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Abstract: Weighted mean temperature of the atmosphere, Tm, is a key parameter for retrieving the
precipitable water vapor from Global Navigation Satellite System observations. It is commonly
estimated by a linear model that relates to surface temperature Ts. However, the linear relationship
between Tm and Ts is associated with geographic regions and affected by the weather. To better
estimate the Tm over China, we analyzed the region-specific and weather-dependent characteristics of
this linear relationship using 860,054 radiosonde profiles from 88 Chinese stations between 2005 and
2018. The slope coefficients of site-specific linear models are 0.35~0.95, which generally reduce from
northeast to southwest. Over southwest China, the slope coefficient changes drastically, while over
the northwest, it shows little variation. We developed a Ts ∼ Tm linear model using the data from
rainless days as well as a model using the data from rainy days for each station. At half the stations,
mostly located in west and north China, the differences between the rainy-day and rainless-day Tm

models are significant and larger than 0.5% (1%) in mean (maximal) relative bias. The regression
precisions of the rainy-day models are higher than that of the rainless-day models averagely by
28% for the stations. Radiosonde data satisfying Tm − Ts > 10 K and Ts − Tm > 30 K most deviate
from linear regression models. Results suggest that the former situation is related to low surface
temperature (<270 K), as well as striking temperature and humidity inversions below 800 hPa, while
the latter situation is related to high surface temperature (>280 K) and a distinct humidity inversion
above 600 hPa.

Keywords: GNSS meteorology; weighted mean temperature of atmosphere; linear relation; weather
dependence; site-specific model; radiosonde data

1. Introduction

Retrieval of precipitable water vapor (PWV) from Global Navigation Satellite System
(GNSS) observations is a major work of ground-based GNSS meteorology [1–4]. This
technique has all-weather and all-time capabilities, and can provide water vapor products
with high spatiotemporal resolution as the continuous GNSS observing network grows
and the data processing strategy improves [5]. The GNSS-derived PWV are consistent
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with the radiosonde and ERA5 data [6,7]. Nowadays, the use of ground-based GNSS,
effectively complementing the conventional water vapor observations, plays an important
role in weather and climate studies, such as water vapor variation [8,9], satellite product
validation [10,11], deep convection and rainstorm observation [12–14], and monsoon and
atmospheric river monitoring [15,16]. In GNSS water vapor retrieving, a crucial step is to
convert zenith wet delay (ZWD) into the PWV [17]. The conversion factor between ZWD
and PWV is a function of the weighted mean temperature of the atmosphere (hereinafter
referred to as Tm), which is a quantity defined by Davis et al. [18].

It is worthwhile to obtain the Tm as accurate as possible since the uncertainty of the
Tm is the dominant error source affecting the conversion between ZWD and PWV [19].
Since the vertical profiles of temperature and humidity usually cannot be accessed at the
GNSS stations, the calculation of the Tm from the integral equation by Davis et al. [18] is not
always feasible in practical applications. To overcome this, Bevis et al. [1] took advantage
of the significant linear correlation between Tm and surface temperature (referred to as
Ts) to develop a linear model (Tm = 0.72Ts + 70.2) from the radiosonde profiles observed
over U.S. continent. This linear model has been used widely due to its easy implemen-
tation. Although the Bevis model is in essence a regional model, it was used as a global
model [20–22] or as the reference model to validate other global or regional models [23–25].
Nevertheless, Ross and Rosenfeld [26] showed that the linear relationship between Tm and
Ts varied with geographic location, indicating that a single linear model cannot assure
high accuracy of Tm calculation for the whole globe. Wang et al. [27] evaluated the Bevis
model using the global ERA-40 data and found that the mean bias of Tm generated from
this model has a range of ±10 K (relative bias of ±3.5%). To obtain accurate Tm, geodesists
and meteorologists developed regional models (with form similar to the Bevis model or a
little more complicated) for their concerned regions, e.g., Netherlands [28], Indian [24,29],
Brazil [30], Australia [31], European region [8,32], West Africa [33], Greenland [34], Tai-
wan [35], and Hong Kong [36,37]. Additionally, there are some empirical models that only
require the inputs of location and time to estimate the Tm values. The representatives of
these models are the GPT model series, GPT2w [38] and GPT3 [39], and the GTm model se-
ries, GTm-I [40], GTm-II [21], and GTm-III [41]. These Ts-independent empirical models are
very useful especially for those GNSS stations without surface temperature observations.
However, when the surface temperatures are available, Ts-dependent models are better
options because that they generally yield more accurate Tm values than the Ts-independent
models [23,32,42,43].

During the past two decades, the number of GNSS stations grew rapidly in China.
The Meteorological Observation Center, China Meteorological Administration collects the
data of more than 1000 GNSS stations covering the whole mainland China, and calculates
the PWV values on a daily basis serving for weather analysis, forecasting, and scientific
studies [44]. These stations are mostly from China Meteorological Administration GNSS
Network (CMAGN) and Crustal Movement Observation Network of China (CMONOC),
and equipped with meteorological sensors that record the surface pressure and temperature
for GNSS PWV retrieving. Since the surface temperature is available, the simple linear
Ts ∼ Tm models can be used to calculate Tm. However, China is a geographically large
country with a variety of climate regions. Previous studies [45–48] showed the coefficients
of regional Ts ∼ Tm linear models for different areas in China are more or less different.
This motivates us to comprehensively study and obtain the accurate linear relationships
between Tm and Ts over China with the purpose of providing the basis for high accuracy
Tm estimation in the region.

