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Abstract: Accurate high-resolution soil moisture mapping is critical for surface studies as well as
climate change research. Currently, regional soil moisture retrieval primarily focuses on a spatial
resolution of 1 km, which is not able to provide effective information for environmental science
research and agricultural water resource management. In this study, we developed a quantitative
retrieval framework for high-resolution (250 m) regional soil moisture inversion based on machine
learning, multisource data fusion, and in situ measurement data. Specifically, we used various
data sources, including the normalized vegetation index, surface temperature, surface albedo, soil
properties data, precipitation data, topographic data, and soil moisture products from passive
microwave data assimilation as input parameters. The soil moisture products simulated based on
ground model simulation were used as supplementary data of the in situ measurements, together
with the measured data from the Maqu Observation Network as the training target value. The
study was conducted in the Zoige region of the Tibetan Plateau during the nonfreezing period
(May–October) from 2009 to 2018, using random forests for training. The random forest model had
good accuracy, with a correlation coefficient of 0.885, a root mean square error of 0.024 m3/m3, and
a bias of −0.004. The ground-measured soil moisture exhibited significant fluctuations, while the
random forest prediction was more accurate and closely aligned with the field soil moisture compared
to the soil moisture products based on ground model simulation. Our method generated results that
were smoother, more stable, and with less noise, providing a more detailed spatial pattern of soil
moisture. Based on the permutation importance method, we found that topographic factors such as
slope and aspect, and soil properties such as silt and sand have significant impacts on soil moisture
in the southeastern Tibetan Plateau. This highlights the importance of fine-scale topographic and
soil property information for generating high-precision soil moisture data. From the perspective of
inter-annual variation, the soil moisture in this area is generally high, showing a slow upward trend,
with small spatial differences, and the annual average value fluctuates between 0.3741 m3/m3 and
0.3943 m3/m3. The intra-annual evolution indicates that the monthly mean average soil moisture has
a large geographical variation and a small multi-year linear change rate. These findings can provide
valuable insights and references for regional soil moisture research.

Keywords: high-resolution; multisource data; regional soil moisture; random forest; spatio-temporal
analysis
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1. Introduction

Soil moisture is a crucial variable that plays a role in regulating hydrological changes,
the carbon cycle, and energy exchange in terrestrial ecosystems [1,2]. Therefore, it holds
significant potential for use in climate change and ecological research. Recognizing the
significance of soil moisture in the study of global climate and weather systems, the
Global Climate Observing System (GCOS) has listed it as one of the 50 fundamental
climate variables [3]. Therefore, obtaining high-resolution soil moisture data is vital for
various earth system science research applications, such as monitoring crop growth and
drought [4,5], simulating hydrological processes [6,7], monitoring wetlands and riparian
zones [8,9], and estimating food security and crop yield [10,11].

Currently, there are three main ways to collect soil moisture data: in situ observation,
model simulation, and remote sensing techniques [12]. Each method has its own advantages
and limitations. In general, in situ measurements can provide highly accurate and timely
soil moisture data at various depths. This strategy lacks spatial continuity due to its
limited applicability, high economic costs for both human and materials resources, and
poor representation in sampling [13]. The soil moisture value can be obtained at any
time and spatial resolution using land surface models, which simulate the water balance
equation or other quantitative methods. However, the spatial resolution of these models
is relatively low and their accuracy is significantly influenced by input data, calibration
procedures, model physics, and parameterization errors [14]. In contrast, remote sensing
technology offers the advantages of a broad detection field, as well as time-efficient and
dynamic observation, which makes it a viable option for mapping at both regional and
global levels. Specifically, active and passive microwave remote sensing can observe the
planet in all weather and lighting conditions and can use longer bands for Earth observation
than the visible and infrared bands [15]. The Advanced Microwave Scanning Radiometer
2 (AMSR2) [16], the Soil Moisture and Ocean Salinity Satellite (SMOS) [17], and the Soil
Moisture Active Passive (SMAP) [18] are all examples of current microwave-based large-
scale worldwide soil moisture monitoring systems. However, the spatial resolution of these
microwave remote sensing satellites is typically lower (25 km–50 km). These satellites are
more sensitive to surface roughness and soil topography variability. They are unable to
provide more precise information for local-scale soil moisture researches.

