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Abstract: Radar echo extrapolation is a commonly used approach for convective nowcasting. The
evolution of convective systems over a very short term can be foreseen according to the extrapolated
reflectivity images. Recently, deep neural networks have been widely applied to radar echo extrapo-
lation and have achieved better forecasting performance than traditional approaches. However, it is
difficult for existing methods to combine predictive flexibility with the ability to capture temporal
dependencies at the same time. To leverage the advantages of the previous networks while avoiding
the mentioned limitations, a 3D-UNet-LSTM model, which has an extractor-forecaster architecture,
is proposed in this paper. The extractor adopts 3D-UNet to extract comprehensive spatiotemporal
features from the input radar images. In the forecaster, a newly designed Seq2Seq network exploits
the extracted features and uses different convolutional long short-term memory (ConvLSTM) layers
to iteratively generate hidden states for different future timestamps. Finally, the hidden states are
transformed into predicted radar images through a convolutional layer. We conduct 0–1 h convective
nowcasting experiments on the public MeteoNet dataset. Quantitative evaluations demonstrate the
effectiveness of the 3D-UNet extractor, the newly designed forecaster, and their combination. In
addition, case studies qualitatively demonstrate that the proposed model has a better spatiotemporal
modeling ability for the complex nonlinear processes of convective echoes.

Keywords: radar echo extrapolation; sequence-to-sequence (Seq2Seq) network; 3D-Unet;
convective nowcasting

1. Introduction

Convective nowcasting usually refers to forecasting the evolution trends of convective
systems for lead times of up to a few hours, which is significant for protecting lives and
property and supporting outdoor activities [1–3]. However, it is still challenging due to the
obvious suddenness, rapid changes, and inherent uncertainty of convection systems.

In most cases, extrapolation-based forecasts have higher skills for lead times of up
to 1–2 h. Spatiotemporal extrapolation techniques use statistical models or data-driven
models to extrapolate radar or satellite images into the imminent future. After obtaining
extrapolation results, convective nowcasting can be conducted with radar echo reflectivity
values≥ 35 dBZ [4] or cloud-top brightness temperatures below a certain threshold [5], and
convective precipitation fields can also be estimated with the Z-R relation [6] and nonlinear
mapping algorithms [7,8].

Traditional extrapolation techniques are usually based on statistical models, and most
of them follow the framework of Lagrangian persistence, which utilizes the motion field cal-
culated from recent images to extrapolate the latest available image under the assumption
that the intensity and motion are constant [9]. These methods can be roughly divided into
object-based extrapolation [10–12] and region-based extrapolation approaches [9,13–15].
Object-based extrapolation first identifies a convective storm cell and then extrapolates
its trajectory based on the calculated motion vectors; this technique is mainly suitable for
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nowcasting convective storms with high intensity and stability. Region-based extrapola-
tion focuses on the image and extrapolates all grid values without specific classifications.
However, the performance of traditional extrapolation techniques is poor when they are
used to forecast rapidly changing weather systems, especially for severe convection storms
with abrupt intensity, location and size changes [2,16].

Recently, the continuous development of deep learning has contributed significantly
to the modeling capabilities of extrapolation techniques. Deep neural networks (DNNs)
are capable of modeling nonlinear processes in observation images, thus depicting com-
plicated and rapidly developing weather phenomena such as the initiation, dissipation,
and rotation of clouds. On the other hand, a data-driven solution enables DNNs to learn
local weather patterns from massive historical observations, making them more suitable
for regional convective forecasts. Furthermore, many studies have demonstrated that
deep learning-based extrapolation methods perform better than traditional statistical ex-
trapolation techniques [17–20]. Among those methods, the commonly used DNNs are
convolutional recurrent neural networks (ConvRNNs) and convolutional neural networks
(CNNs) [17,18].

ConvRNNs can explicitly model the temporal dependencies of consecutive obser-
vation images by recursively applying stacked ConvRNN units along the time direction,
transmitting and updating the inside states. In prior works, most deep learning practi-
tioners used ConvRNNs to address extrapolation-based nowcasting for convective storms
and precipitation. For example, Shi et al. [17] proposed convolutional long short-term
memory (ConvLSTM) to extrapolate radar images; this approach uses convolution opera-
tions instead of full connections in its state transitions. Shi et al. [21] then designed a more
reasonable encoding-forecasting structure and proposed the trajectory-gated recurrent unit
(TrajGRU) model to address the location invariance problem existing in ConvLSTM. To
memorize spatial and temporal information simultaneously, Wang et al. [22] presented a
general framework called the predictive RNN (PredRNN), which makes the states flow in
two directions. Tuyen et al. [23] designed RainPredRNN, which could reduce the number
of calculated operations based on PredRNN. In addition, Jing et al. [24] exploited radar
images at three altitudes to extrapolate those at one and addressed the blurry prediction
problem with adversarial training. A generative adversarial network (GAN) architecture
was also applied by Ravuri et al. [19] to generate more sharp future radar images via a
ConvRNN. Moreover, since observation images can be considered video sequences con-
tinuously recorded with a fixed “camera”, other advanced ConvRNN models for video
prediction [25,26] can also be applied to convective nowcasting.

