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Abstract: Wildfires have a significant impact on the atmosphere, terrestrial ecosystems, and society. 
Real-time monitoring of wildfire locations is crucial in fighting wildfires and reducing human cas-
ualties and property damage. Geostationary satellites offer the advantage of high temporal resolu-
tion and are gradually being used for real-time fire detection. In this study, we constructed a fire 
label dataset using the stable VNP14IMG fire product and used the random forest (RF) model for 
fire detection based on Himawari-8 multiband data. The band calculation features related bright-
ness temperature, spatial features, and auxiliary data as input used in this framework for model 
training. We also used a recursive feature elimination method to evaluate the impact of these fea-
tures on model accuracy and to exclude redundant features. The daytime and nighttime RF models 
(RF-D/RF-N) are separately constructed to analyze their applicability. Finally, we extensively eval-
uated the model performance by comparing them with the Japan Aerospace Exploration Agency 
(JAXA) wildfire product. The RF models exhibited higher accuracy, with recall and precision rates 
of 95.62% and 59%, respectively, and the recall rate for small fires was 19.44% higher than that of 
the JAXA wildfire product. Adding band calculation features and spatial features, as well as feature 
selection, effectively reduced the overfitting and improved the model’s generalization ability. The 
RF-D model had higher fire detection accuracy than the RF-N model. Omission errors and commis-
sion errors were mainly concentrated in the adjacent pixels of the fire clusters. In conclusion, our 
VIIRS fire product and Himawari-8 data-based fire detection model can monitor the fire location in 
real time and has excellent detection capability for small fires, making it highly significant for fire 
detection. 
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1. Introduction 
Wildfires are major natural hazards that negatively affect human safety, natural eco-

systems, and wildlife [1]. Although statistics show that the frequency and total burned 
area of global wildfires are decreasing year by year, some regions will experience larger 
and more intense wildfires [2,3]. Since September 2019, long-lasting, difficult-to-extin-
guish wildfires have erupted in many parts of Australia, covering a total area of more 
than 6 million hectares [4]. 
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The timely and accurate monitoring of the location of wildfire occurrence plays an 
important role in wildfire suppression and reducing human casualties and property dam-
age [5]. In recent years, remote-sensing satellite monitoring has gradually become an im-
portant tool for wildfire monitoring with its fast imaging cycle and wide coverage. This 
form of Earth observation is based on the detection of the characteristics of electromag-
netic radiation (mainly infrared) that is emitted during the combustion of biomass. Cur-
rently, the absolute threshold method [6,7] and the contextual method [8] are widely used 
for satellite-based fire detection. The absolute threshold method was proposed by Flanni-
gan et al. [6] in 1986. This method identifies fire pixels by comparing the brightness tem-
perature of the pixel channel to be processed with a set threshold value. This method has 
good performance in wildfire monitoring in North American forest areas. The accuracy of 
the absolute threshold method, however, can be affected by environmental differences in 
different regions [7]. The contextual approach was proposed by Flasse et al. [8]. It com-
pares the information of a potential fire pixel with that of its neighbors, and if their differ-
ence is greater than a set threshold, the pixel is identified as a fire pixel. The contextual 
method has wider applicability. Moderate Resolution Imaging Spectroradiometer 
(MODIS) thermal anomaly products based on the contextual approach have been evalu-
ated in a large number of studies and have become standard for satellite-based fire detec-
tion [9,10]. The Visible-Infrared Imaging Radiometer Suite (VIIRS) active fire detection 
algorithm is an implementation of the MODIS thermal anomaly detection algorithm on 
the VIIRS sensor, which has a higher spatial resolution (375 m) [11]. A study by Oliva et 
al. [12] showed that VIIRS was able to detect 100% of wildfires larger than 100 ha in north-
ern Australia. Although some fire-monitoring methods applied on polar-orbiting satel-
lites have achieved satisfactory accuracy, the lack of temporal resolution of these satellites 
has made it difficult to achieve near real-time fire detection. 

The Himawari-8 satellite is a new generation of synoptic meteorological satellite 
launched by Japan on 7 October 2014. This satellite has greatly improved temporal and 
spatial resolution compared with existing geosynchronous meteorological satellites, with 
temporal resolution up to 10 min and spatial resolution up to 0.5 km. In recent years, many 
scholars have used Himawari-8 to conduct research related to fire detection. Xu et al. [5] 
monitored the Esperance, Western Australia, wildfire in real time based on a spatially 
fixed threshold method. Experiments demonstrated that Himawari-8 had a strong im-
munity to smoke and thin clouds, was sensitive to small fires, and could provide valuable 
real-time fire information for wildfire management. Hally et al. [13,14] developed a daily 
temperature cycling model to detect anomalies in an image time series. This method, how-
ever, required a longer time series of cloud-free image elements as training data, which 
has limited its application. Wickramasinghe et al. [15] used middle-infrared (MIR) (2 km), 
near-infrared (NIR) (1 km), and RED (500 m) data from Himawari-8 to achieve continuous 
tracking of 500 m resolution fire lines. However, RED data are not available at night, re-
sulting in the method being applicable only for daytime fire line monitoring. Although 
these methods are effective in fire detection, they do not take full advantage of the band 
and spatial information of the Himawari-8 data, thus also limiting fire detection. 

