory was carried out using the ABA and ITC methods and
(ii) the ABA and ITC results were compared regarding the volume, tree density, Assman’s
height, and basal area uncertainty estimation. Our results showed that the precision of
forest inventories based on ALS data could contribute to the optimization of the selected
approach (ABA and ITC) to reduce inventory costs.
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2. Materials and Methods
2.1. Study Area

The study area comprises 497 ha, including 110 stands of a 19-year-old productive plan-
tation of Pinus radiata in the Ñuble Region (Chile, N5939091.572850 m, W793913.723000 m,
E799134m, S 5936039m, WGS84 UTM18S) (Figure 1). The plantation area has highly het-
erogeneous topographic and silvicultural characteristics, with average slopes of between 7
and 14 degrees (maximum of 35 degrees), leading to quite different conditions in terms of
microclimates and growth conditions. The elevation ranges between 470 and 830 m above
sea level. The pine plantation has different types of vertical vegetation structures, with the
inclusion of a shrub layer that is up to 5 m high in some stands, and a high tree canopy layer
with living crowns of over 10 m (Table 1). The average tree density is 429 tree ha−1 (ranging
between 146 and 731 trees ha.1, Table 1 and Figure 1). Selective thinning has been conducted
to improve the silvicultural characteristics, leading to differences in tree density, with high
heterogeneity in the distribution of tree density between stands (Figure 1). Patches of native
forests are associated with the stream network, with the presence of Rubus ulmifolius Schott
and Aristotelia chilensis (Molina) Stuntz.
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Table 1. Silvicultural characteristics of Pinus radiata stands in the Ñuble Region (Chile, N = 48 field plots).

Mean (min–max)

Density (N, trees ha−1) 447 (140–1320)
Assman´s dominant height (Ho, m) 30.57 (15.12–37.25)

Basal area (G, m2 ha−1) 26.71 (9.60–46.05)
Volume (V, m3 ha−1) 287.52 (122.9–442.2)

2.2. Methodology Framework

Figure 2 describes the workflow followed in this study, highlighting the main steps
of data processing used to compare the ABA and ITC approaches to estimate the forest
inventory attributes.

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 2. Overview of the proposed workflow used to compare the performance of the ABA and 
ITC approaches for predicting forest inventory attributes. 

2.3. Field Plot Measurement  
Between November and December of 2016, 48 circular plots (r = 12.6 m) were estab-

lished within the range of the airborne LiDAR strips. The inventory design was based on 
the forest variability described by the spatial distribution of the 95th percentile of the 
height of LiDAR cover. The plots were circular with an area of 500 m2 and were distributed 
by seeking the maximum variability of forest structures (Figure 1). All the trees in each 
plot with a diameter at breast height (1.3 m above ground level—dbh) greater than or 
equal to 10 cm were recorded. Field-Map® equipment (Table S1 Supplementary Material, 
IFER https://fieldmap.cz/ accessed on 14 June 2022) was used. This consisted of an elec-
tronic caliper to measure the dbh, and a Ranger ForestPro laser rangefinder and a MapStar 
compass that allowed the measurement of tree height and sub-metric georeferencing of 
all trees on the plot, respectively. According to the random errors recorded by post-pro-
cessing, the planimetric coordinates of the plot centers had an average error of 12 cm. 

Field measurements were processed to obtain the forest inventory attributes of each 
plot. Specifically, the density (N, trees ha−1), basal area (G, m2 ha−1), Assman´s dominant 
height (Ho, m), and commercial volume up to 8 cm minimum diameter (V, m3 ha−1) were 
calculated (Table 1). Significant differences between the maximums and minimums of 
each forest inventory attribute showed that there was high variability among forest 
stands. High densities were related to the presence of very thin trees on the co-dominant 
stratum established underneath the canopy of larger trees. 