Although it has already been concluded that a simple convolutional architecture can
outperform recurrent architectures on diverse sequence modeling tasks [27,28], ConvRNNs
are more generally used for spatiotemporal sequence forecasting than those using CNNs. In
the past two years, the application of CNNs to extrapolation-based convective nowcasting
has attracted increasing attention. Unlike ConvRNN-based extrapolation methods that
explicitly model time, CNN-based approaches consider the forecasting task as an image-to-
image translation problem, which aims to directly transform multiple concatenated past
images into a future image/image sequence through layer-by-layer mapping [18,29–31].
Among the numerous available CNN models, UNet [32] can combine high-level and low-
level features through skip connections to exploit more comprehensive information for
future image generation, leading to increasing applications in radar-based nowcasting.
For example, Agrawal et al. [18] used UNet to provide three pixel-level binary classifi-
cations that indicated whether the future rainfall intensity in the given pixel exceeded
corresponding thresholds. Instead of predicting classes, UNet was applied in [20,33–35]
to extrapolate radar images directly. Han et al. [20] demonstrated that UNet achieved
comparable extrapolation performance to a ConvRNN-based model. The recent successes
of UNet in the above applications indicate that the role of CNNs in extrapolation-based
convective nowcasting needs to be reconsidered.
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However, these two types of DNNs still have some limitations. First, it is not easy for
standard ConvRNN models to tailor their predictions at different timestamps. One reason
is that their sequence-to-sequence (Seq2Seq) structures use the same weights to generate the
hidden states of all timestamps. Second, CNN models mainly emphasize spatial features
while weakening the temporal variations between the input images, leading to difficulty
learning relatively long-range temporal dependencies. Even though a few studies have
noticed that 3D convolutions can extract spatiotemporal representations [36,37], they still
follow the image-to-image translation paradigm and rarely explicitly model the temporal
correlations among the extracted features in the prediction stage.

To leverage the advantages of the UNet and ConvRNN models while avoiding the
above limitations, we develop a radar echo extrapolation model called 3D-UNet-LSTM
for convective nowcasting, which combines 3D-UNet and a newly designed Seq2Seq
network in an extractor-forecaster architecture. We first adopt 3D-UNet as the extractor to
extract the spatiotemporal features of the input radar reflectivity images while retaining
more detailed information, such as textures. In the forecaster, the Seq2Seq network uses
different unstacked ConvLSTM layers to iteratively generate hidden states for different
future timestamps. Finally, these hidden states are mapped to predicted images via a
convolution layer.

The remainder of this paper is organized as follows. Section 2 describes the data
used in this paper, and Section 3 illustrates the proposed model, the loss function, and the
evaluation metrics in detail. The experimental results are presented in Section 4. Finally, a
summary and discussions are given in Section 5. Appendix A briefly introduces some prior
knowledge related to our work.

2. Data

The radar reflectivity data used in this paper are provided by an open meteorological
database named MeteoNet [38], which covers two geographical areas, the northwest zone
(NW) and southeast zone (SE) of France in Figure 1, and spans 3 years, 2016 to 2018, with
5-min intervals.

Figure 1. The geographical regions used for the radar reflectivity data (red rectangle).

The data were collected using the Doppler radar network of METEO FRANCE, and
3D reflectivity maps were obtained by each radar scanning the sky. The radar’s spatial
resolution is 0.01 degrees, and the projection system used is EPSG:4326.

To build our dataset, we first generate 1.5-h radar image sequences (each sequence has
19 radar images) every 25 min. Next, sequence samples are selected if the total number of
pixels with reflectivity values ≥ 35 dBZ in one of their last 12 images exceeds 2000, and a
total of 12,503 sequence samples are collected. To reduce the computational and memory
cost and maintain adequate spatial resolution, the images in each sequencing sample are
resized from 565× 784 to 104× 160 through bilinear interpolation, with a spatial resolution
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of approximately 0.05 degrees. Finally, to test the generalization ability of the proposed
model, we ensure that the training, validation, and test subsets do not overlap in time, the
details of which are shown in Table 1.

Table 1. The divided subsets for training, validation, and testing.

Period
Sample Number

Total
NW SE

Training 2016.1–2018.5 5504 4865 10,369
Validation 2018.6–2018.7 480 517 997

Test 2018.8–2018.10 308 829 1137

In addition, the reflectivity (in dBZ) can be approximated to a rainfall intensity R
(mm/h) by using the Marshall-Palmer relation:

dBZ = 10 log a + 10b log R (1)

where a = 200 and b = 1.6.

3. Methodology

Consecutive radar images can directly show the evolution of convective systems. In
this section, we propose a DNN model called 3D-UNet-LSTM to extrapolate future radar
reflectivity images. The locations and intensities of convective systems over a very short
term can be foreseen according to the extrapolated results. M consecutive radar images
are given to predict the subsequent N radar images. In the implementation, we use the
radar images in the past 0.5 h to forecast those in the next 1 h (i.e., M = 7, N = 12). We
describe the architecture of 3D-UNet-LSTM in Section 3.1 and introduce the loss function
and evaluation metrics in Section 3.2 and Section 3.3, respectively.