In this study, using 14-year data from 88 Chinese radiosonde stations, we developed
a unified Ts ∼ Tm linear model for the whole China as well as site-specific linear models
for individual stations, and calculated the representativeness errors of the unified model
relative to the site-specific models. Then, we analyzed the variation of the linear relation
between Tm and Ts with geographic locations and different weather occurrences. We also
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investigated the regression precision of the generated Ts ∼ Tm linear models and the
weather conditions related to the data that most deviate from the regressions.

2. Methods and Data
2.1. Role of Tm in GNSS Water Vapor Retrieving

Before the determination of Ts ∼ Tm linear relations with radiosonde data, we briefly
review the role of Tm in the retrieval of water vapor from GNSS observations. In GNSS
high-precision positioning, especially when the precise point positioning (PPP) is applied,
the zenith tropospheric delay (ZTD) of L-band signals over a station is estimated simulta-
neously with the coordinate components. The ZTD includes two parts: zenith hydrostatic
delay (ZHD) and ZWD. With a known surface pressure, the ZHD can be estimated with an
accuracy of millimeter level. Subtracting the ZHD from the ZTD remains the ZWD. The
PWV is obtained from ZWD as [19]

PWV = Π · (ZTD− ZHD) = Π · ZWD (1)

where Π is a dimensionless mapping factor. Its expression is

Π =
106

ρRv

(
k3
Tm

+ k′2
) (2)

where ρ is the density of liquid water, Rv is the specific gas constant for water vapor, and
k′2 and k3 are constants that have been evaluated by the actual measurement of refractivity
index of the atmosphere [19,49]. Since ρ, Rv, k′2, and k3 are all known constants, Tm is the
only quantity to be determined for the conversion of ZWD into PWV.

2.2. Determination of Ts ∼ Tm Linear Models

The Ts ∼ Tm linear model is expressed as

Tm = aTs + b (3)

where all temperatures are in kelvins. a (slope) and b (intercept) are regression coefficients.
To determine a and b in regression analysis, a number of Ts ∼ Tm data pairs are required to
be known. Due to global distribution of sites and long-term data accumulation, radiosonde
is a good data source to derive Ts and Tm for establishing Ts ∼ Tm linear models over land.

Surface temperatures are obtained from the first level of radiosonde profiles, and
weighted mean temperatures are calculated from water vapor pressures and temperatures
at all levels. The definition of Tm is [18]

Tm =

∫ HT
HS

Pw
T dH∫ HT

HS

Pw
T2 dH

(4)

where Pw is the partial pressure of water vapor, T is the temperature of the atmosphere,
HT is the height of the top of the atmosphere, and HS is the starting altitude. For GNSS
meteorology, HS is the height of GNSS antenna. When calculating Tm from radiosonde
profiles, the discrete form of Equation (4) is used as

Tm =

N
∑

i=1

Pwi
Ti

∆Hi

N
∑

i=1

Pwi
T2

i
∆Hi

(5)

where N is the total number of layers of the atmosphere with one layer defined as the
atmosphere between two consecutive levels of a radiosonde profile, Ti is the average
temperature in the i layer, ∆Hi is the thickness of the i layer, and Pwi is the average water
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vapor pressure in the i layer. Generally, the radiosonde profiles do not directly provide
partial pressure of water vapor Pw, and instead provide total atmospheric pressure P and
mixing ratio of water vapor mx, from which the Pw can be derived by [50].

Pw =
mx

mx + 622
P (6)

where mx is in g/kg.

2.3. Radiosonde Data

The radiosonde data of 88 stations selected from 2005 to 2018 (14 years) are used to
analyze the Ts ∼ Tm relations over China. Figure 1 shows the geographic distribution of the
radiosonde stations and the topography. The station information is shown in Table A1 of
Appendix A. For these stations, most radiosonde observations are taken at 00:00 UTC and
12:00 UTC daily. All radiosonde data were downloaded from the upper air sounding archive
of University of Wyoming (http://weather.uwyo.edu/upperair/sounding.html, accessed
on 1 May 2022 ). At most stations, we used the data from 2005 to 2018 for the analyses,
while at station ZHANGQIU (ID: 54727), WENJIANG (ID: 56187), and JINGHE (ID: 57131),
we only used the data from 2014 to 2018 because the site information is incomplete in data
files from 2005 to 2013 for the three stations.
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Figure 1. The geographic distribution of 88 selected radiosonde stations over China. The blue dots
denote the locations of the radiosonde stations and the color on the map represents the elevation.
The map is generated by Generic Mapping Tools [51], and the 2-min Gridded Global Relief Data
(ETOPO2) v2 are used.

Before data processing, we carried out the quality checking for each radiosonde profile.
An accepted radiosonde profile is required to contain the data of the first level, which is the
level at the altitude of that station. The pressure of the top level is required to be no more
than 300 hPa. In addition, the profile must contain the standard pressure levels and the
total number of levels should be no less than 5.

http://weather.uwyo.edu/upperair/sounding.html
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For most radiosonde data, Tm is less than Ts, but the difference (Ts− Tm) is normally no
more than 30 K. In order to detect the profiles with gross error, we manually checked both
the profiles with Ts − Tm > 30 K and Tm − Ts > 10 K. Among 724 checked radiosonde pro-
files, 39 of them were found to contain obvious record errors or unreasonable temperature
gradients, and they were then removed from the later data processing.