Two trees per plot, one representative of the dominant stratum and one of the co-
dominant strata, were additionally selected and cut down. The height, dbh, and diameter 
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2.3. Field Plot Measurement

Between November and December of 2016, 48 circular plots (r = 12.6 m) were estab-
lished within the range of the airborne LiDAR strips. The inventory design was based on
the forest variability described by the spatial distribution of the 95th percentile of the height
of LiDAR cover. The plots were circular with an area of 500 m2 and were distributed by
seeking the maximum variability of forest structures (Figure 1). All the trees in each plot
with a diameter at breast height (1.3 m above ground level—dbh) greater than or equal
to 10 cm were recorded. Field-Map® equipment (Table S1, Supplementary Material, IFER
https://fieldmap.cz/, accessed on 14 June 2022) was used. This consisted of an electronic
caliper to measure the dbh, and a Ranger ForestPro laser rangefinder and a MapStar com-
pass that allowed the measurement of tree height and sub-metric georeferencing of all trees
on the plot, respectively. According to the random errors recorded by post-processing, the
planimetric coordinates of the plot centers had an average error of 12 cm.

https://fieldmap.cz/
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Field measurements were processed to obtain the forest inventory attributes of each
plot. Specifically, the density (N, trees ha−1), basal area (G, m2 ha−1), Assman´s dominant
height (Ho, m), and commercial volume up to 8 cm minimum diameter (V, m3 ha−1) were
calculated (Table 1). Significant differences between the maximums and minimums of
each forest inventory attribute showed that there was high variability among forest stands.
High densities were related to the presence of very thin trees on the co-dominant stratum
established underneath the canopy of larger trees.

Two trees per plot, one representative of the dominant stratum and one of the co-
dominant strata, were additionally selected and cut down. The height, dbh, and diameter
for each meter were measured (N = 96, dbh = 17.1–52.2 cm; H = 12.0–35.4 m). This
information was then used to generate a local profile equation by parameterizing the
coefficients of Riemer´s equation and volume, whose performance was superior for volume
estimation in Pinus radiata [24].

2.4. ALS Data Acquisition and Processing

ALS data acquisition was conducted in October 2016 by Heligraphics Fotogrametría
S.L. (Alicante, Spain) using ALS60 laser scanner equipment (Leica-Geosystems AG, Heer-
brugg, Switzerland). The resulting point cloud had an average density of 15 pulses m−2

(20–12 pulses m−2), which were evenly distributed over the entire study surface. The
maximum effective FOV was 40◦ (Table S2, Supplementary Material). LiDAR processing
was performed using US Forest Service FUSION/LDV 3.42 software [25] (http://forsys.
cfr.washington.edu/fusion/fusionlatest.html, accessed on 23 January 2017). According
to the proposed FUSION specifications, the minimum density of 0.5 pulses m−1 was the
minimum required to produce the 3 m DEM. Proposals referenced in Ruiz et al. [26] were
followed to elaborate the Digital Terrain Model (DTM), and a linear prediction-based algo-
rithm was used to create separate filtering processes for the point clouds [27]. Following
that, filtered returns were used to generate the DTM (Digital Terrain Model), DSM (Digital
Surface Model), and CHM (Canopy Height Model) [28]. The DSM was used to normalize
the elevation values of the LiDAR data returns. The FUSION Toolkit was used to extract
43 metrics for each 500 m2 plot. These metrics were used as predictor variables to support
the construction of regression models for the estimation of forest inventory attributes by
employing the ABA method.

LAStools software was used to generate a Pit-Free CHM with a precision of 0.2 m [29].
Based on the CHM, we segmented the crown outlines with a watershed algorithm [30]. To
distinguish the tree top heights from ground and low vegetation, a 2 m threshold was used
and an algorithm’s height tolerance of 10 cm above 2 m was set. False treetops generated
by forked trees or the confusion of dominant branches were subsequently eliminated
using the criterion set for minimum distance and height [31] and were then validated by
comparing them with the tree positions in the field plots obtained using Field-Map. A
polygon was generated around the perimeter of the crown of each tree, and LiDAR metrics
were extracted using FUSION/LDV software for each individual tree.