Due to the low spatial and temporal resolution of remote sensing satellite soil mois-
ture products, numerous studies have emerged to downscale the soil moisture and to
obtain high-resolution soil moisture datasets. Currently, there are various methods avail-
able for soil moisture downscaling. Scholars have roughly categorized them into three
categories [19]: model-based methods, methods based on fusion of multisource remote
sensing satellite data, and methods assisted by geographic information data. Among these
categories, the more classical methods are the combination of active and passive microwave
remote sensing data [20], coarse-resolution passive microwave data and fine-scale optical
data [21], a moving window [22], and the general concept of a triangle [23]. Ranney et al.
(2015) proposed a downscaling model that utilized high-resolution terrain, vegetation,
and soil data. They compared it with the Empirical Orthogonal Function (EOF) model
in different catchment areas and found it to be a more promising approach, especially
for catchments with significant variations in vegetation cover [24]. Park et al. (2017) em-
ployed machine learning algorithms to downscale the Advanced Microwave Scanning
Radiometer for EOS (AMSR-E) data to a 1 km spatial resolution using several Moderate
Resolution Imaging Spectroradiometer (MODIS) products, such as the surface albedo,
surface temperature, and vegetation index [25]. Wei et al. (2019) downscaled the SMAP
soil moisture products based on gradient-enhanced decision trees using 26 indices related
to soil moisture to generate high spatial resolution soil moisture data (1 km) on the Tibetan
Plateau [26]. By examining the direct or indirect correlations between various data sources
and soil moisture, the resolution of coarse-scale soil moisture products can be significantly
enhanced, providing more detailed information for regional soil moisture research.
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In the past decades, machine learning has attracted extensive attention in the field of
soil moisture downscaling because of its nonlinearity, strong generalization ability, and
excellent adaptability [27]. Machine learning can process large amounts of data quickly and
effectively. It has the ability to capture temporal and spatial variations in soil moisture and
soil characteristics, as well as to predict the behavior of complex interactions [28]. Therefore,
many studies are now utilizing machine learning to generate high-precision soil moisture
data by integrating multisource auxiliary data and environmental variables. Currently,
1 km spatial resolutions are the primary focus of soil moisture research scales [29–33]. For
instance, Zhao et al. (2018) and Im et al. (2016) used the random forest downscaling method
and various MODIS surface variables and band information to downscale the coarse
resolution microwave products SMAP and AMSR-E to 1 km [30,31]. Additionally, previous
studies by Wang et al. (2022), Zhang et al. (2022), and Chen et al. (2019) revealed that
random forest outperformed a wide range of machine learning techniques in simulating
complex interactions between different surface variables and soil moisture [34–36]. Long-
term remote sensing data accumulation has allowed it to become a viable alternative
method for soil moisture research [37]. The advent of machine learning has opened up
avenues for a deeper investigation into the underlying correlations between soil moisture
and other characteristic variables. This is particularly significant in the context of the
unclear physical mechanisms, as it can help address the current obstacles and challenges
faced in satellite soil moisture retrieval.

To overcome the limitations posed by different remote sensing sensors, such as model-
ing errors in simulations and the low spatial resolution of passive microwave sensors, this
study proposes a framework for high-resolution soil moisture retrieval. The framework
combines multisource data fusion, machine learning algorithms, and field measurement
data to generate soil moisture maps with a resolution of 250 m. Specifically, we used various
data sources, including the MODIS surface variables (normalized difference vegetation
index, surface temperature, evapotranspiration, and surface albedo), soil properties data,
precipitation data, topographic data, and soil moisture products from passive microwave
data assimilation as input parameters. The soil moisture products simulated based on the
ground model were used as supplementary data of the in situ measurements, together
with the measured data of the Maqu Observation Network as the training target value.
Experiments were carried out in the Zoige region of the Tibetan Plateau using random
forest for training. The model was evaluated and validated using field data and the fifth
generation ECMWF atmospheric reanalysis of the global climate (ERA5) reanalysis product.
Parameter variables that significantly contributed to regional soil moisture inversion were
identified, and the regional spatiotemporal variation pattern was analyzed. This study
aims to exploit the benefits of multisource data and mitigate the issue of uncertainty in the
machine learning inversion process, leading to an enhancement in the inversion accuracy
of remote sensing and machine learning.

2. Study Area and Datasets
2.1. Study Area

The study area for this research is the southeastern margin of the Tibetan Plateau,
specifically the Northwest Sichuan Plateau and Zoige prairie region (27◦96′–35◦58′N,
97◦34′–104◦75′E, Figure 1). This region plays an essential role in conserving water for
the Yangtze and Yellow Rivers. It is also an important ecological function area and a
typical fragile ecological environment in Sichuan Province. The area covers approximately
269,000 km2 with an average altitude of around 3900 m. The topography of this region is
complex and diverse, with a general pattern of decreasing elevation from west to east. The
region receives strong solar radiation and has abundant light energy resources. The majority
of rainfall is concentrated in the warm season, spanning from May to October each year,
during which vegetation growth is more pronounced. Additionally, the climate in this area
is dynamic and complex, with significant variations in soil moisture and vegetation cover.
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The area is characterized by its three-dimensional changes with typical geomorphological
features such as hills, canyons, rivers, wetlands, grasslands, forests, deserts, and glaciers.
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Figure 1. Overview map of the study area and distribution of Maqu observation stations and
meteorological stations. The purple circles represent the distribution of precipitation stations, while
the green triangles indicate the distribution of stations in the Maqu observation network that provide
in situ measurements.

2.2. Datasets

During the data preparation and collection phase, we selected various data sources
including MODIS surface variables, soil properties data, topographic and precipitation
data, and various soil moisture data. This was based on a review of literature research data
and a summary of previous research results [38–43]. The specifics of these multisource
data are presented in Table 1. Furthermore, to facilitate readers’ comprehension of the
research variables’ abbreviations and symbols, we have compiled an index of notations
and abbreviations. Please refer to Table A1 for more information.

Table 1. Multisource datasets and auxiliary data used in this study.