In recent years, some scholars have used machine learning (ML) methods for fire de-
tection. Chen et al. [16] combined long-time information with the gradient boost decision 
tree model to detect wildfires in the Yunnan region, and the accuracy of the algorithm was 
greatly improved. Jang et al. [17] used the random forest (RF) algorithm to detect Korean 
fires, and the algorithm had a great improvement in accuracy compared with other algo-
rithms and had higher detection accuracy for small fires. Ding et al. [18] applied over 5000 
images obtained from the geostationary Himawari-8 satellite of a severe Australian wild-
fire that occurred from November 2019 to February 2020 to train and test a fully connected 
convolutional neural network (CNN) for identifying the location and intensity of wildfires. 
The proposed CNN model obtains a detection accuracy greater than 80%. Kang et al. [19] 
used a CNN model to detect forest fires. The model accuracy was improved by adding 
spatial features and temporal features. Although these methods have achieved high 
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accuracy, the training dataset of these models is based on manual visual inspection or is 
obtained using actual surveys. The datasets constructed by these methods have limita-
tions. Hassini et al. [20] discussed the case of simple visual inspection. This approach usu-
ally has low effectiveness because only fires with a large contrast between the pixels af-
fected by the fires and the surrounding pixels can be visually identified on MIR images. It 
is not possible to observe small or starting wildfires, and only very large wildfires can be 
observed in plumes at the low spatial resolution of geostationary sensors. The use of rec-
orded information enables a posteriori validation, in which the results depend strictly on 
the completeness and correctness of the catalogs, as well as on the minimum size of the 
recorded events that may vary in space and time according to the individual country’s 
policy [21]. The lack of suitable datasets has limited the application of ML methods to 
active fire detection [22]. Therefore, it is crucial to create an automatically generated and 
representative training dataset for ML models. 

Fine-resolution fire products are often used to verify the accuracy of coarse-resolu-
tion fire detection results and also can be used as a training dataset for fire prediction and 
detection ML models [23–25]. Zhang et al. [25] constructed a Himawari-8 fire label dataset 
based on high-confidence fire pixels from the VIIRS Fire product for training a daytime 
fire detection RF model. Although the model achieved good fire detection accuracy in 
Southwestern China, the representativeness of the fire label dataset constructed using 
only high-confidence fire pixels from the VIIRS Fire product needs further study. The re-
sponse of different resolution sensors to the same fire may be different, which is often 
discussed when active fire detection results from coarser-resolution satellite data are eval-
uated using finer-resolution data. For example, the 30 m Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) onboard the National Aeronautics and 
Space Administration (NASA) Terra satellite was successfully used to detect active fires 
to validate fire detections from MODIS and the previous Geostationary Operational En-
vironmental Satellite [26–30]. A logistic regression model can be used to estimate the prob-
ability of coarse-resolution fire detection in relation to the number of fine-resolution fire 
pixels contained within the coarse pixel. These studies all have shown a common pattern 
that the fire detection probability generally increases as the number of fine fire pixels in-
creases within a coarse pixel. Therefore, in this study, we also considered this response 
characteristic when fine-resolution fire pixels are used to construct the coarse-resolution 
training dataset, with the aim of seeking suitable representative fire pixels. 

Although machine-learning-based fire detection methods can reduce the generaliza-
tion problems of simple threshold methods based on contextual statistical analysis, the 
fire label dataset used for machine learning (ML) model training is typically based on 
manual interpretation or field surveys, which are often labor-intensive and subject to hu-
man error. In this study, we used RF models for fire detection based on Himawari-8 data 
and constructed a fire label dataset using the stable VNP14IMG fire product. We ad-
dressed the challenge of constructing a coarse-resolution fire label dataset from fine-reso-
lution fire products. We added band calculation features, spatial features, and auxiliary 
data for model training and evaluated the impact of these features on model accuracy. A 
feature selection process was used to exclude redundant features. We also constructed 
separate daytime and nighttime RF models to analyze their applicability. Finally, we ex-
tensively evaluated the model results by comparing them with the Japan Aerospace Ex-
ploration Agency (JAXA) wildfire product. 

Section 2 provides an overview of the study area and the data used in this study, as 
well as the pre-processing of the data. Section 3 describes the detailed methodology of fire 
detection. Section 4 presents the fire detection results. Section 5 discusses the representa-
tive problems in constructing the training dataset, the advantages of the feature selection 
procedure in classification applications, and the reasons why the model produces omis-
sions and commission detection. Section 6 concludes the study. 
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2. Study Area and Data 
2.1. Study Area 

Australia is one of the most wildfire-prone countries in the world [31], and south-
eastern Australia is considered a rare wildfire area, where fires occur mainly in the sum-
mer, as well as in the spring and autumn [32]. The southeastern part of Australia, which 
includes the states of New South Wales and Victoria and has about three-fifths of the total 
population of Australia, has an undulating terrain. In the west is a vast desert, and in the 
east is the Great Dividing Range, which runs from north to south through southeastern 
Australia. Forests along the Great Dividing Range are narrowly distributed, with approx-
imately 28.4 million hectares of woodland, accounting for about 18% of the country’s for-
est area, of which the dominant species is eucalyptus, which has a high oil content and is 
flammable [4]. Wildfires occur in the region throughout the year because of rainfall pat-
terns and extreme weather. In the 2019–2020 wildfire season, bush and grassland fires in 
New South Wales reportedly burned more than 5.5 million ha, destroyed nearly 2500 
houses, and killed 26 people. We selected southeastern Australia (shown in Figure 1) as 
the subject for this study. 

 
Figure 1. The spatial extent of the study area. The land cover is taken from MODIS 500 m Land 
Use/Land Cover (LULC) production for 2020. 

2.2. VNP14IMG Fire Product 
VNP14IMG is a fire product of the VIIRS sensor carried by the Suomi-National Polar-

Orbiting Partnership (S-NPP) satellite. The product provides the latitude, longitude, time, 
confidence, and relevant band information of the fire pixel. This product was developed 
based on the MODIS thermal anomaly algorithm and can achieve a high spatial resolution 
of 375 m. Studies [11,33,34] have shown that the 375 m VIIRS fire product can easily detect 
small wildfires that are not detectable by MODIS. The product is available from the Fire 
Information for Resource Management System (FIRMS) 
(https://firms.modaps.eosdis.nasa.gov/download/)(accessed on 10 March 2023). FIRMS is 
part of NASA’s Land, Atmosphere Near Real-Time Capability program for Earth Obser-
vation System and can provide search ranges in terms of the country and time historical 
VNP14IMG fire product. In this study, we selected the VNP14IMG fire product, which 
occurred in Australia in 2019 and 2020, and extracted fire pixels from the study area in 
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November and December 2019 and January 2020 according to time and latitude and lon-
gitude, Acquire_date, and Acquire_time information. Fire pixels with high and nominal 
confidence levels were used to construct the Himawari-8 label dataset for fire detection 
model construction and accuracy assessment. 