2.5. Statistical Modeling

Field forest inventory attributes and ALS metrics were then assessed for multivariate
normality and homoscedasticity, after which multivariate linear models were adjusted by
employing the ABA and ITC approaches. The ABA models were adjusted to estimate forest
inventory attributes (N, G, Ho, and V) using the ALS metrics calculated for each plot as
predictor variables. ITC models were fitted to estimate the Ho and dbh using the ALS
metrics of each delineated crown as predictor variables. The volume was estimated by
applying Riemer´s equation [24] to each tree using the dbh and height estimated using
the ITC-ALS models. The models were adjusted by using the stepwise regression method
(RCmdr package, [32]) and by taking the Bayesian information criterion (BIC) as the input
and output criteria for the variables. To avoid collinearity in the models, variables with a
VIF (Variance Inflation Factor) of less than 10 were accepted [33]. The forest attributes at

http://forsys.cfr.washington.edu/fusion/fusionlatest.html
http://forsys.cfr.washington.edu/fusion/fusionlatest.html
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the plot level using the ITC method were obtained by aggregating the values obtained for
each tree, with the aim of making them comparable with the results of the ABA method.
In order to compare the results obtained by both methods, the Root-Mean-Square Error
(%RMSE) and the Mean-Absolute-Percentage Error (MAPE) were calculated using the
residuals between the field data and those estimated by each model.

The suitability of both methods based on forest inventory attributes was studied
by analyzing the estimation errors considering the residues in three tree density groups
(<400 trees ha−1, 406–600 trees ha−1, >600 trees ha−1), as they are the reference densities in
forestry schemes of P. radiata plantations in Chile [34].

3. Results
3.1. Local Riemer´s Equation

Using the tree sample as a basis (N = 96), a local Riemer´s equation was calibrated to
estimate the tree volume (Equation (1)). This local Riemer´s equation was used to calculate
the volume of each individual tree from its height and dbh measured in the field. These
individual volumes were summed per plot to obtain V (m3 ha−1).

r(h) = 0.429·dbh
1−e0.0623·(1.3−H) +

(
dbh

2 − 0.429·dbh
)
·
[
1 − 1

1−e0.3975·(1.3−H)

]
+ e−0.3975·h

·
[
( dbh

2 −0.429·dbh)·e0.5167
.

1−e0.3975·(1.3−H)

]
− e0.0623·h·

[
0.429·dbh·e−0.0623·H

1−e0.0623·(1.3−H)

] (1)

where r = stem radius (cm) at height h (m); H = tree height (m); and dbh = diameter at breast
height (cm).

Figure 3 shows the performance of the parameterized stem profile equation when
comparing the observed volume with the predicted volume for each tree (MSE = 0.045 m3).
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Figure 3. Relationship between the volumes (m3) estimated with the parameterized Riemer´s
equation and field measurements of Pinus radiata stands in Ñuble Region (South, Chile). The linear
model of this relationship (dashed line), the coefficient of determination, and the fitted model equation
are shown. The gray shading around the line represents the 95% confidence interval.

3.2. ABA and ITC Models for Forest Inventory Attributes

Table 2 shows the best-adjusted stepwise linear models for both the ABA and ITC
approaches, which were subsequently used to obtain the estimation errors. The ALS
measurements of N, G, Ho, and V were found to be more strongly correlated (Radj

2 > 0.62)
than the ITC measurements. The best regression model for Ho was obtained with the
95th percentile of elevations and the percentage of all returns above the mean as ALS
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independent variables (Radj
2 = 0.87, RSE = 1.57 m). However, the h and dbh estimation

based on the ITC approach obtained a lower coefficient of determination (Radj
2 = 0.56,

RSE = 4.07 m, and Radj
2 = 0.39, RSE = 74.92 mm).

Table 2. Adjusted multivariate linear equations for the forest attributes of Pinus radiata stands in
Ñuble Region (South, Chile) using the Area-Based Approach (ABA) and Individual Tree Crown (ITC)
approach. Adjusted models with their predictor variables, adjusted coefficient of determination,
residual standard error, F-statistic, and p-value are shown. Density (N), basal area (G), Assman´s
dominant height (Ho), and commercial volume of up to 8 cm minimum diameter (V).