Datasets Details Spatial Resolution Temporal Resolution

MODIS
surface

variables

MOD13Q1
NDVI 250 m 16 d

MOD11A2
LST 1 km 8 d

MOD16A2
ET 500 m 8 d

MCD43A3
Albedo 500 m Daily

Topography SRTM DEM 90 m Static

Soil property SoilGrids
Version 2.0 250 m Static

Meteorologica Precipitation - Daily

Soil moisture Soil moisture
in Maqu - 15 min

SMCI 1.0 1 km Daily
SMC 0.05◦ Monthly
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2.2.1. MODIS Dataset

The Moderate Resolution Imaging Spectroradiometer (MODIS) has garnered signif-
icant interest for estimating soil moisture due to its high temporal and spatial coverage,
extensive time series, diverse product offerings, and simple data acquisition [44]. In this
research, we used four MODIS products: the normalized difference vegetation index
(MOD13Q1, NDVI, 16-Day L3 Global 250 m), land surface temperature (MOD11A2, LST,
8-Day L3 Global 1 km), evapotranspiration (MOD16A2, ET, 8-Day L4 Global 500 m), and
albedo (MCD43A3, Albedo, Daily L3 Global 500 m). These surface variables have shown
significant potential in soil moisture retrieval, and they are readily available for down-
load from the National Aeronautics and Space Administration’s (NASA) official website
(https://modis.gsfc.nasa.gov, accessed on 22 July 2022). The MODIS Reprojection Tool
(MRT) tool was used for batch processing. We used the nearest-neighbor interpolation
method to resample the different spatial resolution products of MODIS to a uniform 250 m.
Using the Python programming language and considering the impact of vegetation growth
season, monthly data for the 16-day NDVI were synthesized using the maximum value
method. For the remaining variables, corresponding monthly data were obtained through
mean value synthesis.

2.2.2. Soil Properties Dataset

The soil properties data were obtained from the SoilGrids version 2.0 product [45] with
a spatial resolution of 250 m and can be downloaded from https://soilgrids.org (accessed
on 9 May 2022). Only the average sand, clay, silt content of the top 0–5 cm of soil was
extracted and the available water content was calculated using Formula 1. The available
water-holding capacity (AWC) refers to the water storage capacity that can be maintained
without losing water balance under specific soil conditions and is determined by the soil
texture properties [46]. However, it should be noted that the AWC model may not be
applicable for soil types in other regions due to the differences in physical properties of soil
types across different regions. The AWC was estimated using an empirical linear fitting
model for soil sand and soil clay content with the following equation [47].

AWC = 40.7− 0.38Sand− 0.63Clay (1)

where Sand is the soil sand content (%) and Clay is the soil clay content (%).

2.2.3. Topographic Dataset

Elevation, as a key aspect of topographic data, is closely linked to changes in soil
moisture [48]. To acquire the topographic data, we used the high-resolution digital elevation
model (DEM) data from NASA’s Shuttle Radar Topography Mission (SRTM). It has a
spatial resolution of 90 m and can be acquired from the Geospatial Information Data
Center (http://www.gscloud.cn, accessed on 15 April 2022). We extracted the slope and
slope direction of the study area for the DEM and included them as topographic auxiliary
variables in the analysis.

2.2.4. Precipitation Data

In this study, precipitation data were collected from daily measurements of land
standard weather stations in China, which were published by the National Oceanic and
Atmospheric Administration (NOAA) and can be accessed at https://ladsweb.modaps.
eosdis.nasa.gov (accessed on 21 June 2022). We utilized data from 12 available weather
stations in the study area, with detailed information shown in Table 2. The locations of these
stations are indicated by purple circles in Figure 1. After evaluating various precipitation
interpolation methods, we employed the kriging interpolation method provided by ArcGIS
to create a precipitation distribution map of the study area [49–51], which was used as an
input variable for the random forest model.

https://modis.gsfc.nasa.gov
https://soilgrids.org
http://www.gscloud.cn
https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
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Table 2. Details of precipitation stations in the study area.

Site Name Site—ID Latitude
(Degree)

Longitude
(Degree) Elevation (m)

Zoige 56,079 33.58 102.97 3441
Hezuo 56,080 35.00 102.90 2910
Dege 56,144 31.73 98.57 3201
Ganzi 56,146 31.62 100.00 3394
Seda 56,152 32.28 100.33 3896

Daofu 56,167 30.98 101.12 2959
Malcolm 56,172 31.90 102.23 2666
Songpan 56,182 32.67 103.60 2882
Batang 56,247 30.00 99.10 2589
Litang 56,257 30.00 100.27 3950

Daocheng 56,357 29.05 100.30 3729
Kangding 56,374 30.05 101.97 2617

2.2.5. Soil Moisture Dataset

The in situ measurement site data of the Maqu Observation Network were obtained
from the long-term surface soil moisture dataset (2009–2019) of the Tibetan Plateau Soil
Temperature and Moisture Observation Network [52]. The Maqu Network was established
in 2008 and spans an area of approximately 40 × 80 km2, with 26 soil moisture and soil
temperature (SMST) monitoring stations. The measurements ranged from 5 cm to 80 cm
in depth and data were collected every 15 min. The selection of observation sites was
based on the altitude, slope, and different soil characteristics of the region. A random
stratified sampling method was used to establish uniformly good observation sites in
each layer. Detailed site information about Maqu Network can be found in Table 3. As
a result of variations in site establishment timing, some of the data on the sites were
incomplete, leading to an incomplete time series and limited availability of actual soil
moisture data. In this study, we used the mean synthesis method to convert the 15-min raw
observation data from the Maqu Network sites into monthly averages as the original field
measurement data.