2.3. Himawari-8 L1 Grid Data 
Himawari-8 is the first of the third generation of geostationary weather satellites car-

rying the new Advanced Himawari Imager (AHI) instrument [35]. AHI can achieve data 
with a high spatial resolution ranging from 0.5 to 2 km and a high temporal resolution 
ranging from 2.5 to 10 min [36]. Himawari-8 L1 grid data are a standard product of AHI, 
with a spatial resolution of 0.02° covering the 60S–60N, 80E–160W region and allowing 
for full coverage of the study area every 10 min. Data can be obtained from JAXA’s P-Tree 
system (ftp://ftp.ptree.jaxa.jp/jma/netcdf)(accessed on 10 March 2023). The product band 
information includes band 1–6 albedo data, band 7–16 bright temperature data (Tbb07–
Tbb16), and attribute data, including satellite zenith angle, satellite azimuth angle, solar 
zenith angle, solar azimuth angle, and observation time. The band information of the 
product used in this study is shown in Table 1. We acquired Himawari-8 L1 grid data for 
November and December 2019 and January 2020 and cropped it to the study area. 

Table 1. Himawari-8 AHI bands used in this study. 

Himawari-8 
AHI Band 

Bandwidth 
(µm) 

Central Wavelength 
(µm) 

Spatial Resolution 
(km) Purpose 

3 0.03 0.64 2 Cloud Mask 
4 0.02 0.86 2 Cloud Mask 
6 0.02 2.26 2 Water Mask 
7 0.22 3.85 2 Fire detection 
8 0.37 6.25 2 Fire detection 
9 0.12 6.95 2 Fire detection 
10 0.17 7.35 2 Fire detection 
11 0.32 8.60 2 Fire detection 
12 0.18 9.63 2 Fire detection 
13 0.30 10.45 2 Fire detection 
14 0.20 11.20 2 Fire detection 
15 0.30 12.35 2 Fire detection 
16 0.20 13.30 2 Fire detection 

2.4. Himawari-8 L2WLF Product 
Himawari-8 L2WLF is a fire product released by the Japan Space Development 

Agency (ftp://ftp.ptree.jaxa.jp/pub/himawari/L2/WLF)(accessed on 10 March 2023), with 
a temporal resolution of 10 min and a spatial resolution of 0.02°. The product is based on 
the latitude and longitude information of the center of the fire pixel obtained from the 
MIR (3.9 µm) and thermal infrared (10.8 µm) band threshold tests of the Himawari-8 im-
age. Data include the location of the fire pixels, the fire radiated power, and the band 
information of the fire pixels and can be used as the comparison data to verify the fire 
detection accuracy in this study. 

2.5. MCD12Q1.006 Land Use Product 
MCD12Q1.006 [37] is a MODIS land cover product used to determine the land cover 

type of the burn area, removing false alarms located in other land types. Figure 1 shows 
the results of the International Geosphere–Biosphere Programme scheme land classifica-
tion for the MCD12Q1.006 data for the 2020 study area. The scheme contains 17 categories. 
In this study, we selected categories 1–10 and 14 as the underlying surface types where 
wildfires would be likely to occur. The data can be downloaded from GEE (dataset ID: 
ee.ImageCollection (“MODIS/006/MCD12Q1”)). The original spatial resolution of the 
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MCD12Q1.006 data was 500 m, and it was resampled to 2 km using majority filtering to 
match the AHI spatial resolution. 

3. Method 
We split the goal of identifying fire pixels into two tasks. The first was non-fire pixels 

exclusion, which included cloud and water masks, and potential fire detection. The sec-
ond task was to extract fire pixels from potential fire pixels based on the RF classification 
algorithm. The specific methodology for fire detection and the performance evaluation 
metrics of the classifier defined in this study are as follows. 

3.1. Cloud and Water Masks 
Cloud masks are a crucial part of any active fire detection [38]. Reflections from 

clouds in the MIR band can be mistakenly detected as fire pixels. Further, solar flares from 
water bodies can be misidentified as fire pixels [39]. Cloud masks and water masks can 
reduce the false fire detection caused by clouds and water. In this study, we referred to 
the method of Xu et al. [5] to detect clouds and water in the Himawari-8 images. A pixel 
satisfying the following equation is defined as a cloud pixel. 

The daytime cloud pixel is shown in Equation (1): 

3 4 15 3 4 15( 0.9)  ( 265)  (( 0.7)  285)and T and or T+ < > + < >ρ ρ ρ ρ . (1)

The nighttime cloud pixel is shown in Equation (2): 

15 265 T > , (2)

where 3ρ  and 4ρ  are the reflectance of Himawari-8 band 3 and band 4, respectively, 
and 15T  is the brightness temperature of band 15. A pixel satisfying Equation (3) is de-
fined as a water pixel: 

6 0.05A < , (3)

where 6A  is the Himawari-8 Band6 albedo. Water masking at night was not required 
because of the low false positives produced by water bodies at night. We defined a 
nighttime pixel as a pixel with a solar zenith angle of more than 85°. 

3.2. Potential Fire Detection 
We used a preliminary classification to eliminate obvious non-fire pixels. Those pix-

els that remain, named potential fire pixels, are considered in the RF test to determine if 
they do in fact contain active fire. According to the method of Wooster et al. [39], the 
Himawari-8 pixel satisfying Equations (4) and (5) is defined as a potential fire pixel: 

3.9 11 12sBT C C> +θ , (4)

3.9 10.8 21 22sBT BT C C− > +θ , (5)

where 3.9BT , 10.8BT  are the bright temperature values of band 7 and band 14 of the 
Himawari-8 pixel, respectively; sθ  is the solar zenith angle; and 11C  (−0.3 and 0.0), 12C  
(310.5 and 280 K), 21C  (−0.0049 and 0.0), and 22C  (1.75 and 0.0 K) are the constants ap-
plied when 85s > °θ  and 85s < °θ . Because a key requirement for an enhanced fire detec-
tion algorithm was increased sensitivity to small fire, we used these relatively low thresh-
olds in this test. 