3.1. 3D-UNet-LSTM

The proposed 3D-UNet-LSTM is an end-to-end trainable model with an extractor-
forecaster architecture, as illustrated in Figure 2. In the extractor part, we use 3D-UNet [39]
to extract the comprehensive spatiotemporal features of consecutive radar images. It is
composed of multiple 3D convolutional layers with kernel sizes of 2 × 3 × 3, each of which
is followed by a rectified linear unit (ReLU) activation function. Like UNet, the extractor
contains a downsampling path, a symmetrical upsampling path and skip connections.
Since skip connections require the temporal and spatial sizes of the features before each
downsampling operation to be consistent with those observed after the symmetrical up-
sampling operation, we add a zero image before the 7 consecutive radar images and stack
them along the temporal dimension as the model input. In the downsampling path, the
temporal and spatial sizes of the input sequence are progressively halved by using three 3D
convolutional layers with strides of 2, each followed by two 3D convolutional layers, and
spatiotemporal features with different representation levels are extracted. In the upsam-
pling path, the high-level features gradually return to the original size via three transposed
3D convolutional layers, each followed by two 3D convolutional layers. Furthermore, low-
level features are received from the downsampling path through skip connections, bringing
detailed information to the more comprehensive representations. Batch normalization
(BN) [40] is used after the last convolutional layer to mitigate the vanishing gradient effect
during backward propagation. After that, the comprehensive spatiotemporal features of
the radar image sequence are output.
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Figure 2. The 3D-UNet-LSTM architecture. ‘k’ and ‘s’ represent the kernel size and the stride for a
convolution, respectively.

The forecaster part is designed to further exploit the spatiotemporal features extracted
by the extractor and output the predicted radar images. This part, a Seq2Seq network is
presented to explicitly model time and extrapolate the hidden states step-by-step. ConvL-
STM is selected as the basic unit due to its simplicity and effectiveness. For the Seq2Seq
structure, considering the two common structures in Figure A1 that use shared parame-
ters to generate hidden states for the predictions over all future timestamps, their ability
to make corresponding adjustments according to the specific situations encountered at
different timestamps in the future may be limited. To alleviate this problem, we utilize N
ConvLSTM layers that have different parameters to individually generate the hidden states
for future timestamps in an iterative way, as shown in Figure 2, each ConvLSTM layer has
a step length of 8 with a convolutional kernel size of 3 × 3 and 64 hidden state channels,
thereby exploiting the long-term spatiotemporal information of the inputs and obtaining a
hidden state correlated with a specific future timestamp. The hidden state output by the
previous ConvLSTM layer is concatenated behind the inputs of the last 7 timestamps of this
layer. Then, these are fed into the next layer to output the hidden state of the next future
timestamp. In addition to utilizing different layers to tailor the predictions for different
timestamps, the iterative design can ensure that the previous features, whether extracted
by the extractor or generated by specific ConvLSTM layers, can be reused multiple times;
thus, it is also helpful in improving the quality of long-term forecasts. Finally, the hidden
state at each future timestamp is converted to a corresponding radar reflectivity image
through a 2D convolutional layer with a kernel size of 1 × 1.

3.2. Loss Function

In many spatiotemporal sequence forecasting tasks, such as video prediction and traffic
flow prediction, where the pixel values of images are relatively evenly distributed, the
mean absolute error (MAE) and mean squared error (MSE) are used as the loss functions to
train DNN models. However, for radar reflectivity images, the proportion of low-intensity
pixels is much larger than that of high-intensity pixels [21]. Training the extrapolation
model with the original MAE and MSE losses will make it focus on predicting low-intensity
pixels (indicating no weather echoes and weak echoes), limiting the forecasting effect in
areas with relatively strong echoes associated with hazardous convection. To achieve better
forecasting performance for strong echoes, we introduce a balanced reconstruction loss
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function LB−rec that assigns greater weights to the errors of higher reflectivity values in the
calculation process:

LB−rec =
1

NHW

N

∑
n=1

H

∑
i=1

W

∑
j=1

{
weightt+n,i,j ×

[∣∣It+n,i,j − Ît+n,i,j
∣∣+ (It+n,i,j − Ît+n,i,j

)2
]}

(2)

weightt+n,i,j =


1, It+n,i,j < 15dBZ

2, 15dBZ ≤ It+n,i,j < 35dBZ
5, 35dBZ ≤ It+n,i,j

(3)

where It+n,i,j denotes the observed reflectivity value of the (i, j)th pixel of the future image
at timestamp t + n, and Ît+n,i,j denotes the corresponding predicted value. weightt+n,i,j is
the weight assigned to each pixel according to the range of its observed reflectivity. H and
W are the height and width of the radar images, respectively. As in previous work [20,21,41],
the values of weightt+n,i,j are determined based on experience. The prediction errors of high
reflectivity values are given larger weights compared to those of low reflectivity values,
but the difference between weights is only 2–3 times. Finally, the weights are determined
by experiment. We verify the effectiveness of the balanced reconstruction loss function in
Section 4.

3.3. Evaluation Metrics

To quantitatively evaluate the nowcasting performance of extrapolation models, we
apply the probability of detection (POD), false-alarm ratio (FAR), bias score (BIAS), crit-
ical success index (CSI), root mean square error (RMSE) and correlation coefficient (CC)
and design a temporally weighted average CSI (twaCSI) measure. These metrics can be
computed based on a given threshold τ, representing a corresponding echo intensity level.
CSI can provide a ratio of correct predictions. For its calculation, the observed image and
predicted image are first binarized by a threshold τ. A pixel value greater than τ is set
to 1; otherwise, it is set to 0. Then, TP, FN, and FP, which denote the numbers of true
positives (prediction = 1, observation = 1), false negatives (prediction = 0, observation = 1)
and false positives (prediction = 1, observation = 0), respectively, are obtained. The CSI is
computed as

CSIτ =
TP

TP + FN + FP
(4)

Furthermore, considering it becomes more challenging to forecast radar images with
increasing lead time, we design twaCSIτ to evaluate the temporal sequence of predicted
radar images. It emphasizes the CSI scores of the images predicted at later timestamps by
assigning them heavier weights; this step is defined as

twaCSIτ =
∑N

n=1 n·CSIτ
t+n

∑N
n=1 n

(5)

where CSIτ
t+n is the CSI score of the predicted image at timestamp t + n.

