
Citation: Lemmouchi, F.; Cuesta, J.;

Lachatre, M.; Brajard, J.; Coman, A.;

Beekmann, M.; Derognat, C. Machine

Learning-Based Improvement of

Aerosol Optical Depth from

CHIMERE Simulations Using MODIS

Satellite Observations. Remote Sens.

2023, 15, 1510. https://doi.org/

10.3390/rs15061510

Academic Editor: Stephan Havemann

Received: 31 January 2023

Revised: 1 March 2023

Accepted: 6 March 2023

Published: 9 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Machine Learning-Based Improvement of Aerosol Optical
Depth from CHIMERE Simulations Using MODIS
Satellite Observations
Farouk Lemmouchi 1,* , Juan Cuesta 1 , Mathieu Lachatre 2, Julien Brajard 3 , Adriana Coman 1,
Matthias Beekmann 4 and Claude Derognat 2

1 Univ. Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
2 ARIA Technologies, F-92100 Boulogne-Billancourt, France
3 Nansen Environmental and Remote Sensing Center (NERSC), N-5007 Bergen, Norway
4 Université de Paris Cité and Univ. Paris Est Creteil, CNRS, LISA, F-75013 Paris, France
* Correspondence: farouk.lemmouchi@lisa.ipsl.fr

Abstract: We present a supervised machine learning (ML) approach to improve the accuracy of the
regional horizontal distribution of the aerosol optical depth (AOD) simulated by the CHIMERE
chemistry transport model over North Africa and the Arabian Peninsula using Moderate Resolution
Imaging Spectroradiometer (MODIS) AOD satellite observations. Our method produces daily AOD
maps with enhanced precision and full spatial domain coverage, which is particularly relevant for
regions with a high aerosol abundance, such as the Sahara Desert, where there is a dramatic lack of
ground-based measurements for validating chemistry transport simulations. We use satellite observa-
tions and some geophysical variables to train four popular regression models, namely multiple linear
regression (MLR), random forests (RF), gradient boosting (XGB), and artificial neural networks (NN).
We evaluate their performances against satellite and independent ground-based AOD observations.
The results indicate that all models perform similarly, with RF exhibiting fewer spatial artifacts. While
the regression slightly overcorrects extreme AODs, it remarkably reduces biases and absolute errors
and significantly improves linear correlations with respect to the independent observations. We
analyze a case study to illustrate the importance of the geophysical input variables and demonstrate
the regional significance of some of them.

Keywords: mineral dust; North African dust; Saharan dust; Bodélé Depression; bias correction;
machine learning; aerosol optical depth; chemistry transport model; aerosols; particulate matter

1. Introduction

Particulate matter suspended in the air, known as aerosols, has a major impact on the
environment. The scattering and absorption of radiation by aerosols (e.g., desert dust and
black carbon) significantly alters the Earth’s radiative balance and consequently affects the
climate system [1–4]. Aerosols are also the most important air pollutants and the greatest
environmental threat to human health, causing more than 3 million premature deaths
worldwide each year [5]. Therefore, it is of a great importance to estimate and predict the
spatial distribution and variability of aerosols and their interaction with radiation. The
latter is described by their optical properties, such as the aerosol optical depth (AOD).

Satellite measurements, such as those derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) spaceborne sensor [6], play a fundamental role in observing
the spatial distribution of aerosols at the global scale. These remote sensing observations
are mainly derived in terms of the AOD, which describes the total column extinction that
is integrated over the whole atmosphere. They therefore provide maps of the horizontal
distribution of aerosol abundance. However, they are only available for cloud-free condi-
tions and are limited by the overpass time of the (polar orbiting) satellite. On the other
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hand, chemistry transport models (CTMs), such as CHIMERE [7], numerically simulate the
hourly 3D evolution of aerosol plumes in the atmosphere, independent of the cloudiness.
The accuracy of the CTM simulations depends on the precision of the inputs, e.g., the
emissions of atmospheric constituents, wind, vertical velocity fields, and on the assumed
aerosol properties (e.g., microphysical and optical properties). Due to assumptions and
inaccuracies in these datasets, simulations of the aerosol spatial distribution are prone to
bias compared to observations [8,9]. These errors are related to uncertainties in the physical
parameterizations of the model, input data, and numerical approximations [10]. Model-
ing errors are more pronounced in regions lacking ground-based stations to validate and
constrain the simulations, which is the case for the African continent and the Middle East.