3.3. Random Forest 
RF is widely used for classification and regression in various remote sensing appli-

cations [40–44]. RF is based on the CART (classification and regression tree) method [45], 
in which RF uses many independent decision trees for regression and classification using 
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(weighted) averaging and majority voting, respectively. RF uses two randomization strat-
egies: random selection of training samples for each tree and random selection of input 
variables for each node of the tree [46–48]. By developing many independent trees from 
different sets of training samples and input variables, RF attempts to provide relatively 
unbiased results [49–51], preventing overfitting and sensitivity to the training data con-
figuration. 

The RF algorithm is fast, easy to parameterize, and robust [52,53]. In addition, it can 
quantify the importance of features, which makes it possible to use it for feature ranking 
or selection [54]. Many studies have shown that selecting a subset of features from an 
excessive number of feature variables is essential to prevent overfitting and reduce the 
computational complexity of the model [55–58]. Many studies [17,19,25] have been con-
ducted to show that RF models are effective in fire detection. Therefore, we chose the RF 
model for fire detection. 

The construction process for the fire detection RF models is shown in Figure 2, which 
consists of five key processes: (1) cloud and water masks, (2) multisource data matching 
including spatial and temporal dimensions, (3) feature selection, (4) optimization of model 
parameters, and (5) construction and validation of the model on the validation dataset. 

VNP14IMG fire 
productionHimawari-8 data

Daytime Fire and non-
Fire

Feature Selection

Parameter 
Optimization

Mode Training

Feature Selection

Parameter 
Optimization

Mode Training

Building the dataset

Training and 
Testing

RF-D RF-N

Nighttime Fire and 
non-Fire

Original data

Training 
dataset

Testing 
dataset

Temporal-spatial Matching 

Interval less than 5min Pixel center nearest

Cloud and Water Mask

Training 
dataset

Testing 
dataset

 
Figure 2. Flowchart for fire detection model construction. 

3.3.1. Building the Dataset 
In this study, we first constructed an a priori dataset to train and validate the fire 

detection model. Systematic bias between AHI and VIIRS had to be considered when con-
structing the training sample for the Himawari-8 fire detection model using the VIIRS fire 
product. In this study, we introduced the concept of fire pixel count: first, we regarded 
the Himawari-8 pixel as composed of 5 × 5 small grids of 0.004° × 0.004°; if the center 
of a VIIRS fire pixel fell into a small grid, we labeled the grid; and, finally, we took the 
number of labeled grids in the Himawari-8 pixel as the fire pixel count. We selected 0.004° 
as the small grid size because the Himawari-8 grid size was 0.02°, and the resolution was 
about five times that of VIIRS. Then, we constructed the fire labels with different fire pixel 
count thresholds and trained the RF models separately. By comparing the performance of 
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different models on the validation dataset, we used the pixel with fire pixel counts greater 
than 7 (10) in Himawari-8 as the fire label dataset for the daytime (nighttime) model, and 
we selected the non-fire labels from the potential fire pixels according to 1:10. To reduce 
the effects of striping phenomena and localization errors of the VIIRS fire product [59,60], 
we did not select fire labels adjacent to 8 pixels. In addition, because of the large spatial 
and temporal variability of fire, we retained only fire with a time difference of 5 min or 
less between VIIRS and AHI observations to construct the dataset. 

We selected the November and December 2019 Himawari-8 data and VIIRS fire prod-
uct to construct the dataset according to this method. To improve the generalization abil-
ity of the model, we used the stratified random sampling method to divide the data into 
the training dataset and validation dataset according to 7:3 for model construction. Strat-
ified random sampling is a sampling method that divides the target object into homoge-
neous groups before using simple random sampling to select elements from each group 
to be a part of the sample group [61,62]. Considering the imbalance between the fire and 
non-fire labels, by dividing the dataset by the stratified random sampling method, we 
ensured the same ratio of fire and non-fire labels in the training and validation dataset, 
which effectively prevented the possibility of too few fire labels after dividing the unbal-
anced dataset. Finally, we collected the January 2020 dataset for testing. 

3.3.2. Feature Selection 
Feature selection is an important step in the parameter retrieval of ML algorithms. 

Feature selection can reduce the dimensionality of the training data, avoid overfitting, and 
improve the operation efficiency of the model. It also makes the model more explanatory 
[36]. First, based on the original data, we selected a total of 12 features, including thermal 
infrared brightness temperature (Tbb07–Tbb16), longitude, and latitude data. To achieve 
a consistent retrieval of fire pixel features, we excluded solar zenith angle data, which 
were strongly correlated with time. Referring to the existing studies [17,25] for the original 
bands, we calculated the radiance (Rad) and combined the radiance and brightness tem-
perature bands separately to obtain 25 band calculated features. In addition, the spatial 
features of the pixels reflected the difference between the fire pixels and the background 
pixels. In this study, we extracted five spatial features with reference to the MODIS ther-
mal anomaly algorithm [9]: the mean absolute deviation of the background pixel band 
( 07δ , 14δ , 07 14−δ ), the difference between the pixels band, and the mean value of the back-

ground pixels band ( 07Tbb07 T− , 07 14Dif07 14Dif T −− − ). To analyze the relationship between 
different underlying surface types and the occurrence of fire, we also included land use 
data in the experiment. Table 2 summarizes the input variables used in the RF models. 

Table 2. Features used to construct the RF model. 