Approach Forest
Attributes Equation R2 adj Residual

Standard Error F-Statistic p-Value

ABA N (trees ha−1) −627.278 + 11.356 V1 + 2098.761 V2 0.62 139.70 36.37 <0.001
ABA G (m2 ha−1) −4.4228 + 0.2352 V3 + 1.0143 V4 0.71 4.68 58.48 <0.001
ABA Ho (m) −3.36683 + 1.13876 V5 + 0.05687 V6 0.87 1.57 160.30 <0.001
ABA V (m3 ha−1) −348.959 + 10.649 V1 + 10.796 V5 0.79 42.62 89.81 <0.001
ITC h (m) 3.0805 + 0.9173 V5 − 0.279 V3 + 0.2169 V7 0.56 4.07 437.00 <0.001
ITC dbh (mm) 177.307 + 6.347 V7 − 1.5757 V8 + 2.9279 V1 0.39 74.92 83.49 <0.001

V1: Percentage of all returns above the mean; V2: Coefficient of variation of heights; V3: (All returns above
5 m/Total first returns) · 100; V4: Interquartile range of elevations; V5: 95th percentile of elevations of all returns;
V6: Percentage of all returns above a mean of 5.00; V7: 60th percentile of elevations of all returns; V8: (All returns
above mean/Total first returns) · 100.

3.3. Comparison between ABA and ITC Methods

Table 3 shows the errors (%RMSE and MAPE) associated with the analysis of the
residues of the ABA and ITC models. In both cases, these statistics were calculated using
the residuals obtained by comparing the estimated forest inventory attributes (N, G, Ho,
and V) and those obtained in the field plots. The ABA method estimated these attributes by
means of the fitted models (Table 2). The ITC method-estimated forest attributes (Table 2)
that were aggregated at plot level to obtain forest inventory attributes showed similar
values to those obtained by the ABA method.

Table 3. Errors (%RMSE and MAPE) obtained for the forest inventory attributes of Pinus radiata
stands in Ñuble Region (South, Chile) using the Area-Based Approach (ABA) and Individual Tree
Crown (ITC) models (see Table 2, n = 48 plots). The lowest error for each variable is highlighted in
bold. Density (N, trees ha−1), Assman´s dominant height (Ho, m), Basal area (G, m2 ha−1), Volume
(V, m3 ha−1).

Errors Forest Attributes ABA ITC

% RMSE

N (trees ha−1) 29.89 19.68
G (m2 ha−1) 26.53 23.31

Ho (m) 5.85 4.94
V (m3 ha−1) 28.38 23.03

MAPE

N (trees ha−1) 24.15 15.41
G (m2 ha−1) 20.82 19.05

Ho (m) 4.51 3.56
V (m3 ha−1) 22.27 18.64

The estimation models of the forest inventory attributes attained good accuracy with
both methods; however, the RMSE and MAPE statistics were better for the ITC method for
all variables. To analyze the performance of both methods according to plantation structure,
the MAPE distribution of forest inventory variables was plotted in intervals of 200 trees h−1

(Figure 4). The ITC models were more precise at low densities (<500 trees ha−1 for G and
V; <700 trees ha−1 for N, and <1000 trees ha−1 for Ho), while the ABA models were better
at high densities. Table 4 shows the forest inventory attributes for plots belonging to the
target interval of tree densities.
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Table 4. Distribution of forest inventory attributes of Pinus radiata stands in the Ñuble Region (South,
Chile) as a function of plot density in intervals of 200 trees ha−1. Density (N, trees ha−1), Assman´s
dominant height (Ho, m), Basal area (G, m2 ha−1), Volume (V, m3 ha−1).