3. Unified Model

The Bevis model Tm = 0.72Ts + 70.2 was developed using 8712 radiosonde profiles
at 13 U.S. stations between 1989 and 1991, and the root mean square (RMS) deviation from
the regression is 4.74 K [1]. In this study, we used much more data, 860,054 profiles at
88 stations from 2005 to 2018, to establish a Ts ∼ Tm linear model over China (Figure 2),
hereinafter referred to as the unified model. The unified model is Tm = 0.79Ts + 50.76, with
an RMS about the regression of 4.14 K (14% smaller than the RMS for the Bevis model).
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Figure 2. Relationship between Tm and Ts determined from 860,054 radiosonde profiles over China.
The radiosonde profiles are acquired from the 88 stations (Figure 1) between 2005 and 2018. The
red solid line is the linear regression result of the data (the unified model), and the black dotted line
shows the positions where Tm and Ts are equal.

Though using a single Ts ∼ Tm linear model to estimate Tm for a large region is conve-
nient in practice, it may introduce large representativeness errors. Ross and Rosenfeld [26]
pointed out that, over the U.S., the slope of the Bevis model (0.72) is not that representative
of the slopes of site-specific models. Like the U.S., China also has a vast territory, and
thus the simply unified model for the whole China may cause significant Tm estimation
errors as well. We developed a Ts ∼ Tm linear model for each single station and compared
the unified model with the 88 site-specific models. The slope a and intercept b of each
site-specific model are shown in columns 5 and 6 of Table A1 (Appendix A), respectively.
Figure 3 illustrates that some site-specific models show good consistency with the unified
model, while others show clear deviation from the unified model. In some situations,
the difference between Tm from the unified model and that from some site-specific model
reaches >10 K, which is equivalent to 3% Tm relative errors.
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Figure 3. The unified Ts ∼ Tm linear model (red line) and site-specific models (gray lines). The range
of Ts for a site-specific model describes the surface temperatures that the station real observed.

To quantify the differences between the unified model and each site-specific model, we
calculated the Tm biases (bias = |Tm_Uni f ied− Tm_Site|) between them. Figure 4 shows
the Tm mean bias, maximal bias, mean relative bias, and maximal relative bias of the unified
model relative to each site-specific model. The mean bias is larger than 2 K at 45 stations
(51% of all the stations) (Figure 4a), and the maximal bias is larger than 4 K at 46 stations
(52%) (Figure 4b). In terms of relative bias, at some stations, the mean relative bias is close
to or above 1.5% (Figure 4c) and the maximal relative bias is over 3% (Figure 4d). At more
than half the stations, the mean relative bias is larger than 0.5% or the maximal relative
bias is larger than 1%. All these results suggest that the unified model is not a good proxy
for more than half the 88 site-specific models if the 2 K mean bias, 4 K maximal bias, 0.5%
mean relative bias, or 1% maximal relative bias is chosen as the threshold.
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Figure 4. Differences between the unified model and each site-specific model. The bias is the absolute
value of the difference between unified-model Tm and site-specific-model Tm. The relative bias
is defined as the bias divided by the site-specific-model Tm value. For each station, the mean (a)
and maximum (b) of the biases, as well as the mean (c) and maximum (d) of the relative biases,
are shown. The horizontal axis of each plot is the sequence number of the radiosonde stations.
The correspondences between the sequence numbers and station names are shown in Table A1 of
Appendix A (columns 1 and 2). NO. 1 represents the station Kings Park at Hong Kong. NO. 2–88
represent the stations located at Inland China, and these stations are arranged from high latitude to
low latitude.

4. Region-Specific Characteristics of Ts ∼ Tm Linear Relations

The distinct deviation of the unified model from part of the site-specific models lies in
the diversity of the Ts ∼ Tm linear relations at different areas. We plotted the contours of
the slopes (coefficient a) of site-specific Ts ∼ Tm linear models (Figure 5a), which shows
the slope generally increasing from low to middle latitudes. Figure 5a shows that the
range of slopes is from 0.35 to 0.96 over China, with large slopes (>0.9) occurring at Bohai
bay and small slopes (<0.5) at the south of Yunnan (YN) province (refer to Figure 5b for
the area names and their locations). In general, the slope decreases from the northeast
to the southwest. In the area of Xinjiang (XJ) and the west of Neimenggu (NM), Gansu
(GS), Qinghai (QH), and Xizang (XZ), the slope changes gently. Thus, applying one linear
model to the whole area does not give rise to significant representativeness errors. Another
similar area where the slope also shows little variation includes Shaanxi (SA), the west of
Shanxi (SX), and the north of Sichuan (SC). In contrast, the slope changes drastically over
the area of Yunnan (YN) and the border between Sichuan (SC) and Guizhou (GZ), which
indicates that using a single Ts ∼ Tm linear model for this area will inevitably result in large
representativeness errors.