POD and FAR would emphasize the amount of missed events and false alarms. Also,
including BIAS will give an idea about the deviation of predictions.

PODτ =
TP

TP + FN
(6)

FARτ =
FP

TP + FP
(7)

BIASτ =
TP + FP
TP + FN

(8)
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when BIAS > 1, the forecast result is stronger than the real; when BIAS < 1, the forecast
result is weaker; when BIAS = 1, the forecast deviation is 0, which is the highest prediction
skill. In addition, for each predicted image, we utilize RMSEτ and CCτ to present the
prediction error and consistency in the area where the observed reflectivities are greater
than τ. Denoting the sets of observed values larger than τ and the corresponding predicted
values as s and ŝ, respectively, RMSEτ and CCτ are calculated as follows:

RMSEτ =

√
1
|s| ∑i=1

(si − ŝi)
2 (9)

CCτ =
Cov(s, ŝ)√

Var(s)·Var(ŝ)
(10)

where |s| represents the number of values in set s.
Specifically, we select 18 dBZ (0.5 mm/h, indicating rain or not [21]) and 35 dBZ (used

to identify strong convections [10]) as the thresholds.

4. Experiments and Results

To evaluate the effectiveness and superiority of the proposed 3D-UNet-LSTM model,
extrapolation-based 0–1 h nowcasting experiments are conducted. For comparison,
six baseline models and a state-of-the-art model are reimplemented, including the Eu-
lerian persistence model (hereafter called Persistence), which assumes that future radar
images do not differ from the most recent observed image, a conventional model based
on optical flow (Rainymotion [14]), five deep learning models including three four-layer
ConvRNN models (ConvLSTM [17], PredRNN [22], SA-ConvLSTM [26]), a U-Net [32]
model, and a state-of-the-art model (RainPredRNN [23]). In those models, ConvLSTM
adopts the “same-side” structure, and PredRNN and SA-ConvLSTM apply the “opposite-
side” structure.

We first separately train the 3D-UNet-LSTM model and the other deep learning models
on the training set and validation set following the settings in Section 4.1 and then compare
the performance of Persistence, Rainymotion and the well-trained models on the whole
test set in Section 4.2. Then, to verify the effectiveness of the model design, Section 4.3
compares the 3D-UNet-LSTM model with two variations, including 3D-UNet. Next, in
Section 4.4, we further investigate the impact of the balanced loss and adversarial loss
functions on the performance of DNNs in accurately predicting convective echoes. Finally,
two representative cases are studied in Section 4.5.

4.1. Implementation Details for Training

The radar reflectivity images are first normalized to [0, 1] and then fed into the DNN
models. For a fair comparison, all models are trained with the balanced reconstruction loss
function on the training set via the adaptive moment estimation (ADAM) optimizer [42]
with an initial learning rate of 10−4. The batch size of each training iteration is set to
4. To prevent overfitting, the training process is stopped if the twaCSI35 obtained on
the validation set is not improved for 20 epochs. All experiments are implemented in
TensorFlow [43] and executed on a TITAN RTX GPU (24 GB).

4.2. Quantitative Evaluation of Eight Models on the Test Set

We quantitatively evaluate the overall 0–1 h nowcasting performance of the proposed
3D-UNet-LSTM model, RainPredRNN and six baseline models with the CSI, twaCSI, CC
and RMSE scores (averaged over all 1137 samples) obtained on the test set. The twaCSI
results and the mean CSI, CC and RMSE values obtained for all lead times at thresholds of
18 and 35 dBZ are tabulated in Table 2. Persistence has the poorest scores for all metrics.
The optical flow based Rainymotion approach obviously performs better than Persistence
with the help of the calculated motion field. The six well-trained DNN models significantly
outperform the above two traditional models, which demonstrates the powerful modeling
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capability of deep learning. Among the ConvRNN models, although PredRNN achieves
the same performance as ConvLSTM in terms of the CSI and twaCSI, it obtains higher CC
and lower RMSE scores at both thresholds that the nowcasting values of PredRNN are more
precise and closely aligned with the ground truth than those of ConvLSTM. RainPredRNN
performs better than PredRNN with the help of the ST-LSTM unit and setting appropriate
hyperparameters. Another SA-ConvLSTM obtains similar CSI18 and twaCSI18 scores
compared to those of ConvLSTM, PredRNN and RainPredRNN. Yet, it is superior to both
when the threshold is set to 35 dBZ, particularly for twaCSI35, implying that SA-ConvLSTM
has a better nowcasting performance at longer lead times for echoes with high-intensity
levels. The UNet model, which does not have a special design for time series modeling,
obtains even better scores for all metrics than the above three advanced ConvRNN models
at the thresholds of 18 dBZ and 35 dBZ, which is noteworthy, as it shows the high potential
of the UNet architecture for extrapolation-based convective nowcasting. The proposed
3D-UNet-LSTM model yields the best nowcasting scores among the eight models, which
verifies its superiority. Greater improvements in the CSI and twaCSI are achieved at the
35 dBZ threshold than at the 18 dBZ threshold because we focus more on improving the
prediction accuracy for convective echoes, especially at longer lead times. In addition, the
best CC and RMSE scores obtained at both thresholds indicate that the predicted radar
reflectivities of 3D-UNet-LSTM are more precise and, thus better for estimating future
rainfall intensities.