Original band 
features 

Tbb07, Tbb08, Tbb09, Tbb010, Tbb11, Tbb12, Tbb13, Tbb14, Tbb15, 
Tbb16, Lat, Lon 

Band calculation 
features 

Tbb07-Tbb11, Tbb07-Tbb12, Tbb07-Tbb13, Tbb07-Tbb14, Tbb07-Tbb15, 
Tbb12-Tbb16, Tbb13-Tbb14, Tbb13-Tbb15, Tbb07/Tbb09, Tbb07/Tbb10, 
Tbb07/Tbb11, Tbb07/Tbb12, Tbb07/Tbb13, Tbb07/Tbb14, Tbb07/Tbb15, 
Tbb07/Tbb16, Tbb09/Tbb16, Tbb13/Tbb15, Rad04-Rad07, Rad05-Rad07, 
Rad06-Rad07, Rad07-Rad12, Rad07-Rad15, Rad12-Rad15, Rad07 

Spatial features 07δ , 14δ , 07 14−δ , 07Tbb07 T− , 07 14Dif07 14Dif T −− −  
Auxiliary data MCD12Q1.006 

We used recursive feature elimination [63] for feature selection to remove features 
with potential covariance, reduce the complexity of the model, and improve the generali-
zation ability of the model. Using the algorithm, we first calculated the importance of fea-
tures according to the mean accuracy descent method [53,64] and then evaluated the 
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importance of features by disrupting the ranking of features and calculating the change 
in the accuracy of the model on the validation dataset. Then, we ranked the importance of 
the obtained features and removed the features with the lowest importance. We calculated 
the accuracy factor of the model on the validation dataset and then repeated the process 
for the remaining features until the number of features reached the specified minimum 
number of features. Finally, we selected the combination of features with the highest ac-
curacy factor for model construction. Considering the imbalance of the dataset, we se-
lected the F1-score as the accuracy evaluation factor for feature selection [65]. 

3.3.3. Optimal Model Parameter Selection 
Similar to feature selection, parameter optimization of ML is a key step to improve 

model accuracy. In our study, we examined the effects of three key parameters of the RF 
model, including the number of trees, the maximum tree depth, and the maximum feature 
selection, on fire detection accuracy. Each fire detection model was set using a combina-
tion of 100 hyperparameters, where the number of trees ranged from 80 to 100 at a step 
size of 5, the maximum depth ranged from 5 to 20 at a step size of 5, and the maximum 
feature selection ranged from 2 to 10 at a step size of 2. The F1-scores were each calculated 
using the validation dataset as evaluation factors for tuning and optimizing the RF model. 
The models with a high F1-score and simple tree structure will be selected. Finally, we set 
the number of trees in the daytime model (nighttime) to 95 (85), the maximum depth to 
15 (10), and the maximum feature selection to 4 (8). 

3.3.4. Accuracy Assessment 
For the accuracy assessment of ML results, most studies construct error matrices to 

calculate some evaluation metrics, such as the overall accuracy, recall, precision, and 
Kappa coefficient [23,66–68]. In this study, we used the confusion matrix of classification 
for statistical accuracy assessment. Because of the possibility of an imbalance between fire 
and non-fire classes, accuracy can be misleading in an unbalanced dataset [69]. Therefore, 
we considered four accuracy criteria: precision ( P ), recall ( R ), F1-score ( F ), and overall 
accuracy (OA ). 

TP
TP FP

P
+

= , (6) 

TPR
TP FN

=
+

, (7) 

FPF
TP FP

=
+

, (8) 

TN TPOA
TP FN FP TN

+=
+ + +

, (9) 

where true positive (TP ) is the number of correct positive predictions; false positive ( FP ) 
is the number of incorrect positive predictions; false negative ( FN ) is the number of in-
correct negative predictions; and true negative (TN ) is the number of correct negative 
predictions. Precision is the proportion of correctly predicted fires to the total number of 
predicted fires, and recall is the proportion of correctly predicted fires to the total number 
of true fires. The F1-score is the harmonic mean of recall and precision, which is used to 
represent the model output. The value range is between 0 and 1, and the closer the value 
is to 1, the better the model output is. OA refers to the probability that the classifier pre-
dicts correctly on the validation dataset. 
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4. Results 
4.1. Model Accuracy Assessment 

We constructed the RF models based on the selected optimal features and parameters 
and trained them on the training dataset. The RF models had high accuracy on the vali-
dation dataset, with an F1-score of 94.35% and OA of 99.86% for the RF-D model and an 
F1-score of 90.37% and OA of 99.69% for the RF-N model. We further validated the accu-
racy of the constructed models with the validation dataset, as shown in Table 3. Both the 
RF-D and RF-N models had high recall, which indicated that both models could identify 
the vast majority of fires. The precision of the RF-D model was higher than that of the RF-
N model. This may have been related to the fact that the nighttime fire features were not 
obvious, which caused the RF-N model to easily classify non-fire pixels as fire pixels. 
Overall, the F1-scores of both the RF-D and RF-N models were high, 90.04% and 83.16%, 
respectively, and in addition, the OA metrics were both close to 1. This result was mainly 
due to the large number of non-fire pixels in the validation dataset that were correctly 
identified. 

Table 3. RF-D and RF-N models accuracy assessment results on the validation dataset. 

 Error Matrix Recall/% Precision/% F1-Score/% OA/% 

RF-D 
 Predicted non-fire Predicted fire     

Reference non-fire 103,750 190 
93.70 86.66 90.04 99.74 

Reference fire 83 1234 

RF-N 
 Predicted non-fire Predicted fire     

Reference non-fire 93,799 364 
88.70 78.27 83.16 99.44 

Reference fire  167 1311 

4.2. Wildfires Monitoring 
To further analyze the generalization ability of the RF models, we selected the Janu-

ary 2020 wildfires in the study area for sample area testing, which included the following: 
We used the VNP14IMG fire product as the validation data and selected the Himawari-8 
data closest to the transit moment of VIIRS to extract the fire location using the RF models 
constructed in this study. We selected the Himawari-8 L2WLF product for the same pe-
riod as the comparison data, and finally, we compared the RF models’ extraction results 
and the Himawari-8 L2WLF product with the VNP14IMG fire product. Figure 3 shows 
the fire pixel extraction results of the different models and products for four wildfires. 