Table 3. Site Information of the Maqu Observation Network.

Site-ID Latitude
(Degree)

Longitude
(Degree) Elevation (m) Topography

CST 01 33.886 102.142 3491 River valley
CST 02 33.677 102.14 3449 River valley
CST 03 33.903 101.973 3508 Hill valley
CST 04 33.768 101.733 3505 Hill valley
CST 05 33.677 101.891 3542 Hill valley
NST 01 33.888 102.143 3431 River valley
NST 02 33.883 102.144 3434 River valley
NST 03 33.765 102.116 3513 Hill slope
NST 04 33.629 102.059 3448 River valley
NST 05 33.633 102.062 3476 Hill slope
NST 06 34.006 102.283 3428 River valley
NST 07 33.985 102.362 3430 River valley
NST 08 33.97 102.61 3473 valley
NST 09 33.909 102.552 3434 River valley
NST 10 33.867 102.575 3512 Hill slope
NST 11 33.691 102.479 3442 River valley
NST 12 33.652 102.483 3441 River valley
NST 13 34.03 101.944 3519 valley
NST 14 33.925 102.131 3432 River valley
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Table 3. Cont.

Site-ID Latitude
(Degree)

Longitude
(Degree) Elevation (m) Topography

NST 15 33.855 101.893 3752 Hill slope
NST 21 33.892 102.166 3428 River valley
NST 22 33.909 102.136 3440 River valley
NST 24 33.999 102.137 3446 River valley
NST 25 34.015 101.997 3600 Hill top
NST 31 33.704 101.926 3590 NA
NST 32 33.656 101.842 3490 NA

The Soil Moisture of China based on In situ data (SMCI) is a soil moisture product that
is generated using a combination of in situ measurements and machine learning [53]. The
dataset was generated using a random forest algorithm and trained on in situ measurement
data collected from 1789 stations across China. The spatial resolution of this dataset is 1 km
and the temporal resolution is daily. Studies have shown that the accuracy of this product
is high, with an R value greater than 0.866 and an RMSE of less than 0.052 m3/m3. The
accuracy and performance capability of this dataset is superior to the current soil moisture
products such as ERA5-Land and SMAP Level-4. This product is based on ground model
simulations and can be used as a complementary dataset for high-resolution soil moisture
requirements. For more detailed information on the SMCI soil moisture product, the reader
is referred to the article by Li et al. (2022). For the SMCI soil moisture product, we used the
mean composite method to combine daily data into monthly data.

The SMC (Soil Moisture in China dataset) is a soil moisture product with a tempo-
ral resolution of months and a spatial resolution of 0.05◦ based on passive microwave
background [54]. The product is highly consistent in both time and space with the mea-
sured site data. (R > 0.78 and RMSE < 0.05 m3/m3). The dataset is generated from
three passive microwave remote sensing products in m3/m3 and can be used as an im-
portant input parameter for geophysical studies and ecological modeling. For more de-
tailed information about SMC soil moisture products, readers can refer to Meng et al.
(2021). The soil moisture products, SMC and SMCI, can both be downloaded from the
Earth System Science Data (ESSD) website at https://www.earth-system-science-data.net
(accessed on 28 September 2022).

3. Methodology
3.1. Random Forest

Random forest (RF) is an enhanced decision tree model that is used to solve regression
and classification problems [55]. RF is an ensemble algorithm that generates multiple
classification and regression trees by constructing different subsets in the sample data using
random sampling [56]. Each decision tree is separately distributed, and each subset is
independent of the others. In each leaf node of the decision tree, a simple and accurate
model is created to simulate the connection between the feature values and the label values.
When a new sample is input to the established random forest, the sample attributes are
determined by voting selection [57]. Compared to linear models, RF has stronger random-
ness and a better generalization ability, which allows for efficient and quick processing of
high-dimensional and multi-linear data [58]. Random forest models are also more tolerant
to outliers and noise.

When predicting soil moisture, the main idea behind the RF model is to divide the
independent feature space into several regression trees, and to construct a forest using
two-thirds of the sample set. The remaining one-third is used to validate each tree. The
final result of RF is to establish a nonlinear correlation between the input independent
features and the target soil moisture by averaging the predictions of multiple independent

https://www.earth-system-science-data.net
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regression trees [59]. The random forest model for soil moisture inversion used in this
paper can be represented by the following formulas [29]:

SSMd = fRF(D) + ε (2)

D = (NDVI, LST, ET, Albedo, AWC, sand, silt, clay, DEM, slope, aspect, pre, SMC) (3)

f (SSMd|D) =
1
n

n

∑
i=1

fi(SSMd |D) (4)

where SSMd denotes soil moisture data; D denotes various input variables of the random
forest model, and fRF is a nonlinear function formed by establishing a correlation between
the feature value and the output SSMd; f (SSMd|D) is an ensemble decision tree, n is the
number of regression trees, and fi(SSMd |D) is the subdecision tree given the corresponding
soil moisture SSMd from the training input variable (D).