Table 2. Overall performance of the eight models on the test set.

Method
CSI↑ twaCSI↑ CC↑ RMSE↓

18 dBZ 35 dBZ 18 dBZ 35 dBZ 18 dBZ 35 dBZ 18 dBZ 35 dBZ

Persistence 0.4181 0.2068 0.3591 0.1554 0.2644 0.0355 16.92 21.34
Rainymotion 0.5149 0.2675 0.4581 0.2107 0.3616 0.0694 14.01 17.69
ConvLSTM 0.5814 0.3244 0.5421 0.2786 0.4350 0.1007 10.70 12.89
PredRNN 0.5898 0.3278 0.5468 0.2755 0.4500 0.1256 10.58 12.78

RainPredRNN 0.5906 0.3314 0.5483 0.2868 0.4624 0.1363 10.45 12.63
SA-ConvLSTM 0.5811 0.3349 0.5444 0.2933 0.4422 0.1110 10.47 12.50

UNet 0.5938 0.3550 0.5497 0.2998 0.4707 0.1570 10.41 12.03
3D-UNet-LSTM 0.5990 0.3742 0.5512 0.3201 0.4853 0.1760 9.72 11.34

The best and second-best scores are marked in bold and underlined, respectively, ↑ which means that higher is
better, while ↓ lower is better.

The POD, FAR and BIAS values obtained for all lead times at thresholds of 18 and
35 dBZ are tabulated in Table 3. For the forecasting of medium and strong echoes, the BIAS
score of our proposed model is greater than 1, and the overall forecast results are strong.
The reason is that the model is designed to focus more on strong echoes. The model has the
best POD and FAR scores at the thresholds of 35 dBZ (strong echo).

Table 3. Evaluation scores of our proposed model with others.

Method
POD↑ FAR↓ BIAS

18 dBZ 35 dBZ 18 dBZ 35 dBZ 18 dBZ 35 dBZ

Persistence 0.5664 0.3202 0.4205 0.6727 0.9845 1.0220
Rainymotion 0.6525 0.3585 0.3170 0.5315 0.9546 0.7718
ConvLSTM 0.7887 0.4776 0.3230 0.5085 1.1795 0.9820
PredRNN 0.7888 0.4651 0.3129 0.4923 1.1622 0.9072

RainPredRNN 0.7953 0.4836 0.3206 0.5049 1.1584 1.0659
SA-ConvLSTM 0.8012 0.5021 0.3319 0.5133 1.2178 1.0384

UNet 0.8005 0.5480 0.3145 0.5136 1.1863 1.1500
3D-UNet-LSTM 0.8238 0.5610 0.3235 0.4844 1.2462 1.1489

The best and the second-best scores are marked in bold and underlined, respectively, ↑ which means that higher is
better, while ↓ lower is better.
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Beyond that, to directly show the convective nowcasting performance over time,
the CSI, CC and RMSE curves produced by the eight models at the 35 dBZ threshold
against different nowcasting lead times up to 60 min are plotted in Figure 3. The results
show that the performance of all extrapolation models deteriorates with increasing lead
times, which can be expected and mainly results from unavoidable error accumulation
and increasing uncertainty in the forecasting process. RainPredRNN and PredRNN obtain
similar performance on all metrics over time. In addition, we notice that although UNet
achieves a better overall performance in terms of mean CSI35 and RMSE35 in Table 2 than
the three ConvRNN models and RainPredRNN, this is largely due to the contribution
of its better scores for lead times between 5 and 30 min. Later, the performance of UNet
gradually becomes comparable to that of SA-ConvLSTM and is finally exceeded by that
approach for lead times beyond approximately 45 min. One reason for this phenomenon
presumably is that UNet focuses on maintaining or changing spatial appearances for radar
images but fails to capture the internal temporal dependencies; this appears to affect its
long-term prediction effectiveness.

Figure 3. The (a) CSI, (b) CC and (c) RMSE curves produced by the eight models at the 35 dBZ
threshold against different lead times. All values are the scores averaged over all cases in the test set
at the corresponding lead time.

In contrast, the proposed 3D-UNet-LSTM produces the best CSI35 value for any lead
time in one hour and achieves a score of more than 0.25 for 60-min nowcasts, while those of
other deep learning models are in the range of 0.21 to 0.23. The same is true for RMSE35; the
proposed model remains competitive over the whole period, and its superiority becomes
increasingly obvious at lead times after 30 min. For 60-min nowcasts, it reduces the average
error by almost 2 dBZ compared with UNet. In terms of CC35, the prediction results of the
proposed model exhibit consistency with the observation values, especially at shorter lead
times. Although its performance drops sharply as the lead time increases, our model still
achieves the highest CC35 scores compared to other models. In general, 3D-UNet-LSTM
has better early performance than UNet and consistently outperforms SA-ConvLSTM at
long lead times, demonstrating its effective spatiotemporal modeling ability and better
overall performance for convective nowcasting.