Most of the techniques used to constrain chemistry transport models use ground-based
in situ measurements and, more recently, satellite data such as MODIS AOD, e.g., for the
North African mineral dust emissions inversion [11,12] and for the Copernicus Atmosphere
Monitoring Service (CAMS) [13]. They are mainly based on data assimilation techniques such
as variational or filtering approaches [14], which are computationally expensive. On the other
hand, fast and computationally efficient approaches use machine learning (ML) techniques to
correct the modeling systematic biases. These methods are increasingly being used due to the
progress in the development of ML hardware and technology. ML bias correction techniques
are mainly used for chemistry transport model simulations of trace gases, e.g., [15], or
used in situ surface data for aerosols, e.g., [16,17], or for post-processing weather forecasts,
e.g., [18,19]. ML is used in the context of the monthly mean AOD estimation as well [20].

In this work, we develop a new ML-based bias correction for post-processing the
CHIMERE-simulated AOD maps at 550 nm wavelength for 13:00 LT (local time). The
method improves the regional simulated AOD at the scale and the resolution of the simula-
tion (0.45◦ × 0.45◦) and for all sky conditions. The correction relies on the good accuracy of
AOD satellite measurements from MODIS taken at the same wavelength and approximately
the same local time. Observations are used only in the training phase, and the method
provides full-coverage and daily maps of the corrected AODs over the entire CHIMERE
simulation domain. The method is developed for the North African region using data
from the year 2021, which we describe in detail in Section 2. In Section 3, we discuss the
performance of four different ML models: multiple linear regression, neural networks,
random forest, and gradient boost model against independent, ground-based, and satellite
observations. A test case is presented to assess the effectiveness of the correction and
discuss the relative and regional influence of some geophysical inputs on the inferred AOD.

2. Materials and Methods

The principle of the AOD bias correction method relies on the use of the AOD and
other atmospheric composition variables simulated by CHIMERE, in addition to certain
meteorological fields. These constitute an input for a trained ML regression model. The
latter derives a posteriori bias corrected AODs that are consistent with the AOD observa-
tions that were used for training the ML model beforehand, which are MODIS AODs. This
inference, also called prediction in other contexts, is performed on a pixel-by-pixel basis for
all ground pixels, i.e., no surrounding regional information is used for the AOD correction.
A schematic description of this process is shown in Figure 1. We assume that the AOD is
dependent on certain inputs, and we derive an approximate relationship that maps the
inputs to the correct AOD using statistical modeling. This type of modeling is data-driven,
meaning that it requires a large database of known solutions encompassing a broad range
of possible scenarios.

While the method is applicable for any region, we choose North Africa and the
Arabian Peninsula for this study because desert dust and anthropogenic emissions in this
area are highly uncertain. Therefore, chemistry transport simulations over this region
are particularly imprecise and require correction. In addition, this region provides an
interesting AOD training dataset, since clear sky conditions allow greater availability of
satellite data over large areas with a wide range of AOD values.
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Figure 1. Flowchart showing the pixel-by-pixel approach to bias correcting CHIMERE-derived AODs.

In the following subsections, we describe the dataset used for the training
(Sections 2.1.1 and 2.1.2), the data preparation (Section 2.1.3), and then the ML imple-
mentation for correcting AOD regional biases (Section 2.2).