The regression precision of site-specific Ts ∼ Tm linear model is related to site location.
To investigate the relation between regression precisions of the models and the geographic
location, we calculated the RMS deviation from the regression of site-specific model for
each station. Figure 6 shows that the stations (TENGCHONG and KINGS PARK) with
small RMS (<2 K) are located at low latitudes, while those (DUNHUANG and EJIN QI)
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with large RMS (>5 K) are located at relative high latitudes. Overall, the RMS tends to
increase with latitude.
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To better understand the variation of the regression precision with latitude, the dis-
tributions of radiosonde Ts ∼ Tm data points from two stations with low latitude (TENG-
CHONG and KINGS PARK) and two stations with relative high latitude (DUNHUANG and
EJIN QI) are compared in Figure 7 (refer to Figure 6 for the locations of the four stations). In
both the Ts-axis and Tm-axis dimensions, the data points from high-latitude stations, EJIN
QI (Figure 7c) and DUNHUANG (Figure 7d), are much more dispersedly distributed than
those from low-latitude stations, KINGS PARK (Figure 7a) and TENGCHONG (Figure 7b).
The ranges of Ts at station KINGS PARK and TENGCHONG are much smaller than those
at EJIN QI and DUNHUANG. This is because the surface temperatures are relative high at
low latitudes all year round, and thus they concentrate on a smaller range. For a certain Ts,
the variations of Tm at stations with low latitudes are also smaller. A closer inspection of
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the radiosonde profiles suggests that, in general, the vertical distributions of water vapor
and temperature are more uniform for low-latitude stations than for high-latitude stations
(not shown), which accounts for the smaller Tm variation at low latitudes.
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at Kings Park, 9933 profiles at Tengchong, 9568 profiles at Ejin Qi, and 9907 profiles at Dunhuang.
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5. Weather-Dependent Characteristics of Ts ∼ Tm Linear Relations

Under different kinds of weather, the vertical distributions of temperature and water
vapor can vary considerably. As a result, the Ts ∼ Tm relation is likely to change accordingly.
For each station, we used the radiosonde data from different weather separately to generate
weather-dependent Ts ∼ Tm linear models. We then compared the weather-dependent
Ts ∼ Tm linear models as well as their regression precision. In some Ts ∼ Tm plots, such as
Figures 2 and 7, some data points are far away from the regression line. We investigated
two sets of these points and analyzed their related weather conditions.

5.1. Weather-Dependent Ts ∼ Tm Linear Models

For simplification, we only consider two kinds of weather: rain and no rain. All the
days involved in the experiment are classified as either a rainy day or a rainless day. If there
is no rain for a whole day, that day is defined as a rainless day, and if not, the day is defined
as a rainy day. We used the daily precipitation data acquired from the data center of China
Meteorology Administration (http://data.cma.cn/, accessed on 16 May 2022) to classify
the days. For each station, we generated a Ts ∼ Tm linear model using the radiosonde
data from rainless days and a model using the data from rainy days. The former model is
hereinafter referred to as “rainless-day model” and the latter is referred to as “rainy-day
model”. Table A1 of Appendix A shows the slope a and intercept b of the rainless-day
models (columns 7 and 8) and rainy-day models (columns 9 and 10) for all the 88 stations.

At some stations, such as station NAGQU, XICHANG, KUNMING, and SIMAO
shown in Figure 8, the rainy-day model clearly deviates from the rainless-day model. The
difference between the Tm from rainy-day model and that from rainless-day model can
be larger than 5 K. Thus, in order to get higher accuracy Tm values for these stations, it is
better to use the rainy-day model for rainy days and the rainless-day model for rainless
days rather than using a weather-independent model for all days. Meanwhile, at some
other stations, such as station HARBIN, BEIJING, WUHAN, and SHANGHAI shown in
Figure 9, the rainy-day model shows good consistency with the rainless-day model. Hence,
for these stations, it is not necessary to use weather-dependent models for rainy days and
rainless days separately.
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Figure 8. Rainy-day model and rainless-day model for station (a) NAGQU, (b) XICHANG, (c)
KUNMING, and (d) SIMAO. The green lines are the rainless-day models and the red lines are the
rainy-day models. The golden dots are the radiosonde data from rainless days and the blue dots are
the data from rainy days.

http://data.cma.cn/
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Figure 9. Rainy-day model and rainless-day model for station (a) HARBIN, (b) BEIJING, (c) WUHAN,
and (d) SHANGHAI. The meanings of the lines and dots are the same as those in Figure 8.

We compared the rainy-day model with the rainless-day model for each station. At
half the stations, the difference between the two models is significant: the mean relative
bias of Tm between the two models is larger than 0.5%, or the maximal relative bias is larger
than 1%. Figure 10 shows that the stations with significant difference between the rainy-day
model and rainless-day model (red dots in Figure 10) distribute over a larger area than
the stations with insignificant model difference (blue dots in Figure 10). In general, the
stations with significant model difference are at higher altitudes (refer to Figure 1 for the
topography), and they are mostly located in the west and north of China. This suggests
that, in general, using weather-dependent models for rainy and rainless days separately
will effectively improve the Tm accuracy in the west and north of China, but not in the
eastern part.
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Figure 11. Regression precision of the rainy-day model and the rainless-day model for each station. 