4.3. Evaluation of the Model Design

To evaluate the effectiveness of the 3D-UNet-LSTM model design, we first design
two variations of the model, one that removes the forecaster and retains the 3D-UNet
extractor only and another that replaces the forecaster with a two-layer ConvLSTM net-
work (this variation model is referred to as ‘3D-UNet + ConvLSTM’). Then, the overall
performance of the original ConvLSTM, UNet, 3D-UNet-LSTM and these two variations
are compared, as shown in Table 4. When only the 3D-UNet extractor is retained, it still
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outperforms ConvLSTM and UNet in terms of the metrics at the 35 dBZ threshold, indicat-
ing that the 3D-UNet extractor has good potential for convective nowcasting. However, as
we attempt to use a common ConvLSTM network to further leverage the features extracted
by 3D-UNet and generate future hidden states according to the shared parameters, the
nowcasting performance decreases considerably, becoming even worse than that of the
original ConvLSTM. In contrast, when utilizing our designed forecaster to produce future
hidden states with different parameters, the model obtains better scores than those of
3D-UNet, demonstrating the effectiveness of the forecaster.

Table 4. Quantitative evaluation of the model design.

Method
CSI↑ twaCSI↑ CC↑ RMSE↓

18 dBZ 35 dBZ 18 dBZ 35 dBZ 18 dBZ 35 dBZ 18 dBZ 35 dBZ

ConvLSTM 0.5814 0.3244 0.5421 0.2786 0.4350 0.1007 10.70 12.89
UNet 0.5938 0.3550 0.5497 0.2998 0.4707 0.1570 10.41 12.03

3D-UNet 0.5897 0.3642 0.5439 0.3099 0.4735 0.1687 10.27 11.76
3D-UNet + ConvLSTM 0.5567 0.3097 0.5197 0.2648 0.4208 0.1087 10.96 13.03

3D-UNet-LSTM 0.5990 0.3742 0.5512 0.3201 0.4853 0.1760 9.72 11.34

The best and second-best scores are marked in bold and underlined, respectively, ↑ which means that higher is
better, while ↓ lower is better.

We also draw the CSI35, CC35 and RMSE35 curves of these methods for different lead
times in Figure 4. It can be seen that by combining 3D-UNet and the forecaster, our model
has better performance than the other approaches for nearly all lead times. The superiority
of its design is more obvious for longer lead times.

Figure 4. The (a) CSI, (b) CC and (c) RMSE curves at the 35 dBZ threshold against different lead times
for the evaluation of the model design.

4.4. Evaluation of Different Loss Functions

In the following, we train the 3D-UNet-LSTM model with different loss functions
and test their effects on the prediction accuracy for convective echo regions. These loss
functions are the reconstruction loss (the sum of the MAE and MSE) widely used in video
prediction tasks [22,26], the sum of the reconstruction loss and adversarial loss, which
has been applied to address the blurring problem for echo prediction [24], the balanced
reconstruction loss [21] applied in this paper, and the sum of the balanced reconstruction
loss and adversarial loss [37,44]. The scaling factor of the adversarial loss is set to 0.03 to
ensure that it can exert a certain degree of influence on the model training process. When
the scaling factor is set to 0.003, its influence is quite slight. The results are shown in Table 5.
We can see that without using any weights for reflectivities, the reconstruction loss slightly



Remote Sens. 2023, 15, 1529 11 of 18

improves the CSI18 and twaCSI18 scores but yields much poorer performance than that of
the balanced loss functions in terms of other metrics, especially CSI35 and twaCSI35. As
we add an adversarial term to the reconstruction loss, these gaps are slightly narrowed.
Regarding the balanced loss functions, the balanced reconstruction loss applied in this
paper obtains the best scores for all evaluation metrics at the 35 dBZ threshold.

Table 5. Quantitative evaluation of different loss functions.

Loss Function
CSI↑ twaCSI↑ CC↑ RMSE↓

18 dBZ 35 dBZ 18 dBZ 35 dBZ 18 dBZ 35 dBZ 18 dBZ 35 dBZ

Lrec 0.6045 0.3302 0.5575 0.2636 0.4460 0.1114 11.26 13.86
Lrec + 0.03Lg

adv 0.5950 0.3392 0.5463 0.2794 0.4535 0.1433 11.08 13.37
LB−rec 0.5990 0.3742 0.5512 0.3201 0.4853 0.1760 9.72 11.34

LB−rec + 0.003Lg
adv 0.5978 0.3716 0.5520 0.3161 0.4760 0.1622 10.12 11.57

LB−rec + 0.03Lg
adv 0.5884 0.3639 0.5385 0.3058 0.4635 0.1529 10.76 12.37

The best and second-best scores are marked in bold and underlined, respectively; ↑ which means that higher is
better, which ↓means that lower is better.

Regarding its combination with an adversarial loss, the convective nowcasting per-
formance deteriorates with increasing scaling factors for the adversarial term. It can be
concluded that compared with the original reconstruction loss, the balanced loss can sig-
nificantly improve the convective nowcasting performance of a deep learning model. It
seems that adding an adversarial loss to the reconstruction loss can slightly improve the
prediction accuracy for convective echoes. However, for the balanced reconstruction loss,
adding an adversarial loss term is of no help for further increasing the prediction precision.

4.5. Representative Case Study

To qualitatively evaluate the performance of the proposed model, we select two
representative cases from the test set and visually examine the nowcasts produced by
different models. The images of two cases, including radar observations and nowcasts, are
presented in Figure 5 and Figure 6, respectively, and are displayed every 15 min to show
the evolutions of convective systems.