The most crucial hyperparameters in the RF model are the number of decision trees
(n), the maximum depth of a single tree (max_depth), and the number of randomly selected
features at each split (max_features). In this study, we used the open-source machine
learning library Scikit-learn package to construct the random forest model using the Python
language and the Pycharm platform. The grid search and ten-fold cross-validation were
applied to optimize the hyperparameters and evaluate the model’s accuracy.

3.2. RF Model Construction

The flowchart in Figure 2 illustrates the process of using a random forest algorithm
for soil moisture prediction in this study. The dataset used in this research consisted of
9606 samples, spanning from 2009 to 2018 during the nonfreezing period from May to Octo-
ber. To begin, various data sources were collected and processed, including MODIS surface
variables (NDVI, LST, albedo, and ET), soil texture data, topographic and precipitation
data, and in situ measurements and soil moisture products (SMCI and SMC). The in situ
measurement data were used to extract the values of corresponding independent variables
according to the latitude and longitude of the measurement site. The SMCI soil moisture
product data were used to extract the mean value of each input feature variable within the
SMCI pixel range (1 km × 1 km) from the corresponding input dataset. These values were
integrated with the in situ measurement data as the training target value. The SMC soil
moisture product and the remaining parameter variables were used as the feature values to
create a sample set that matched the temporal and spatial scales. The sample set was then
divided into 70% for training (from May to October in 2009–2015) and 30% for testing (from
May to October in 2016–2018). The random forest algorithm was used to construct the
complex correlation between the feature variables and target values. The input variables
were then resampled to the same cell (250 m) and imported into the trained random forest
model to generate high-precision soil moisture data. The results were spatio-temporally
validated using measured data and ERA5_Land reanalysis products. Finally, the spatial
and temporal variation characteristics of the final soil moisture data (250 m) were analyzed.

In order to account for the presence of missing data in the in situ measurement data, the
research period was limited to the nonfreezing months from May to October in 2009–2018.
This period was chosen to ensure consistency in the research and to focus on the inversion
of surface liquid water, as the Tibetan Plateau is characterized by low temperatures and
permafrost during the winter months. To ensure that only unfrozen soil was included in
the sample set, conditions were established to screen for surface temperature greater than
0 ◦C and albedo values less than 0.4. This approach was used to accurately distinguish
between frozen and unfrozen soil [60].
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Figure 2. Flowchart of soil moisture inversion based on random forest.

3.3. Evaluation Metrics

To assess the accuracy of the random forest model, three metrics were employed:
correlation coefficient (R), root mean square error (RMSE), and bias. These metrics are
standard techniques for model evaluation and validation [61]. The formulas for calculating
these metrics are as follows:

R =
∑
(

ypred(i)− ypred(i)
)(

ytrue(i)− ytrue(i)
)

√
∑
(

ypred(i)− ypred(i)
)2
√

∑
(

ytrue(i)− ytrue(i)
)2

(5)

RMSE =

√√√√∑N
i

(
ypred(i)− ytrue(i)

)2

N
(6)

bias =
∑N

i

(
ypred(i)− ytrue(i)

)
N

(7)

where N is the number of sample points in the model, ypred(i) represents the i-th predicted
value of surface soil moisture, and ytrue(i) represents the corresponding true value of
surface soil moisture at the sample point.

A Taylor diagram is a graphical tool used to compare the agreement between model
simulation results and observational data, illustrating the bias and correlation of the model
simulations in different directions. To evaluate the accuracy and differences between the
random forest model predictions and the in situ measurement sites, we employed Taylor
diagrams [62], which included three distinct statistical measures: correlation coefficient,
standard deviation, and central root mean square error.

The trend analysis is a method of predicting the trend of change by using linear
regression analysis on variables that change over time [63]. The fundamental assumption
is that the change in data can be represented by a linear equation. To investigate the
relationship between monthly soil moisture and temporal variables, we used univariate
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linear regression and the least squares method to fit the grid values of remote sensing
image pixel by pixel. The formula we used for this calculation is as follows:

Slopem =
n ∑n

i=1(TiSMi)−∑n
i=1 Ti ∑n

i=1 SMi

n ∑n
i=1 Ti

2 − (∑n
i=1 Ti)

2 (8)

where Slopem is the regression slope, n is the length of time, SMi is the soil moisture, and
Ti is the time variable. When Slopem > 0, it means that the soil moisture of the pixel shows
an increasing trend; otherwise, it shows a decreasing trend.

4. Results
4.1. Accuracy and Evaluation of the RF Prediction Model
4.1.1. Time-Series Validation

In this research, we used a mean synthesis method to transform 15-min original obser-
vation data from the Maqu network sites into monthly averages as in situ measurement
data. Similarly, we applied the mean synthesis method to the SMCI soil moisture product
to convert daily averages into monthly averages, and integrated them as the training target
value. As shown in Figure 3a, the accuracy of the random forest model on the training set is
highly satisfactory with a correlation coefficient (R) of 0.943, and a root mean square error
(RMSE) of 0.018 m3/m3. The model’s performance was also validated and evaluated using
the validation dataset, as shown in Figure 3b, with a R of 0.885, RMSE of 0.024 m3/m3,
and bias of −0.004. The results indicate that the model is stable and has a good ability to
predict soil moisture values, mainly concentrated in the range of 0.3 m3/m3–0.4 m3/m3.
The performance of the random forest model exhibits some bias in regions of extreme soil
moisture. Specifically, at low soil moisture levels with a small number of samples, the
model tends to overestimate the value, while at high soil moisture levels, it exhibits a low
state. Despite this, the overall evaluation of the random forest model demonstrated very
good performance.
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Figure 3. Scatterplot of the comparison between random forest predictions and in situ measurements:
(a) Illustrates the model’s accuracy on the training set; (b) shows the model’s accuracy on the
validation set.