The correspondence between the sequence numbers (horizontal axis) and station names is shown 

in Table A1 of Appendix A (columns 1 and 2). The red dot (blue dot) represents the RMS about the 

Figure 10. Stations with significant (red) and insignificant (blue) difference between the rainy-day
model and the rainless-day model. If the mean relative bias of Tm between the rainy-day model and
the rainless-day model is larger than 0.5% or the maximal relative bias of Tm between them is larger
than 1%, it is classified as significant difference, and if not, it is insignificant difference.
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5.2. Comparison of Regression Precision of Weather-Dependent Models

Both Figures 8 and 9 show that the distributions of data points from rainy days (blue
dots) are more concentrated than those from rainless days (golden dots), indicating that
the temperature and water vapor vertical profiles are more uniform on rainy days than on
rainless days. We calculated the root mean squares deviation from the regressions of the
weather-dependent models. Figure 11 shows that the RMS for rainy-day model is less than
that for rainless-day model at all the stations, and the reduction rate of the rainy-day model
RMS relative to the rainless-day model RMS is from 4% to 49% (average: 28%). This result
suggests that the rainy-day model yielded Tm values for rainy days are expected to have
better accuracy than the rainless-day model yielded ones for rainless days.
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Figure 11. Regression precision of the rainy-day model and the rainless-day model for each station.
The correspondence between the sequence numbers (horizontal axis) and station names is shown
in Table A1 of Appendix A (columns 1 and 2). The red dot (blue dot) represents the RMS about the
regression of rainy-day model (rainless-day model). The green bar denotes the reduction rate of
rainy-day model RMS relative to the rainless-day model RMS.

While using the weather-dependent models for rainy days and rainless days separately
can improve the accuracy of Tm estimates, the benefits for rainy days and rainless days
are unequal. Since the number of radiosonde profiles from rainless days is more than that
from rainy days for the stations, the weather-independent model of a station is closer to the
rainless-day model than to the rainy-day model. If the weather-independent model is used,
its representativeness error for the rainy-day model is larger than that for the rainless-day
model. Hence, replacing the weather-independent model with the weather-dependent
models results in more improvement in the accuracy of Tm estimates for rainy days than
for rainless days.

5.3. Weather Conditions Related to Some Specific Data Points

In most cases, as shown in Figure 2, Tm is less than Ts, and Ts minus Tm is generally
no more than 30 K. For the cases of Tm larger than Ts, Tm minus Ts is normally no more
than 10 K. However, in some situations, extremes of Tm − Ts > 10 K and Ts − Tm > 30 K
happen. Figure 12 shows the data points from the radiosonde profiles corresponding to
the extremes. These data points are the ones that deviate most from the unified Ts ∼ Tm
linear model, and they are responsible for the large RMS of the linear regression. To better
understand the cause of the extremes, the weather conditions related to these specific data
points are investigated.

Figure 12 shows that, in the dataset of Tm − Ts > 10 K and Ts − Tm > 30 K, the data
from rainy days are much less than that from rainless days: the former only accounts for
4%. Such a small proportion of data points from rainy days suggests that the situations
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of Tm − Ts > 10 K and Ts − Tm > 30 K, which reduce the precision of the Ts ∼ Tm linear
regression, seldom occur on rainy days or mostly happen on rainless days. This result partly
explains why the rainy-day model has better regression precision than the rainless-day
model.
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Figure 12. Data points from the radiosonde profiles that satisfy Tm − Ts > 10 K and Ts − Tm > 30 K.
The red line is the unified Ts ∼ Tm linear model, the same as that shown in Figure 2. The golden dots
are the data from rainless days and the blue dots are those from rainy days.

The statistics suggests that 98% of the radiosonde observations with Tm − Ts > 10 K
were in winter, and 92% of them were observed at 00:00 UTC, while for the situation of
Ts− Tm > 30 K, 97% of the observations were in summer and spring, and 98% of them were
observed at 12:00 UTC. For stations in China, the surface temperature is normally low at
00:00 UTC (8:00 Beijing time) in winter, while at 12:00 UTC (20:00 Beijing time) in summer
and spring, the surface temperature is relatively high. This indicates that the situation of
Tm − Ts > 10 K occurs on the condition of low surface temperature, while the situation
of Ts − Tm > 30 K happens under the circumstance of high surface temperature. This
conclusion is confirmed by Figure 12, which shows the data points with Tm − Ts > 10 K
are all distributed in Ts < 270 K, and those with Ts − Tm > 30 K are all in the range of
Ts > 280 K.

To further investigate the weather backgrounds related to the extremes of Tm − Ts > 10 K
and Ts − Tm > 30 K, we checked the temperature and water vapor mixing ratio profiles
for the data points corresponding to these extremes. All data with Tm − Ts > 10 K have a
similar vertical distribution of temperature and also a similar vertical distribution of the
mixing ratio. Figure 13 shows the representative temperature and mixing ratio profiles for
the situation of Tm − Ts > 10 K. This situation is related to a temperature inversion and a
humidity inversion. The temperature (humidity) inversion is a weather phenomenon that
the temperature (humidity) increases with the height [52]. In these profiles, the temperature
inversion occurs at a similar height as the humidity inversion, and both of them are striking
and are below 800 hPa.