Forest Attributes

N (Trees ha−1)

<400 (n = 24)
Mean (Min–Max)

400–600 (n = 15)
Mean (Min–Max)

>600 (n = 9)
Mean (Min–Max)

N (trees ha−1) 291.7 (140–380) 480 (420–560) 806.7 (600–1320)
Ho (m) 31.3 (21.7–36.9) 30.4 (15.1–37.2) 29.2 (21.4–33.9)

G (m2 ha−1) 20.9 (9.7–30.1) 29.2 (22.3–40.7) 33.9 (31.0–46.1)
V (m3 ha−1) 251.6 (110.1–403.6) 319.7 (107.7–442.2) 328.9 (167.5–399.4)

Figure 5 shows the RMSE and MAPE values obtained after estimating each forest
attribute for each density interval. These errors were calculated by taking the residuals of
the plots corresponding to each density interval (Table 4). Similar trends for G and V could
be observed, with better results for ITC at low densities, similar results at medium densities,
and better results for ABA at high densities. The tree density showed better results for ITC
at medium and low densities, and better results for ABA at high densities. In the case of
Ho, the results were similar at low densities, improving the ITC results for medium and
high densities.
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Figure 5. Distribution of errors (%RMSE and MAPE) in the estimation of the forest inventory
attributes of Pinus radiata stands in the Ñuble Region (South, Chile) using the Area-Based Approach
(ABA) and Individual Tree Crown (ITC) models (see Table 2, n = 48 plots) as a function of plot density
in intervals of 200 trees ha−1. Density (N, trees ha−1), Assman´s dominant height (Ho, m), Basal area
(G, m2 ha−1), Volume (V, m3 ha−1).

Table 5 presents the statistical performance differences between the ABA and ITC ap-
proaches depending on the main forest attributes. In the lowest-density interval
(N < 400 trees ha−1), the ITC models obtained better results than the ABA models, al-
though this difference was uneven for the various forest inventory attributes. The greatest
differences were observed for density and volume (15.0 and 11.2%, respectively, in MAPE),
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while the smallest differences were for Ho (0 in %RMSE and 0.5 in MAPE). The ITC models
estimated tree density better (improvements of 9.5% RMSE and 7.8 MAPE when com-
pared with the ABA models) at medium densities (N = 400–600 trees ha−1), although with
less improvement than at a low density. Ho behaved in a similar manner, with a better
performance of ITC models when compared with ABA models, although with smaller
statistical differences (2.6%RMSE and 1.8 MAPE). G and V performed in a similar manner
with both approaches.

Table 5. Differences in statistical performance between the ABA and ITC models, quantified as
∆%RMSE (%RMSE ABA–%RMSE ITC) and ∆MAPE (%MAPE ABA–%MAPE ITC), for each forest
attribute and each tree density range.

Forest Attributes Trees ha−1 ∆%RMSE
(ABA–ITC) ∆ MAPE (ABA–ITC)

N (trees ha−1)
<400 18.5 15.0

400 to 600 9.5 7.8
>600 −4.3 −6.4

G (m2 ha−1)
<400 7.0 6.9

400 to 600 1.8 −0.1
>600 −8.8 −8.8

Ho (m)
<400 0.0 0.5

400 to 600 2.6 1.8
>600 1.0 0.9

V (m3 ha−1)
<400 11.3 11.2

400 to 600 −0.1 −1.0
>600 −7.9 −9.0

In the high-density range (N > 600 trees ha−1), the performance of the models was
different with respect to the previous density ranges. Ho obtained the best results for the
ITC models, but with a similar performance to the ABA models, with a low difference in
the comparison between the two methods (1%RMSE and 0.9 MAPE). The remaining forest
attributes obtained better performance in the ABA models when compared with the ITC
models, with greater differences than for Ho (6.4 MAPE in N, 8.8 MAPE in G, and 9 MAPE
in V).