Due to the limitations of the in situ measurements, there were only nine sites with
sufficient data for the current study period. We selected nine sites with sufficient in situ
measurement data, namely NST01, NST03, NST05, NST06 NST07, NST08, NST09, NST25,
and CST05, and compared the time-series changes of the in situ data, random forest (RF)
prediction models, and SMCI soil moisture products. As shown in Figure 4, the study
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area is affected by terrain and climate factors, leading to significant fluctuations in ground
measurement soil moisture. The RF prediction model performed well at the NST01, NST03,
NST05, and NST09 stations, capturing changes in soil moisture data measured in the
field more accurately. Furthermore, our model’s predicted values were found to be in
closer agreement with field soil moisture than the SMCI soil moisture products. However,
the overall performances of the remaining stations were unsatisfactory. Although the
RF prediction value could capture the in situ data’s fluctuations, there were significant
discrepancies in the values, especially in the high and low soil moisture range. This may be
due to a bias in the training samples resulting from the lack of labels for a large range of
high and low samples.
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Figure 4. Comparison of in situ measurements, SMCI, and the RF model predicted soil moisture
time series from nine representative stations (NST01, NST03, NST07, CST05, NST08, NST09, NST05,
NST06, and NST25) with relatively complete data from the Maqu observation network.

To further assess the predicted soil moisture performance by RF, we utilized Taylor
diagrams to display the error statistical analysis of the in situ measurement sites in Figure 4.
Taylor diagrams are useful visual tools that can simultaneously exhibit three indicators,
namely standard deviation, root mean square error, and correlation coefficient. By extension,
a Taylor diagram can be extended to applications that require a two-dimensional plane to
present three-dimensional data. As illustrated in Figure 5, the performances of four sites
(NST01, NST03, NST05, and NST09) were relatively good, with R values ranging between
0.80 and 0.90, RMSE values ranging between 0.02 m3/m3 and 0.04 m3/m3, and standard
deviations between 0.04 and 0.06. However, the error statistics for the remaining sites are
larger in the Taylor plots. The Maqu observation network is located in a cold and humid
area covered by short grasses, which exacerbates the challenges in accurately estimating
soil moisture during this transitional period between the freezing and nonfreezing seasons.
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Figure 5. Taylor plots further show a comparison of the accuracy of in situ measurements and
random forest predictions of soil moisture at nine relatively independent and complete measured
sites (NST01, NST03, NST07, CST05, NST08, NST09, NST05, NST06, and NST25).

4.1.2. Importance of Parameter Variables

To evaluate the correlations between the independent variables in the RF model, we
used the Pearson correlation coefficient. As illustrated in Figure 6, there is a strong negative
correlation between the characteristics of soil texture such as sand and silt (−0.93), clay
and sand (−0.73), with correlation coefficient values surpassing −0.7. In general, there is a
high positive correlation between individual MODIS product data (NDVI, LST, ET, and
albedo). There is a correlation coefficient of 0.3 between the land surface temperature (LST)
and albedo. Additionally, the correlation coefficient between the normalized difference
vegetation index (NDVI) and evapotranspiration (ET) is 0.29. It is worth noting that there
exists a robust association between evapotranspiration (ET) and precipitation (pre), as
indicated by a correlation coefficient of 0.49.
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To further analyze the importance of different variables, we used the permutation
importance method, as shown in Figure 7. The permutation importance method was
used to determine the significance of different variables in the RF model by evaluating the
decrease in model performance when individual feature values were randomly shuffled.
This is a model-independent method that and can be repeatedly computed with different
combinations of features on the hold-out test set [64]. The results show that fine-scale
topographic data (slope and aspect) have the highest level of importance, followed by soil
texture data (silt and sand) in the RF model. This suggests that fine-scale topographic
and soil texture information are crucial in generating high-precision soil moisture data. In
contrast, NDVI and ET data played a minimal role in the soil moisture retrieval process.
Additionally, the importance of the SMC soil moisture product was also low, which may be
attributed to its coarser spatial resolution. It is worth noting that LST ranked third and that
we also considered the effect of surface temperature when selecting the nonfreezing period
for our analysis.
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4.1.3. Spatial Pattern Comparison

In this study, we present the spatial distribution of soil moisture from the Random
Forest model compared with the SMCI and ERA5_Land soil moisture products in 2018
(Figure 8). The SMCI soil moisture product has a spatial resolution of 1 km, and the
ERA5_Land soil moisture product has a spatial resolution of 0.1◦. The results of the
study found that these three products have similar spatial patterns of soil moisture. The
soil moisture content within the study area exhibits significant variation, ranging from
0.15 m3/m3 to 0.66 m3/m3. High soil moisture values are mainly distributed in areas
with dense vegetation coverage, such as river valleys, wetlands, and other low-lying areas.
The coarse-resolution soil moisture products have many noise points in the extreme soil
moisture regions, while the Random Forest model product has better spatial continuity.
The prediction outputs of the RF model are generally smoother, more stable, less noisy, and
reflect more detailed regional soil moisture information since random forest has a good
tolerance to outliers and noise. Although there is an overestimation in some regions, the
results provide a more detailed and fine-resolution spatial distribution of soil moisture
compared to the coarser resolution products.
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Figure 8. Spatial analysis of random forest compared with SMCI and ERA5_Land soil moisture
products in 2018: (a) Shows the RF result map with a spatial resolution of 250 m; (b) illustrates the
SMCI soil moisture product map with a spatial resolution of 1 km; (c) presents the product image of
ERA5_Land at a spatial resolution of 0.1◦.