While for the data with Ts − Tm > 30 K, all temperature (mixing ratio) profiles show a
similar vertical distribution, but the vertical distribution is clearly different from that of
the data with Tm − Ts > 10 K. Figure 14 shows the representative temperature and mixing
ratio profiles for the situation of Ts − Tm > 30 K. The profiles show that there is a distinct
humidity inversion in each mixing ratio profile, but no obvious temperature inversion
occurs at any observation height. For the data with Ts − Tm > 30 K, the height of humidity
inversion is generally above 600 hPa, which is much higher than the height of humidity
inversion for the data with Tm − Ts > 10 K.
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Figure 13. Representative vertical profiles of temperature (red) and water vapor mixing ratio (blue)
from radiosonde observations that satisfy Tm − Ts > 10 K at station (a) HAILAR, (b) URUMQI, (c)
ERENHOT, and (d) SHENYANG. The radiosonde observing time as well as Ts and Tm are shown in
each panel.
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Figure 14. Representative vertical profiles of temperature (red) and water vapor mixing ratio (blue)
from radiosonde observations that satisfy Ts − Tm > 30 K at station (a) KASHI, (b) DUNHUANG, (c)
BEIJING, and (d) XIAMEN. The radiosonde observing time as well as Ts and Tm are shown in each
panel.
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6. Conclusions

Analysis of 14 years of radiosonde profiles at 88 stations demonstrates that the Ts ∼ Tm
linear relation is region specific over China. Using a single Ts ∼ Tm linear model to represent
all the 88 site-specific models for estimating Tm over the area of the whole of China brings
diverse errors of up to 10 K (about 3% relative error), indicating that the region-specific
characteristics of the Ts ∼ Tm linear relations must be considered in order to accurately
estimate Tm. The geographical distribution of the slopes (coefficient a of Tm = aTs + b) of
the site-specific models reflects the variation of the Ts ∼ Tm linear relations over different
areas. From Bohai bay to the south of Yunnan province, the slope reduces from 0.96 to 0.35.
Over Yunnan and the border between Sichuan and Guizhou, the slope changes drastically,
while over some other areas, such as Xinjiang and part of Qinghai, the slopes change slowly.
This information provides the basis for determining which area can simply use a single
Ts ∼ Tm linear model to estimate the Tm without bringing in significant representativeness
errors and which areas have to use multiple models for highly accurate Tm estimation. The
characteristic of slope increasing with latitude can also be found from the study of Ross and
Rosenfeld [26] and Yao et al. [53]. However, their work was on a global scale and did not
provide detailed analysis specifically for China as this study does. The regression precision
of a site-specific Ts ∼ Tm linear model is also related to the geographical location. In general,
the RMS about the regression of the site-specific model increases with station latitude, and
this conclusion is similar to the result of Raju et al. [29] for the Indian subcontinent.

Investigation of the Ts ∼ Tm linear models generated from the radiosonde data
observed on rainy days (rainy-day model) and on rainless days (rainless-day model)
demonstrates that the Ts ∼ Tm linear relation is weather dependent. At half the stations,
the difference between the Tm estimates from the rainy-day model and those from the
rainless-day model is significant (mean relative bias larger than 0.5% or maximal relative
bias larger than 1%). These stations are mostly located in the west and north of China.
Thus, over these regions, both the region-specific and weather-dependent characteristics of
the Ts ∼ Tm linear relations should be taken into account for ensuring the accuracy of the
Tm estimates. For each station, the regression of rainy-day model has a higher precision
than that of the rainless-day model. On average, the RMS of the regression of rainy-day
model is 28% smaller than that of the regression of rainless-day model, suggesting that the
Tm of rainy days estimated by the rainy-day model is expected to be more accurate than
that of rainless days estimated by the rainless-day model.

Another contribution of this study is the exploration of the weather backgrounds for
radiosonde data satisfying Tm − Ts > 10 K and Ts − Tm > 30 K that most deviate from
the regression of the Ts ∼ Tm linear model. Radiosonde data satisfying Tm − Ts > 10 K
are related to the weather of low surface temperature (<270 K) and both striking tempera-
ture and humidity inversions occurring below 800 hPa, while radiosonde data satisfying
Ts − Tm > 30 K are related to the weather of high surface temperature (>280 K) and a strik-
ing humidity inversion normally occurring above 600 hPa without temperature inversion
at any observation height.

Since the calculation of Tm is based on the vertical distribution of temperature and
water vapor pressure, it is not difficult to understand that local weather and climate
determine the value of Tm, the relationship between Tm and Ts, and the regression precision
of Ts ∼ Tm linear models. On the other hand, many evidences provided in this study
suggest that some Tm-related information reflects the local weather and climate, such as
the situation of Tm − Ts > 10 K reflecting the (temperature and humidity) inversions and
larger RMS of the regression of Ts ∼ Tm linear model indicating the poor uniformity of
atmospheric profiles. Thus, it is promising to use the Tm as an indicator for weather and
climate studies, which deserves further investigation.
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Appendix A

Table A1. Radiosonde station information and site-specific Ts ∼ Tm linear models. Columns 1 (C1)–4
(C4) present the information of the 88 radiosonde stations. Column 1 shows the series number of
the stations. Column 2 shows the station ID and station name. Column 3 shows the latitude and
longitude of the stations. Column 4 shows the altitude of the stations. The site-specific Ts ∼ Tm linear
models of each station include a weather-independent model (generated from all radiosonde data),
a rainless-day model (generated from the data of rainless days), and a rainy-day model (generated
from the data of rainy days). Columns 5–10 present the linear regression coefficients of these models.