4. Discussion

ALS data have become increasingly implemented for forest inventory [4]. We inves-
tigated the ALS base models to predict key forest inventory attributes in Pinus radiata
plantations in south Chile for optimized forest management. Comparisons of the ABA and
ITC approaches for forest inventory are still required to support forest planning at various
levels of accuracy and costs, which directly affect the accuracy of the final estimation. Forest
inventory attributes derived from diameter and height, and the mean stand characteristics
prediction errors were used to compare the methods. The findings of this study showed
that both methods could be used to predict important forest characteristics for P. radiata
plantations in Chile. In our case, the results showed that the best overall prediction accuracy
was provided by the ABA method in high-density stands, while the ITC was better at lower
tree density. Forest companies that are automating their forest inventory data collection
processes through ALS systems should find this strategy to be a practical option. Saving
money and speeding up high-accuracy processing are two benefits of reducing field effort,
particularly plot data collection [10]. The outcomes acquired from this pilot study have
exhibited potential for application in large-scale forest inventories.

4.1. Local Riemer´s Taper Function

Numerous stand volume models exist for Pinus radiata due to the economic significance
of plantations of this species. Taper equations are adaptable and useful tools for estimating
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the total and marketable stem volumes in forest inventories [35]. However, few studies
have developed local volume equations when conducting ALS forest inventory. As the first
step of this research, a nonlinear mixed modeling approach was used to fit and calibrate
a stem taper function for Pinus radiata plantations in Chile. The greatest improvement
in volume and diameter predictions was seen when calibration was performed with an
additional diameter that was measured between 40 and 60 percent of the total tree height.
As we considered this to be a crucial question when applying to ALS inventories, we
also evaluated how stem taper prediction was affected by the expansion of parameters
with random effects. The goodness-of-fit statistics indicated that the mixed model with
three random effects performed the best among the candidate models. These results are
consistent with those of previous studies using a multilevel mixed effects model to describe
P. radiata’s volume in Northwest Spain [24]. Together, these results suggest that the type of
tree variable relationship to be modeled or the data set used influenced the proportion of
variability explained by the volume model.

To determine the optimal volume in ALS inventories, the use of local stand volume
models based on mixed-effects models performed better when calibrated with additional
diameters taken along sample trees, clearly improving the model performance in terms of
predictive ability. These results are in line with those suggested in recent studies to improve
the accuracy of taper function for radiata pine in New Zealand [36], which suggested
measuring an additional diameter at 50% of the total tree height for radiata pine. Thus,
developing local regression models to best describe the volume for P. radiata to integrate
into ALS-based forest inventories could improve stand-level information.

4.2. ALS Metrics and Tree Segmentation

Crown segmentation is a fundamental process in the ITC method [37,38], as the
extraction of ALS metrics is performed at the tree crown scale. In this work, the tree
segmentation accuracy varied as a result of tree density between low-density plantations
(MAPE = 9.65 trees ha−1, RMSE = 13.9%) and dense plantations (MAPE = 30.76 trees ha−1,

RMSE = 32.6%). The accuracy of tree segmentation was similar to that found in previous
studies [9,38,39], showing that the results of tree individualization obtained herein were
similar to those obtained in operating inventories. The presence of tree–crown groups, if it
is treated as an individual tree, likely contributed to the underestimation of tree density,
which would then lead to an underestimation of other forest attributes (dbh, G, and tree
volume). Although the main issue—inaccurate identification of individual trees—was
not resolved in this study, which also used a spatial explanatory variable, it did affect the
estimation accuracy of the ITC method [40].

The ALS metrics selected by the stepwise method for the different forest inventory
attributes were consistent with the plantation structure influenced by horizontal cover
(N, G, or dbh) and were explained by coverage metrics, such as the “Percentage of all
returns above mean”. On the other hand, the height attributes (Ho and h) were explained
principally by the height percentile. Volume proved to be highly dependent on both height
(95th percentile of elevations of all returns) and horizontal forest structure (percentage
of all returns above the mean). The variables selected by the models used in this work
coincide with those recommended in previous studies [41]. The improved forest inventory
estimation through the use of individual tree and area-based methods emphasized the
significance of dominant and co-dominant trees in LiDAR metrics and placed a greater
emphasis on the upper canopy LiDAR points [42]. Additional independent variables
(coefficient of variation of heights; interquartile range of elevations; 95th percentile, and
60th percentile) provide accurate estimates of the total forest inventory variables, as has
occurred in other studies [43,44].