In the daytime wildfire observation Himawari-8 images shown in Figure 3(a-1,b-1), 
the greenish-black area is the forest cover area, which shows the obvious columnar smoke 
from forest burning. The distribution of fire pixels is relatively scattered and mostly ap-
pears at the edge of the smoke, as shown in the corresponding VNP14IMG image. The 
yellowish and yellow areas in the nighttime wildfire observation Himawari-8 image 
shown in Figure 3(c-1,d-1) are the pixels with higher bright temperatures in band 7 in the 
image. The fire detected by the three algorithms appeared basically around these pixels. 
The Himawari-8 L2WLF product and RF models detected the fire pixels in the same area 
as VNP14IMG did, but both algorithms appeared to judge the area around the VNP14IMG 
fire pixel as a fire pixel. Compared with the Himawari-8 L2WLF product, the RF models 
were able to detect more fires, such as those in the green circle areas shown in Figure 3(a-
2,b-2,c-2). Referring to the Himawari-8 L2WLF product description document [70], 
Himawari-8 L2WLF pixels are detected based on the normalized deviation of the 3.9 µm 
brightness temperature from the background temperature determined from the 10.8 µm 
brightness temperatures at surrounding 11 × 11 grids. We counted the Tbb07 and Tbb07-
Tbb14 feature values of these fire pixels that the Himawari-8 L2WLF product failed to 
identify, and the results were all lower than the mean of the corresponding values of the 
reference fire pixels in each sample area. These pixels were missed by the Himawari-8 
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L2WLF product likely because the Himawari-8 L2WLF product is a threshold algorithm 
based on the Tbb07 and Tbb14 bands, and a higher threshold setting would have caused 
the algorithm to miss the detection. Sample area 4 shows that the Himawari-8 L2WLF 
product detected areas with higher bright temperature values, whereas RF-N detected 
areas with lower bright temperature values. 

 
Figure 3. Fire detection results (column 1 is the original Himawari-8 image, where (a-1,b-1) are true 
color-composite images of bands 1, 2, and 3; (c-1,d-1) are single-band images of band 7; and columns 
2, 3, and 4 are the results of fire pixels obtained from the different products and models overlayed 
onto the original image, where (a-2,b-2,c-2,d-2) are the fire detection results of the VNP14IMG prod-
uct in four sample areas respectively; (a-3,b-3,c-3,d-3) are the fire detection results of the Himawari-
8 L2WLF product in four sample areas respectively; (a-4,b-4,c-4,d-4) are the fire detection results of 
the RF models in four sample areas respectively ). 

To quantify the detection accuracy of each model and product, we calculated the ac-
curacy metrics of the different models and products, as shown in Table 4. The results 
showed that the Himawari-8 L2WLF product and the RF models had high recall for fire 
pixels with higher fire pixel counts, 85.64% and 95.62%, respectively, but both had rela-
tively low accuracy rates, 64.18% and 59%, respectively. Compared with the Himawari-8 
L2WLF product, the RF models had a slight decrease in precision (5.18%), but a significant 
increase in recall. In particular, for fire pixels with low fire pixel counts, the RF models 
had a 19.44% increase in recall. Compared with the RF-N model, the RF-D model had a 
high recall for fire pixels. Zhang et al. [25] used a similar random forest algorithm to detect 
wildfires in southwestern China. Compared with the study of Zhang et al., the method 
used in this paper had higher recall, which was mainly due to the ability to detect small 
fires better. This was mainly because previous studies only used VNP14IMG fire pixels 
with high confidence to construct a label dataset, while this paper added VNP14IMG fire 
pixels with nominal confidence to it and considered the representativeness issue.  
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Table 4. RF models and Himawari-8 L2WLF product accuracy evaluation on the test sample area. 

Sample Area 
Himawari-8 L2WLF Product RF Models 

Recall/% Recall*/% Precision/% Recall/% Recall*/% Precision/% 
1 80 45.26 66.29 98.57 82.46 54.43 
2 88.96 75.12 56.45 99.39 90.91 53.58 
3 87.23 41.44 70.09 93.62 56.65 68.68 
4 86.36 60.64 63.87 90.91 70.21 59.31 

Average value 85.64 55.62 64.18 95.62 75.06 59 
Recall*: Number of fire pixels with model detection fire pixel count below the threshold/Total num-
ber of fire pixels with fire pixel count below the threshold. 

Notably, the white circles shown in Figure 3(d-2) are pixels with high bright temper-
ature values, which are not recognized as fire pixels by VNP14IMG. Both the Himawari-
8 L2WFL product and the RF-N model, however, recognized this part of the area as fire 
pixels. These may have been the fire pixels missed by the VNP14IMG algorithm, which 
indicated that the actual accuracy of the Himawari-8 L2WFL product and RF models may 
have had higher actual accuracy than the calculated values. 

4.3. Variable Importance Assessment in RF Classification 
After the feature selection of the 43 features, we used 25 and 23 features to construct 

the RF-D and RF-N models, respectively. The importance of the features in the model was 
ranked, and Figure 4 shows the importance scores of each feature of the model. The figure 
shows that the most significant factor affecting daytime fire detection was 

07 14Dif07 14Dif T −− − , which was due to the fact that the peak wavelength of radiation shifted 
to the short wave when biomass was burned. As a result, the Tbb07 and Tbb14 bright 
temperature difference of the fire pixels was significantly enhanced compared with the 
neighboring pixels. The most important feature for nighttime fire detection was 
Tbb07/Tbb12, and this phenomenon also could be explained by fire-induced radiation 
variation. This feature was more important than other ratio features, which may have been 
related to the intensity of biomass burning in the study area. The top five features of both 
RF models were related to Tbb07, which indicated that fire detection depended heavily 
on Tbb07. Compared with the RF-D model, most spatial features were eliminated in the 
RF-N model feature selection. The experiments showed that although spatial features in-
creased the recall of the RF models, the inclusion of spatial features increased the commis-
sion errors of the RF models because of the heating of the neighboring pixels by the fire 
pixels. At nighttime, however, the lack of some auxiliary information provided by light 
led to the reduction of the F1-score of the RF-N model on the validation dataset, and the 
spatial features were eliminated in the nighttime fire detection. In addition, the im-
portance of land use features in both models was less than 0.5%, which indicated that 
coarse resolution underlying surface features had little effect when detecting fire using 
Himawari-8 data at large spatial scales. 
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Figure 4. Ranking the features importance of RF-D and RF-N models. 