Radiosonde Station Weather-
Indenpedent Model Rainless-Day Model Rainy-Day

Model

NO. ID/STN Lat/Lon H (m) a b a b a b

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1 45004
Kings Park

22.31
114.16 66 0.57 118.16 0.62 102.43 0.49 139.34

2 50527
Hailar

49.21
119.75 611 0.72 69.55 0.71 72.53 0.76 56.88

3 50557
Nenjiang

49.16
125.23 243 0.77 55.79 0.75 59.88 0.81 42.53

4 50774
Yichun

47.71
128.9 232 0.83 38.75 0.81 44.72 0.88 25.43

5 50953
Harbin

45.75
126.76 143 0.85 33.30 0.85 34.35 0.87 27.88

6 51076
Altay

47.73
88.08 737 0.65 90.53 0.63 96.10 0.70 75.13

7 51431
Yining

43.95
81.33 664 0.65 89.68 0.61 102.63 0.74 63.36

8 51463
Urumqi

43.78
87.62 919 0.60 103.13 0.57 111.42 0.64 90.21

9 51644
Kuqa

41.71
82.95 1100 0.62 97.46 0.61 100.22 0.70 74.88

10 51709
Kashi

39.46
75.98 1291 0.60 102.14 0.58 109.11 0.69 77.31

http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html
http://data.cma.cn/
http://www.hko.gov.hk/tc/cis/awsDailyExtract.htm?stn=KP
http://www.hko.gov.hk/tc/cis/awsDailyExtract.htm?stn=KP
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Table A1. Cont.

Radiosonde Station Weather-
Indenpedent Model Rainless-Day Model Rainy-Day

Model

NO. ID/STN Lat/Lon H (m) a b a b a b

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

11 51777
Ruoqiang

39.03
88.16 889 0.58 109.52 0.57 111.79 0.67 84.11

12 51828
Hotan

37.13
79.93 1375 0.61 97.69 0.60 101.21 0.69 75.81

13 51839
Minfeng

37.06
82.71 1409 0.58 108.82 0.56 112.92 0.69 77.39

14 52203
Hami

42.81
93.51 739 0.62 98.06 0.61 99.81 0.68 79.26

15 52267
Ejin Qi

41.95
101.06 941 0.64 92.16 0.63 92.55 0.65 88.61

16 52323
Maz. Shan

41.80
97.03 1770 0.64 89.84 0.63 93.16 0.72 68.73

17 52418
Dunhuang

40.15
94.68 1140 0.59 105.47 0.58 108.71 0.71 69.68

18 52533
Jiuquan

39.76
98.48 1478 0.62 96.06 0.60 101.51 0.72 67.19

19 52681
Minqin

38.63
103.08 1367 0.65 89.38 0.63 93.73 0.74 61.29

20 52818
Golmud

36.41
94.90 2809 0.60 98.88 0.58 104.50 0.69 74.83

21 52836
Dulan

36.30
98.10 3192 0.75 57.22 0.73 63.54 0.80 46.86

22 52866
Xining

36.71
101.75 2296 0.66 86.40 0.62 96.60 0.78 53.66

23 52983
Yu Zhong

35.87
104.15 1875 0.67 84.57 0.64 92.16 0.77 55.08

24 53068
Erenhot

43.65
112.00 966 0.68 78.05 0.67 81.56 0.75 60.08

25 53463
Hohhot

40.81
111.68 1065 0.77 54.02 0.76 57.16 0.82 38.47

26 53513
Linhe

40.76
107.40 1041 0.76 59.71 0.76 59.63 0.81 45.27

27 53614
Yinchuan

38.48
106.21 1112 0.74 63.52 0.74 65.35 0.79 49.17

28 53772
Taiyuan

37.78
112.55 779 0.77 54.03 0.77 55.92 0.82 41.52

29 53845
Yan An

36.60
109.50 959 0.72 68.70 0.71 74.04 0.81 45.08

30 53915
Pingliang

35.55
106.66 1348 0.77 56.72 0.75 61.35 0.83 38.31

31 54102
Xilin Hot

43.95
116.06 991 0.74 64.15 0.71 70.49 0.80 45.91
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Table A1. Cont.