Moreover, the question of whether high-density data are required when selecting
the ABA or ITC methods to obtain precise results at the plot scale is a major limitation
of using ALS for forest inventory [45,46]. In this study, we used high-density ALS data
(15 pulses m−2), which have become the standard for monitoring large areas of intensive
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pine plantations in Chile. When using statistical height metrics as predictor variables,
numerous studies have reported that low plot pulse densities (2–5 pulses m−2) have no
adverse effects on the quality of forest variables estimation [47,48]. However, high-density
ALS data (>10 pulses m−2) are still required for the individual tree detection method, which
improves regression equations by linking ALS data to field observations, as shown by
our findings.

4.3. ABA and ITC Models for Forest Inventory Attributes

The multivariate stepwise equations adjusted for ALS metrics showed different per-
formances for dasometric (H, G, Ho, and V) or dendrometric (h and dbh) sets of variables.
Table 2 shows that the linear equations to estimate forest attributes based on the ITC
method had lower coefficient of determination values than the ABA method. However,
when these attributes were summarized at the plot level, the ITC estimations showed better
performances than the ABA models (Table 3). This may indicate that there was an error
compensation in the estimates of h and dbh in individual trees when they were summed at
the plot level.

The ITC models performed better for all the forest attributes when all plots were
analyzed together, without distinction of densities (Table 3). However, upon analyzing
the performance of the models as a function of tree density, the attribute estimations were
affected by this variable in both models, and the ABA models reduced the errors with
respect to the ITC models at high tree densities. However, the ITC accuracy was lower at
high tree density. Packalén et al. [49] reported similar results in boreal managed forests,
with a negative bias of 37% when estimating tree density using the ITC approach, whereas
the mean height and volume were estimated with very little bias using both the ITC and
ABA models. The research by Vastaranta et al. [50] was also similar in that, despite using
a pulse density for ITD that was also relatively low (1.08 pulses m−2), they reported only
slightly higher RMSEs for the basal area and volume estimates with ITC than with ABA.

The performance of the ITC models is strongly influenced by crown delineation owing
to omission errors [9,51]. It is, therefore, to be expected that ITC models will yield higher
errors in more structurally complex plantations owing to the higher density with more
transitional trees. This implies the presence of more compact and poorly defined crowns,
and many trees present in the dominated stratum, which can negatively impact the perfor-
mance of the individualization process. This effect was more evident when analyzing the
models’ residuals in the three typical tree-density intervals used in silvicultural schemes in
Chile [34]. Many other studies have demonstrated lower detection rates in co-dominant
trees because of inadequate point cloud representativeness and overstore obscuration [52,53].
However, as these trees account for a low percentage of the total volume, the error of the
volume did not increase with a higher tree density, as occurred with the other forest variables,
which indicated the presence of more trees with a similar height. In the low-density range
(N < 400 trees ha−1), the ITC models performed better for all the forest inventory attributes,
and crown delimitation errors were lower, reducing the errors resulting from tree identi-
fication. There were non-significant differences between models for V and G estimation
at medium density (400 < N < 600 trees ha−1), although N and Ho performed better for
ITC, but with lower statistical differences with respect to ABA. In the case of high densities
(N > 600 trees ha−1), ABA performed better for all of the inventory attributes except for
height. This may have been due to the influence of the individualization error, with a signifi-
cant impact on the estimation of N, G, and V, but with less importance in the estimation of
height [54].