4.2. Analysis of Spatial and Temporal Variation of Soil Moisture
4.2.1. Inter-Annual Variation

There is a strong association between rainfall and soil moisture [65]. The relationship
between precipitation and soil moisture over the period from 2009 to 2018 in the study area
was further examined by plotting their inter-annual variation. As illustrated in Figure 9,
the soil moisture in the study area exhibited periodic fluctuations from year to year and
had a strong correlation with precipitation. The soil moisture values fluctuated between
0.3741 m3/m3 and 0.3943 m3/m3, and the precipitation values fluctuated between 35 mm
and 223 mm. Throughout the study period spanning from May to October, there was a
discernible pattern in the precipitation levels, which initially showed an upward trend
before gradually decreasing. The highest amounts of precipitation were recorded during
the months of July and August. Concurrently, the soil moisture content also exhibited a
similar trend, with its peak values occurring during the months of July and August.
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Figure 9. Inter-annual variation of soil moisture and precipitation in the study region from 2009
to 2018.

Our trained random forest model generated a multi-year average soil moisture varia-
tion for the study region by averaging values from May to October each year. We compared
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this with the soil moisture products SMCI and ERA5_Land (Figure 10). While there were
minimal spatial differences among the three products, our model provided a more detailed
spatial pattern of soil moisture. In terms of inter-annual evolution, the overall distribution
of soil moisture in the study area was high in the center and low at the margins, which
may be related to the terrain elevation. The spatial pattern did not differ significantly from
year to year, with soil moisture values ranging from 0.25 m3/m3 to 0.57 m3/m3. This is
likely due to the high density of vegetation coverage in this area, which creates hot and
humid conditions. The monsoon season also leads to increasing rainfall in the summer,
resulting in overall high soil moisture, with higher values mainly concentrated in the Zoige
grassland and alpine forest areas.
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4.2.2. Intra-Annual Evolution

Figure 11 compares the multi-year monthly averages in the study area from 2009
to 2018. During the intra-annual period from May to October, the southwestern and
northeastern regions of the study area exhibit trends with more pronounced geographical
differences. These variations may be caused by the altitude, precipitation distribution,
and surface types in these regions. The southwestern part of the region is characterized
by complex terrain and high altitude. From May to August, as the temperature rises, the
precipitation season arrives, and glaciers and snow cover melt, soil moisture levels continue
to increase, reaching a peak in August. However, in September and October, the dry and
cold climate results in reduced precipitation, leading to a gradual decrease in soil moisture.

The overall trend of soil moisture change in the study area during the nonfreezing
period from 2009 to 2018, as determined through linear trend analysis, was a gradual
increase, with variations seen in different months. As shown in Figure 12, the rate of change
was small, with values fluctuating between −0.006 and 0.009, and the differences were not
significant. On the one hand, in May and June, the southwestern region showed a gradual
increase in soil moisture, with area ratios of 77.46% and 70.34%, respectively. On the other
hand, the northwest and northeast regions showed a decrease in soil moisture. In July
and August, the increase in soil moisture was mainly concentrated in the southwestern
region, and in September there was a significant increase in soil moisture, with an area of
82.45% increase, except for the low-altitude edge areas. The overall change in soil moisture
in October was relatively small.
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5. Discussion

It should be noted that many previous studies on soil moisture downscaling have
typically combined land surface variables and coarse-scale remote sensing soil product
data, modeled direct or indirect relationships, and then used higher spatial resolution
parameter variables as input to generate fine-scale soil moisture data [29–32]. However, the
accuracy of the generated soil moisture downscaling results is heavily influenced by the
uncertainty of the original coarse spatial resolution soil moisture products, especially in
the absence of validation information from ground truth data [26,30]. In previous studies,
regional soil moisture downscaling has been mainly focused on a spatial resolution of 1 km,
which may not be sufficient for effective water resources management. To address this issue,
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we propose a novel method to generate a high-resolution (250 m) soil moisture dataset
by combining multisource data, machine learning algorithms, and in situ measurements.
Our approach maximizes the potential of the combination of the three and alleviates
the limitations of different remote sensing sensors, such as the driving error of model
simulations and the low spatial resolution of passive microwave sensors [66].

To achieve this, we use the soil moisture products based on ground model simulation
as the supplement of in situ measurement data, and the soil moisture products assimilated
based on microwave remote sensing as the parameter variable background. By introducing
different data sources, we strengthen the quantitative relationship between input character-
istic variables and field observation data, which leads to the generation of a high-accuracy
soil moisture distribution map consistent with in situ measurements. Furthermore, our
method alleviates the sensitive issue of uncertainty in the machine learning inversion
process, making remote sensing and machine learning inversion more precise [40]. This
approach has not been commonly used in previous studies and can overcome the current
limitations of satellite soil moisture retrieval, thereby providing new opportunities for
exploring the complex relationships between soil moisture and other parameters [15].