Radiosonde Station Weather-
Indenpedent Model Rainless-Day Model Rainy-Day

Model

NO. ID/STN Lat/Lon H (m) a b a b a b

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

32 54135
Tongliao

43.60
122.26 180 0.88 24.00 0.88 23.01 0.88 22.81

33 54161
Changchun

43.90
125.21 238 0.87 27.66 0.87 27.91 0.88 24.66

34 54218
Chifeng

42.26
118.96 572 0.85 32.86 0.84 34.16 0.86 28.66

35 54292
Yanji

42.88
129.46 178 0.92 13.44 0.93 12.03 0.93 11.70

36 54342
Shenyang

41.76
123.43 43 0.82 41.59 0.82 41.50 0.85 31.26

37 54374
Linjiang

41.71
126.91 333 0.82 41.93 0.82 44.82 0.87 27.26

38 54511
Beijing

39.93
116.28 55 0.87 25.21 0.87 24.89 0.86 28.63

39 54662
Dalian

38.90
121.63 97 0.96 2.57 0.97 -0.20 0.93 10.08

40 54727
Zhangqiu

36.70
117.55 123 0.83 37.24 0.84 36.95 0.82 40.26

41 54857
Qingdao

36.06
120.33 77 0.96 3.35 0.98 -3.63 0.91 17.59

42 55299
Nagqu

31.48
92.06 4508 0.67 77.83 0.55 109.67 0.75 58.35

43 55591
Lhasa

29.66
91.13 3650 0.63 93.57 0.60 101.16 0.67 82.90

44 56029
Yushu

33.01
97.01 3682 0.73 64.51 0.66 81.31 0.76 56.47

45 56080
Hezuo

35.00
102.90 2910 0.74 63.76 0.69 76.10 0.82 42.92

46 56137
Qamdo

31.15
97.16 3307 0.70 74.10 0.65 87.75 0.71 70.39

47 56146
Garze

31.61
100.00 522 0.72 70.94 0.66 86.30 0.76 58.98

48 56187
Wenjiang

30.70
103.83 541 0.71 72.29 0.69 80.93 0.79 48.56

49 56571
Xichang

27.90
102.26 1599 0.58 110.66 0.55 121.73 0.70 75.35

50 56691
Weining

26.86
104.28 2236 0.62 102.15 0.60 107.06 0.60 105.10

51 56739
Tengchong

25.11
98.48 1649 0.52 130.75 0.53 127.02 0.61 102.11

52 56778
Kunming

25.01
102.68 1892 0.45 148.44 0.41 161.20 0.62 99.25
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Table A1. Cont.

Radiosonde Station Weather-
Indenpedent Model Rainless-Day Model Rainy-Day

Model

NO. ID/STN Lat/Lon H (m) a b a b a b

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

53 56964
Simao

22.76
100.98 1303 0.35 181.68 0.35 182.07 0.54 124.71

54 56985
Mengzi

23.38
103.38 1302 0.49 138.31 0.49 141.13 0.58 113.11

55 57083
Zhengzhou

34.71
113.65 111 0.81 46.17 0.81 45.67 0.81 44.03

56 57127
Hanzhong

33.06
107.03 509 0.78 54.11 0.75 61.72 0.86 27.99

57 57131
Jinghe

34.43
108.97 411 0.75 60.92 0.74 64.27 0.83 39.08

58 57178
Nanyang

33.03
112.58 131 0.80 48.24 0.80 48.23 0.82 42.57

59 57447
Enshi

30.28
109.46 458 0.77 56.77 0.74 66.97 0.81 45.32

60 57461
Yichang

30.70
111.30 134 0.80 48.09 0.81 47.18 0.80 48.65

61 57494
Wuhan

30.61
114.13 23 0.75 64.14 0.75 63.45 0.74 66.97

62 57516
Chongqing

29.51
106.48 260 0.81 47.57 0.77 58.23 0.83 38.87

63 57679
Changsha

28.20
113.08 46 0.70 78.60 0.71 76.15 0.67 85.54

64 57749
Huaihua

27.56
110.00 261 0.68 83.41 0.68 83.76 0.67 86.91

65 57816
Guiyang

26.48
106.65 1222 0.62 101.20 0.64 94.89 0.59 108.71

66 57957
Guilin

25.33
110.30 166 0.63 99.24 0.67 87.73 0.59 110.69

67 57972
Chenzhou

25.80
113.03 185 0.62 101.09 0.64 96.77 0.60 107.27

68 57993
Ganzhou

25.85
114.95 125 0.63 98.02 0.64 96.53 0.62 102.24

69 58027
Xuzhou

34.28
117.15 42 0.84 37.63 0.85 35.50 0.83 38.18

70 58150
Sheyang

33.76
120.25 7 0.86 32.34 0.87 27.96 0.86 29.31

71 58203
Fuyang

32.86
115.73 33 0.84 37.86 0.85 35.13 0.81 44.24

72 58238
Nanjing

32.00
118.80 7 0.81 44.31 0.82 42.58 0.81 46.42

73 58362
Shanghai

31.40
121.46 4 0.82 42.85 0.82 41.29 0.81 43.50
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Table A1. Cont.

Radiosonde Station Weather-
Indenpedent Model Rainless-Day Model Rainy-Day

Model

NO. ID/STN Lat/Lon H (m) a b a b a b

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

74 58424
Anqing

30.53
117.05 20 0.79 51.17 0.81 45.75 0.76 61.78

75 58457
Hangzhou

30.23
120.16 43 0.79 50.87 0.80 49.28 0.78 53.00

76 58606
Nanchang

28.60
115.91 50 0.74 67.77 0.76 61.88 0.70 78.62

77 58633
Qu Xian

28.96
118.86 71 0.73 70.12 0.72 73.11 0.74 67.51

78 58665
Hongjia

28.61
121.41 2 0.78 54.31 0.80 50.01 0.77 58.05

79 58725
Shaowu

27.33
117.46 219 0.69 81.32 0.69 82.75 0.71 76.99

80 58847
Fuzhou

26.08
119.28 85 0.73 69.83 0.75 64.35 0.70 78.76

81 59134
Xiamen

24.48
118.08 139 0.68 84.50 0.73 71.76 0.60 108.31

82 59211
Baise

23.90
106.60 175 0.64 95.58 0.64 97.28 0.65 93.27

83 59265
Wuzhou

23.48
111.30 120 0.58 114.12 0.62 104.13 0.54 125.68

84 59280
Qing Yuan

23.66
113.05 19 0.59 111.25 0.64 97.52 0.54 126.00

85 59316
Shantou

23.35
116.66 3 0.63 100.81 0.67 87.97 0.56 120.00

86 59431
Nanning

22.63
108.21 126 0.54 125.08 0.58 114.61 0.50 138.79

87 59758
Haikou

20.03
110.35 24 0.56 121.84 0.61 108.11 0.50 137.63

88 59981
Xisha Dao

16.83
112.33 5 0.47 149.53 0.41 167.98 0.47 147.96
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