4.4. Implications for Forest Management

Previous studies indicate that the ABA approach is the most appropriate when domi-
nant species are key for forest management, because field data acquisition is less demanding,
precision is relatively high, and systematic errors are lower [55]. Other studies [9] have
shown the non-comparative statistical advantages of both approaches, but ABA is more
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appropriate for forest inventories with many unsampled stands or when management
decisions need to be made for non-sampled stands. The aforementioned authors also
indicated that ITC significantly improved the accuracy, although it was highly influenced
by tree segmentation. This coincides with our results, in which the performance of the ABA
and ITC depended on tree density and, therefore, on tree segmentation. In this respect,
other authors [56] recommend the use of the ITC approach for monospecific stands of a
uniform age when most of the trees are in the upper part of the canopy, which favors the
detection of individual trees. The higher cost of data collection for ITC inventories must
be considered when choosing between approaches because each tree in the plot needs to
be georeferenced [9], which requires more field effort and computer work to perform tree
segmentation [47]. However, according to Frank et al. [9], ITC allows for better estimation
of forest inventory attributes for management that the ABA methods do not estimate, such
as the distribution of diameter classes or pruning height, in addition to improvements
regarding spatial resolution. Other authors [57] have stated the usefulness of the ITC ap-
proach in forests in which the dendrometric information concerning non-dominant trees is
important, and it is especially useful in biodiversity studies or in the silvicultural planning
of mixed forests. ABA may, therefore, significantly overestimate forestry variables at a low
tree density for intensive pine plantations. However, the ABA method can be used as a
hierarchical integration approach with which to upscale forest variable estimation from
low to high densities when field plot data are spatially limited, as demonstrated in our
research. Positively speaking, the computationally faster and simpler ABA method makes
it relatively simple to implement [58]. Furthermore, the ABA also can provide estimations
of forestry variables that are useful for supporting single-tree-level management decisions,
such as forest diameter distribution classes [59,60]. It is, therefore, possible to suggest
that ABA-ITC algorithms can be implemented in a framework in order to improve forest
inventories and prevent systematic errors at the stand level [61].

The applicability of the results of this work to other P. radiata plantations will depend
on the silvicultural complexity of the forests with high densities; in our case, with many
trees in the dominated stratum and high errors of omission. This situation derives from the
method for the selection of trees to be harvested during silvicultural treatments. On many
occasions, these trees are selected according to their characteristics as future high-value
candidates, such as the straightness of the stem, adequate thickness, absence of branches
at the lower part of the stem, etc. This practice causes a non-homogeneous distribution
of trees, which favors the development of a dominant and a dominated stratum with
difficulties in detection by remote sensing techniques.

In situations of high densities without dominated strata and with homogeneous and
well-formed crown structures, it is expected that the individualization process will pro-
vide better precision and, therefore, improve the ITC results. We understand that the
future improvement of the tree delineation procedures in forests with complex silvicul-
tural characteristics will imply a greater precision of the ITC results, which may change
the recommendations for the use of the models for high densities. In this respect, the
integration of ALS data with digital photogrammetry and UAV has provided promising
results [62], although they cannot solve the problem of omissions owing to the presence of
dominant strata.

5. Conclusions

Accurate forest inventory results are of great importance for forestry companies, as
they allow the economical evaluation of its assets and more efficient planning for a forestry
operation. For planted Pinus radiata forests, ALS data can be used to accurately predict
forest inventory attributes. The ITC-ABA methods used here can be employed in intensive
forest plantations. The choice of the inventory method (ABA or ITC) is important in
operational forest planning, as it affects the management costs because the ITC method
requires a higher density of points, a higher cost of field data acquisition, and a greater
analytical effort. The processing of the results of this work shows that it is important to
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select the correct unavoidable method according to the necessary dasometric data and
silvicultural characteristics of the forest. The ITC models performed better for all of the
dasometric variables at low densities (N < 400 trees ha−1). Regarding the mean density,
there was no significant difference in the precision of the estimation of V and G with
either method, although ITC provided better results for N and Ho. In the case of high
densities (N > 600 trees ha−1), the performance of ABA was better for all variables, with
the exception of height. It is, therefore, possible to suggest that ABA-ITC algorithms can be
implemented in a framework to improve forest inventories and prevent systematic errors at
the stand level. Due to the cost of ALS data and processing, forest inventories may provide
multiple advantages from a single product, including inventory assessment, mapping,
change detection, and forest health assessment.
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