It is important to consider potential sources of errors that could affect the accuracy
of our experiment. Although the random forests demonstrate good performance, they
are regarded as black boxes that lack interpretability. Particularly when the sample size
is limited, the final model accuracy could be affected by the proportional division of the
training and test sets [29]. Due to the unequal number and distribution of in situ measure-
ment sites, we included SMCI soil moisture products based on ground model simulations
to supplement the missing field observation data. However, uncertainty remains at the
regional scale inversion because of the imbalance between ground measurement and SMCI
data. Further, errors caused by instrument or human errors in the field measured data
could also introduce inaccuracies in the results. The special geographical location and ex-
treme climate of the Qinghai-Tibet Plateau, coupled with the lack of long-term field survey
and measurement data, further complicate the verification of the results. Additionally,
the spatial-temporal scale matching and conversion of remote sensing data and multiple
data sources might introduce errors in soil moisture prediction, and the data deviation
between observation data and model simulation may be difficult to eliminate completely,
particularly in arid or saturated regions where a large and reliable training sample set
is lacking [67]. Finally, the framework proposed in this study for regional soil moisture
retrieval is built upon region-specific characteristic variables, including soil properties,
evapotranspiration, and surface temperature. While this framework may be applicable
to regions with similar environmental and climatic conditions, characteristic variables
specific to new regions, such as topographic data and soil texture property data, must
be thoroughly considered during the migration process. This will enable us to test and
validate the model’s applicability in different regions, and to ensure its accuracy when
applied to areas outside of its original scope.

With the availability of more data and information from various sources including
satellites, state-of-the-art observation techniques, and land surface modeling, future re-
search should strive to comprehensively utilize these resources to generate more accurate
and comprehensive soil moisture datasets [68]. This can be achieved through the integration
of multisource remote sensing satellite products, field survey soil moisture data, artificial
intelligence, and deep learning [11]. Furthermore, researchers should include additional
relevant features such as geographic location information and land cover classification,
expand the number of samples, and should aim to generate long-term and easily accessible
soil moisture datasets with higher temporal and spatial resolutions. Such datasets will
provide valuable information for ecological and environmental scientific research, as well
as for managing agricultural water resources.
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6. Conclusions

In this study, a novel framework is proposed for high-resolution regional soil moisture
retrieval using multisource data fusion, machine learning algorithms, and field measure-
ments. The framework effectively combines MODIS surface variables, in situ measure-
ments, SMCI soil moisture products, microwave remote sensing assimilation products, and
ancillary data (soil texture properties, topography, and rainfall) to maximize the potential
of each data source. This research was conducted in the southeastern part of the Tibetan
Plateau during the nonfreezing period from 2009 to 2018, using a random forest for training.
The results indicated that the trained random forest model performs well on unseen data,
with an RMSE of 0.024 m3/m3, a bias of −0.004, and an R of 0.885. The predictions of the
random forest model are more accurate and closer to field soil moisture than SMCI soil
moisture products, particularly for temporal variation. Moreover, we compared our soil
moisture maps with the ERA5_Land soil moisture product and the SMCI soil moisture
product, and found that all three products were effective in describing the spatial variability
of soil moisture. However, our product generated smoother, more stable, and less noisy
results, providing a more detailed spatial pattern of soil moisture. Overall, the proposed
framework has great potential for practical applications in ecological and environmental
scientific research, as well as agricultural water resource management.

Our study revealed that topographic factors such as slope and aspect, as well as soil
attributes such as silt and sand have a more significant impact on soil moisture in the
southeastern Tibetan Plateau compared to changes in surface variables such as NDVI,
ET, and albedo. This highlights the importance of obtaining detailed information on
topography and soil texture to generate high-precision soil moisture data in the region.
Inter-annual variation analysis indicates that the spatial variation of the annual average soil
moisture in the area is small, and the soil moisture value fluctuates between 0.3841 m3/m3

and 0.3943 m3/m3. Generally, soil moisture is relatively high in the center and low at the
edge of the region due to altitude, topography, and precipitation distribution. Multi-year
monthly averages show an increasing trend from May to October, followed by a decreasing
trend. However, the monthly average linearization rate over the years is low. Our results
are consistent with previous studies that have found a slow increasing trend in overall soil
moisture in the region. Cheng et al. (2019) also suggested that changes in soil moisture
could be attributed to the shrinking cryosphere and global warming [69]. Future work will
concentrate on integrating higher resolution multisource satellite remote sensing data and
developing a deep learning framework, such as a Deep Belief Network (DBN), to enhance
the spatio-temporal resolution of soil moisture even further.
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Appendix A

Table A1. Index of notations and abbreviations.

Detailed Name Abbreviations

Normalized vegetation index NDVI
Land surface temperature LST

Evapotranspiration ET
Albedo albedo

Digital elevation model DEM
Slope slope

Aspect aspect
Sand, clay, silt sand, clay, silt

Available water-holding capacity AWC
Precipitation pre

Soil moisture products based on ground model simulations SMCI
Soil moisture products based on passive microwave data assimilation SMC
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