Figure 5 shows a representative case of local strong convective growth over northwest
France at a forecasting time of T = 7 August 2018, 11:55 UTC. In the input radar images,
it can be seen that an isolated convective cell is located in the west at time T - 30 min,
moving northeast together with other dispersed echoes, and the formation of a new strong
small-scale convective cell occurs in Region B at forecasting time T. For the ground-truth
observations in the next hour, the echoes continue to move in the northeast direction, and
during this period, the new convective cell gradually grows and appears to merge with
the older cell. Comparing the nowcasting results of each model with the ground truth,
one can observe that all models can capture the movements of most echoes. However,
the optical flow-based Rainymotion method simply advects the radar echoes. It fails to
forecast the subsequent growth and evolution of the newly formed convective cell because
it cannot completely model nonlinear processes. In contrast, all deep learning models
successfully forecast that the newly formed convective cell will grow at time T + 30 min but
underestimate its intensity. This under-forecasting problem, also called blurry prediction,
is common when utilizing deterministic deep learning models for radar echo extrapolation,
especially with longer lead times; this is mainly because a DNN model tends to average all
probable outcomes to a blurry prediction in a case in which it has difficulty dealing with
future uncertainty [45]. Nonetheless, the 30-min nowcast obtained by the 3D-UNet-LSTM
model is closer to the ground truth in terms of the horizontal extent of the convection than
those derived from other models. For the 60-min nowcasts, the forecasted intensities of the
old convective cell in the results of other deep learning models deviate considerably from
the ground truth, while the 3D-UNet-LSTM model and 3D-UNet model can maintain their
intensity values at relatively high levels (≥ 40 dBZ). It is noted that only the 3D-UNet-LSTM
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model forecasts a further growth trend in the size of the newly formed convective cell from
time T + 30 min to T + 60 min, and its 60-min nowcasting result also successfully depicts
the merging phenomenon of the two isolated convective echoes that occur in regions A and
B one hour later.

Figure 5. A representative case of local strong convective growth in the northwestern quarter of
France at a forecasting time of T = 7 August 2018, 11:55 UTC. Letters A–B represents different regions
where the proposed 3D-UNet-LSTM performs well.



Remote Sens. 2023, 15, 1529 13 of 18

Figure 6. A representative case of squall line evolution in the southeastern quarter of France at a
forecasting time of T = 13 August 2018, 05:00 UTC. Letter A represents the region where the proposed
3D-UNet-LSTM performs well.

Another representative case is shown in Figure 6, which describes the evolution of a
severe squall line that occurs in southeast France at a forecasting time of T = 13 August
2018, 05:00 UTC. It is clear from the radar observations that a squall line is moving eastward
while the convective area behind it gradually becomes larger, and it finally develops into a
bow echo at time T + 60 min. As in the first case, all models provide relatively accurate
moving directions for the quasi-linear convective system. The 30-min nowcasts obtained
from all models, especially UNet, achieve good agreement with the radar observations,
presumably because the system evolves relatively slowly during the first half hour after
forecasting time T. However, for the 60-min nowcasts, it is difficult for the optical flow-
based Rainymotion method to predict the subsequent convective evolution. Although
the deep learning models successfully forecast that the convective area will expand in the
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future, significant differences remain between their 60-min nowcast performances. For
example, one can observe that the three ConvRNN models give misleading information
that high-impact meteorological hazards (reflectivity ≥ 40 dBZ) tend to decrease. Although
UNet and 3D-UNet effectively preserve their intensities, neither they nor the ConvRNN
models can forecast the bow echo structure at time T + 60 min. It is noted that the pro-
posed 3D-UNet-LSTM yields a more trustable 60-min nowcast in Region A with a realistic
bow echo structure (the region with reflectivity ≥ 40 dBZ in Figure 6) and a reasonable
intensity distribution than those of other models. Bow echo is bowed toward the direction
of movement. There are general weaknesses in reflectivity behind the bow. Only the
nowcasting results of the proposed approach depict the squall line-to-bow echo transition
clearly, indicating that 3D-UNet-LSTM has a better spatiotemporal modeling ability for the
complex nonlinear processes of convective echoes.

5. Conclusions

In this paper, we propose a novel deep learning model called 3D-UNet-LSTM to
precisely extrapolate radar reflectivity images for convective nowcasting. This model
combines a well-known CNN named 3D-UNet and a newly designed Seq2Seq network
in an extractor-forecaster architecture. We first apply 3D-UNet as the extractor to extract
the comprehensive spatiotemporal representations of input radar images. Then, in the
forecaster, the extracted features are further leveraged by the Seq2Seq network to individ-
ually generate hidden states for different future timestamps with different ConvLSTM
layers. These hidden states are finally transformed into predicted radar images by a
convolutional layer.

We conduct comparative experimental studies on a test set. The quantitative evalua-
tion results show that 3D-UNet-LSTM outperforms conventional methods and state-of-the-
art deep learning models regarding the prediction of convective echoes, particularly with
long lead times. In addition, the evaluation of the model design demonstrates the effective-
ness of the 3D-UNet extractor and the newly designed forecaster, as well as their combina-
tion. It is noteworthy that UNet-based models, especially 3D-UNet, achieve comparable or
even superior performance to that of some ConvRNN-based models. We also verify the
effectiveness of the utilized balanced loss function on the model performance for precisely
forecasting strong echoes. Finally, representative case studies qualitatively illustrate that
the 3D-UNet-LSTM model can better model the nonlinear processes of the evolutions of
convective echoes and produce more reasonable and location-accurate nowcasts.