5. Discussion 
5.1. Pixel Representation 

In this study, when constructing the RF model for fire detection, we evaluated the 
construction of a fire label dataset from the VIIRS fire product. Because of the uncertainty 
of the detection capability of Himawari-8 and VIIRS for the same fire, in this study, we 
first constructed fire labels with the threshold value of the number of VIIRS fire pixels 
within the Himawari-8 pixel, trained the RF models separately, and finally, selected a suit-
able fire label dataset by comparing the performances of different models on the valida-
tion dataset. Figure 5 shows the test results of the RF-D and RF-N models. 
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Figure 5. Accuracy of RF models on the validation dataset with fire label datasets constructed with 
different fire pixel counts as thresholds. 

In Figure 5, the horizontal axis is the minimum threshold for the number of VIIRS 
fire pixels within the Himawari-8 fire label when training the RF models. The target recall 
is the recall of the trained model on the validation dataset for fire pixels above the thresh-
old, the extra-recall is the recall of the model for fire pixels below the threshold, and the 
commission error probability is the probability of the model misclassifying non-fire pixels 
as fire pixels in the validation dataset. Overall, as the threshold increased, the target recall 
of the model increased, and the probability of commission error and extra-recall decreased. 
Although the model was better able to distinguish between large fires and non-fires, the 
detection ability for small fires decreased. In addition, the target recall and extra-recall of 
the RF-D model generally were consistent with the RF-N model, but the commission error 
of the RF-N model was two to four times higher than that of the RF-D model, which may 
have been related to the low threshold set by VIIRS for nighttime fire detection. These 
VIIRS-detected fire pixels may not have been represented as fire pixel information on the 
Himawari-8 images. Although using these pixels as labels eventually would enhance the 
ability of the model to detect small fires, it also would lead to a large commission error. In 
this study, we considered the 3 metrics and selected 7 and 10 as the thresholds for the RF-
D and RF-N models, respectively. 

5.2. Feature Selection 
To analyze the effect of different input features on model accuracy, we trained the RF 

models with the original band information and all features. We obtained the accuracy of 
three different feature combination methods on the validation and test datasets, as shown 
in Table 5. 

The overfitting phenomenon existed in different feature combinations, and the accu-
racy of the model on the test dataset was lower than that on the validation dataset. The 
overfitting of the RF models constructed using only the original band information was the 
most serious, and the F1-scores of the RF-D model and RF-N model decreased by 12.56% 
and 7.43%, respectively. This result indicated that adding band calculation features and 
the spatial features could reduce the overfitting of the model. Compared with the RF mod-
els constructed with all features, the RF models constructed with feature selection had a 
high F1-score, which was mainly reflected in the improvement of the precision; however, 
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the recall of the model decreased after feature selection. Compared with the RF-D model, 
the RF-N model had a decrease in accuracy, mainly in terms of precision. 

Table 5. Accuracy of RF models constructed with different feature combinations on the validation 
and test datasets. 

 Feature Combination Validation Set Accuracy Test Set Accuracy 
  Recall Precision F1-Score Recall Precision F1-Score 

RF-D 
Original feature 94.95 93.97 94.46 91.57 74.16 81.95 

All features 96.84 91.83 94.27 94.76 81.88 87.85 
After feature select 96.43 92.35 94.35 93.70 86.66 90.04 

RF-N 
Original feature 96.39 81.82 88.51 93.23 71.73 81.08 

All features 96.51 82.32 88.85 92.49 75.23 82.97 
After feature select 95.57 85.69 90.36 88.70 78.26 83.15 

5.3. Omission and Commission Error Analysis 
Figure 6 shows the omission error of the RF models on the test dataset. As the number 

count of VIIRS fire pixels within the tested Himawari-8 fire pixels increased, the probabil-
ity of omission of the Himawari-8 fire pixels all followed a decreasing trend. The RF-N 
model had a higher omission error than the RF-D model. For the Himawari-8 fire pixels 
with only one VIIRS fire pixel count, the probabilities of omission of the RF-D model and 
RF-N model were 59.81% and 75.9%, respectively. For the Himawari-8 fire pixels with 12 
VIIRS fire pixels counts, all 92 fire pixels were detected during the daytime, whereas 23 
out of 181 fire pixels were not detected during the nighttime. 

 

 
Figure 6. (a,b) show the probability of omission detections for the RF-D model and RF-N model, 
respectively, for Himawari-8 fire pixels containing different VIIRS fire pixel counts, and the histo-
gram shows the total number of Himawari-8 fire pixels with different VIIRS fire pixel counts in the 
test dataset. 

Figure 7 shows the probability of the distribution of VIIRS fire pixels in Himawari-8 
pixels with different fire pixel counts. Figure 7a shows the case of only one VIIRS fire pixel, 
which appeared at the edges of the Himawari-8 pixel, most notably, at the four corners. 
The probability of appearing at the center of the pixel was smaller, and the probability of 
omission of these pixels was particularly high in Figure 6. As the VIIRS fire pixel count 
within the Himawari-8 pixel increased, the VIIRS fire pixel position gradually shifted 
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toward the center of the pixel, as shown in Figure 7c,d, and the probability of omission of 
the fire pixel gradually decreased. With a further increase of the fire pixel count, the VIIRS 
fire pixels were gradually and uniformly distributed within the Himawari-8 pixel. The 
actual spatial distribution of these fire pixels is depicted in Figure 8. Among them, the 
blue points were the Himawari-8 fire pixels with fire pixel counts 1–3, which were mostly 
at the edge of the fire clusters, or were independent fire pixels, and these pixels had a high 
probability of omission. Cyan points were Himawari-8 fire pixels with fire pixel counts 4–
9, which were closer to the center of the fire clusters than the blue points and had a lower 
probability of omission. The red points were those with fire pixel counts greater than 10, 
which tended to be the center of the fire clusters, and they had a daytime and nighttime 
probability of omission of 0.014 and 0.113, respectively. 

 
Figure 7. (a–h) show the probability of VIIRS fire pixel distribution among the Himawari-8 fire pix-
els for fire pixel counts 1, 4, 7, 10, 13, 16, 19, and 22, respectively. The probability of fire pixel distri-
bution in the figure is obtained by adding the 5 × 5 0–1 matrix of each fire pixel count and dividing 
it by the total number of corresponding Himawari-8 fire pixels. 