Although the quantitative and qualitative comparison and analysis verify the superi-
ority and effectiveness of 3D-UNet-LSTM for extrapolation-based convective nowcasting,
some limitations remain. We think these should be noted and discussed. First, like other
deep learning models, the proposed model has difficulty forecasting convective initiation,
which is still challenging for the meteorological community. One main reason is that the
input reflectivity images cannot provide a DNN with sufficient early signals and character-
istics of convective initiation. From there, adding relevant radar variables to supplement
input reflectivities may be a promising direction. Second, the loss function has much room
for improvement and introducing an additional classification network and an effective
classification loss seems to be a good solution. Thirdly, we are currently working on only
one benchmark dataset and will try to conduct studies using different benchmark data. In
future work, we will carry out research on these three aspects.

Author Contributions: Conceptualization, Q.L., N.S. and S.G.; methodology, N.S. and S.G.; valida-
tion, S.G. and N.S.; investigation, N.S.; writing—original draft preparation, S.G.; writing—review and
editing, N.S. and Y.P.; supervision, Q.L. All authors have read and agreed to the published version of
the manuscript.



Remote Sens. 2023, 15, 1529 15 of 18

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. U2242201, 42075139, 41305138), the China Postdoctoral Science Foundation (Grant No.
2017M621700), Hunan Province Natural Science Foundation (Grant No. 2021JC0009, 2021JJ30773)
and Fengyun Application Pioneering Project (FY-APP-2022.0605).

Data Availability Statement: Meteonet data [38] is available at https://meteonet.umr-cnrm.fr/
(accessed on 6 April 2022).

Acknowledgments: The authors would like to thank the anonymous reviewers for providing pro-
fessional and insightful comments about this manuscript. Finally, we thank the contributors of the
Meteonet dataset for collecting, processing, and sharing their data.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Existing studies that have applied ConvRNNs or CNNs to conduct extrapolation-
based convective nowcasting have included some important research directions, such as
developing effective networks and designing loss functions. Two key issues need to be
considered when designing a ConvRNN-based model: the basic ConvRNN unit and the
Seq2Seq structure. In this appendix, we briefly introduce the typical ConvLSTM unit and
the common Seq2Seq structures related to our method, as well as a typical adversarial loss
function that is evaluated in experiments.

Appendix A.1. ConvLSTM Unit

The ConvLSTM unit is the basic component of a ConvLSTM model [17]. It receives
the current input Xt, previous hidden state Ht−1, and temporal cell state Ct−1 to generate
a new hidden state Ht through a gate-controlled mechanism. This process can be
formulated as

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + bi) (A1)

ft = σ
(

Wx f ∗ Xt + Wh f ∗ Ht−1 + b f

)
(A2)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (A3)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + bo) (A4)

Ht = ot ◦ tanh(Ct) (A5)

where W and b represent the trainable 2D convolution kernel and bias, respectively. σ is the
sigmoid activation function. ∗ and ◦ are the 2D convolution operation and the Hadamard
product, respectively. The information flow is controlled by an input gate it, a forget gate ft
and an output gate ot.

Appendix A.2. Structure

Two Seq2Seq structures were commonly used in prior works on RNN-based radar echo
extrapolation, including the “same-side” structure (Figure A1a) [19,21], in which the inputs
and predictions are on the same side, and the “opposite-side” structure (Figure A1b) [22,26],
in which the predictions are on the opposite side of the inputs. As we can see from
Figure A1, both structures can conduct direct multistep prediction by leveraging the shared
parameters to generate hidden states over all future timestamps. The “same-side” structure
is more suitable for input–output transformation since the spatial and channel sizes of
the inputs and predictions are allowed to be different, while the “opposite-side” structure
requires them to be consistent and can reduce the difficulty of training.

https://meteonet.umr-cnrm.fr/
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Figure A1. Two commonly used Seq2Seq structures for RNN-based radar echo extrapolation (choos-
ing ConvLSTM as the basic unit). (a) The “same-side” structure; (b) The “opposite-side” structure.

Appendix A.3. Adversial Loss Function

A GAN [46] is a kind of architecture that is mostly used for image synthesis. A regular
GAN-based architecture consists of a generator and a discriminator. The generator outputs
images, and the discriminator is trained to distinguish whether its input is produced by
the generator or derived from the training dataset (binary classification). At the same time,
when training the generator with an adversarial loss function to fool the discriminator, the
quality of its output images is improved.

In recent years, some studies have treated the extrapolation model as the generator and
trained it in a GAN-based architecture with suitably designed adversarial loss functions
to improve the textures of predicted images [19,24,44,47,48]. In that context, a simple yet
effective adversarial loss function [48] can be defined as:

Lg
adv = Ex[1− D({x, G(x)})] (A6)

Ld
adv = Ex,y[1− D({x, y})] + Ex[D({x, G(x)})] (A7)

where Lg
adv and Ld

adv denote the loss functions of the generator G and discriminator D,
respectively. The generator G takes radar images x as input and generates predicted images
G(x), intended to have the same echo distribution as y, the training (ground-truth) data.
D(·) is the output of the discriminator D. {} represents the concatenation operation.
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