To further analyze the reasons for the probability of omission of these pixels, we 
counted the Tbb07 feature and the features of the most important of the detected and 
omission fire pixels under different fire pixel counting conditions, as shown in Figure 9. 
The small width of the box of each feature of the omission fire pixels and the fact that the 
upper quartile of the different features of the omission fire pixels was lower than the lower 
quartile of the detected fire pixels features indicated that the volatility of the eigenvalues 
of these omission fire pixels was small, although these features largely affected the detec-
tion of the fire. Except for the Tbb07/Tbb12 feature in Figure 9c, a large overlap existed 
between the detected and omitted fire pixels, which indicated that not one of the condi-
tions was satisfied to be judged as a fire pixel. The enhancement of the eigenvalues of 
nighttime fires was not significant with the increase in fire pixel counts, which may be an 
important reason for the higher omission error of the RF-N model than the RF-D model. 
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Figure 8. (a,b) show the spatial locations of Himawari-8 fire pixels with different fire pixel counts 
in sample area 1 and sample area 3, respectively. 

 
Figure 9. Distribution of detection fire pixels and omission fire pixels for the RF-D and RF-N models 
for the first ranked feature and the Tbb07 feature for different fire pixel counts. (a,b) show the dis-
tributions of the 07 14Dif07 14Dif T −− −  feature and Tbb07 feature for daytime fire pixels, respectively; 
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(c,d) show the distributions of the Tbb07/Tbb12 feature and the Tbb07 feature for nighttime fire 
pixels, respectively. Note that there are no omission fire pixels at the daytime fire pixel count of 12. 

For the commission error, Figure 10 depicts the distribution of the commission fire 
pixels in the sample areas. The commission pixels were distributed mainly near the fire 
clusters, which was similar to the results of Li et al. [71]. The commission of these non-fire 
pixels as fire pixels most likely was due to the occurrence of wildfires within the pixel, 
which could heat the ground in the adjacent area or produce large amounts of hot gas, 
which caused changes in the characteristics of the adjacent pixel. Figure 11 shows the dis-
tribution of the features of the commission fire pixel and detected fire pixels in the test 
dataset. In general, the boxes of the commission fire pixel eigenvalues were all located 
within the 1.5-times anomaly interval of the box of the detected fire pixel eigenvalues. 
This result indicated that these features likely caused the commission error of the fire pix-
els. Compared with the RF-D model, the median Tbb07 feature of the RF-N model com-
mission fire pixels was closer to the detected fire pixels, which may explain the smaller 
precision of the RF-N model than that of the RF-D model. 

 
Figure 10. (a,b) show the spatial locations of the commission fire pixels in sample area 1 and sample 
area 3, respectively. 

As can be seen in Figures 9 and 11, the omission and commission fire pixels produced 
by the RF fire detection model correspond to pixels with obscure and close features, re-
spectively, indicating that these features were the main factors that caused the model to 
determine whether a pixel was a fire pixel or not. These omission and commission fire 
pixels were mainly distributed around the fire clusters. This might be due to the fact that 
the pixels located at the edge of the fire cluster have a small overfire area, resulting in less 
distinctive features of the pixels. Moreover, the burning fire pixels heat the ground in the 
adjacent area or generate a large amount of hot gas, resulting in enhanced features of the 
adjacent pixels. 
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Figure 11. Distribution of detection and commission pixels for the first-ranked feature and Tbb07 
feature in the RF-D and RF-N models. (a,b) show the distributions of the 07 14Dif07 14Dif T −− −  feature 
and the Tbb07 feature at daytime fire pixels, respectively; (c,d) show the distributions of the 
Tbb07/Tbb12 feature and Tbb07 feature at nighttime fire pixels, respectively. 

6. Conclusions 
In this study, we explored a combination of the VIIRS fire product and Himawari-8 

data to achieve real-time monitoring of fire using RF models and feature selection meth-
ods. The fire detection model can monitor the fire location in real time and has excellent 
detection capability for small fires, making it highly significant for fire detection. 

Compared with the Himawari-8 L2WLF product, the RF models used in this study 
had a high recall (95.62%). In particular, for fire pixels with low fire pixel counts, the model 
had a 19.44% improvement in recall. 

Adding band calculation features, spatial features, and auxiliary data can improve 
the abundance of input information of RF models and then improve the accuracy of fire 
detection. The feature selection method effectively eliminated the redundant information 
caused by a large number of similar or correlated input features, reduced the possibility 
of overfitting, and thus, improved the accuracy of the RF models. The most important 
factors affecting daytime and nighttime fire detection are the 07 14Dif07 14Dif T −− −  feature and 
Tbb07/Tbb12 feature, respectively. 

The fire detection accuracy of the RF-D model was higher than that of the RF-N 
model. This was mainly caused by the differences between fire and non-fire features, 
which were more obvious during the daytime than in the nighttime case. The omission 



Remote Sens. 2023, 15, 1541 20 of 23 
 

 

errors of the RF models occurred mainly in the detection of small fires, which were mostly 
located at the edges of the Himawari-8 pixel. In terms of spatial distribution, the omission 
errors and commission errors were concentrated primarily in the adjacent pixels of the 
fire clusters. 

However, there are some limitations in this study. First, although the RF models have 
a high recall (95.62%), the precision of the models is low (59%). AHI has a high temporal 
resolution, and many studies have been conducted to detect fires by comparing the ob-
served values of the bright temperature of the pixels with the predicted values based on 
historical observations. Future studies could consider adding temporal information of the 
brightness temperature of pixels to improve the precision of the model. Second, a wider 
variety of fire products are available for building fire labels. Meanwhile, the models need 
to be trained and tested globally. Third, the use of other novel deep learning architectures 
or the development of a new ad hoc model may also improve the achieved performance. 
Fourth, the fixed threshold reduced the accuracy of the cloud masking algorithm at dif-
ferent times and geographic locations, and thus, reduced the accuracy of fire detection. 
Future research could consider more generalizable methods for cloud masking, such as 
machine learning methods. 
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