2.1. Inputs
2.1.1. MODIS Satellite Observations

The satellite observations used for training the ML model are derived from the MODIS
spaceborne multi-wavelength radiometer onboard the AQUA platform with an overpass
time around 13:30 LT. This satellite is in a near-polar sun-synchronous low Earth orbit,
hovering at an altitude of 705 km and within the A-Train constellation. MODIS observes the
Earth’s backscattered radiation in 36 spectral bands with a horizontal resolution ranging
from 250 to 1000 m and a nadir swath 2330 km wide, covering most of the Earth’s surface on a
daily basis [21]. The MODIS AOD product used in this work is the collection 6.1 MYD04_L2
with a resolution of 10 km [22,23]. This product is a combination of AOD products derived
using the Dark Target [24] and Deep Blue [25] algorithms. The Dark Target algorithm
is suitable over ocean and dark land (e.g., vegetation), while the Deep Blue algorithm
covers the entire land area, including both dark and bright surfaces. This MODIS dataset is
interpolated at the horizontal resolution of the CHIMERE model (0.45◦ × 0.45◦) using the
mean value method. All MODIS AODs mentioned hereafter refer to the observations from
the AQUA platform at the wavelength of 550 nm, unless otherwise noted.

The quality of the reference dataset for supervision is critical for accurate ML modeling.
Therefore, we filter out low-quality observations by keeping only the retrievals with the
highest quality assurance flag. We verify the quality of the MODIS AODs used here
by comparing them (Figure 2a) with daily averages of direct measurements of the AOD
from ground-based sun photometers of the AErosol RObotic NETwork [26]. This network
enforces standardization of instrumentation, calibration, and processing to ensure the best
quality. The comparison (Figure 2a) shows that the AOD observations from MODIS for
the year 2021 correlate well with the measurements from the eight AERONET stations (the
location of each station in Figure 3). The Pearson correlation coefficient (r) is 0.88 and the
root mean squared error (RMSE) is quite low (0.13). The AERONET data being used for the
comparison are of version 3, level 1.5. We convert the AOD from 500 nm to 550 nm using
the 440–675 nm Angstrom exponent provided by the same station.
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with the gray shaded areas representing the ± 20% interval of its slope.
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2.1.2. CHIMERE Simulations

CHIMERE is an Eulerian CTM that simulates the formation, deposition, and transport
of aerosols and other atmospheric species [27]. It is capable of simulating phenomena
ranging from the local scale, such as urban heat islands, to the hemispherical scale. The
principle is to use the available information of the Earth’s atmospheric composition, and its
interactions with the surface, including source emissions, and then simulate the evolution of
the atmospheric species, taking into account the internal forcing, e.g., wind, and the external
forcing, such as the incoming shortwave radiation. The evolution of the atmospheric
constituents of the plumes is calculated by numerically solving the transport equation and
using a chemical interaction scheme. CHIMERE is used as a tool to forecast and analyze
the daily air quality in terms of particulate and gaseous pollution [28]. It is widely used for
aerosol, and aerosol precursor research, e.g., [29–33].

The CHIMERE simulations used as input for the ML model are derived for the
12 months of the year 2021 using CHIMERE-2017 version [34] over the region of North Africa
and the Arabian Peninsula (10 to 38◦N 19◦W to 53◦E). The horizontal resolution is
0.45◦ × 0.45◦ on a regular grid, while the vertical resolution consists of 20 layers of in-
creasing thickness, from about 30 m at the surface level to 675 m (upper limit about 500 hPa).
The aerosols are distributed into 10 size classes (also called bins), ranging from 0.05 µm
to 40 µm. The AOD is calculated for all the aerosol species considered in the simulation,
assuming external mixing. This is calculated with the aerosols concentrations and us-
ing online Fast-JX (version 7.0b) photolysis calculations [35], which provide the optical
properties [36]. The calculation is performed at five wavelengths (200, 300, 400, 600, and
999 nm). In this work, we use the 400 nm AOD interpolated to 550 nm using the 400–600 nm
Angstrom exponent.

The simulation boundary and initial conditions are taken from the Laboratoire
de Météorologie Dynamique general circulation model coupled with the interaction with
chemistry and aerosols (LMDz-INCA) [37]. The CHIMERE simulation is run in offline mode
using National Oceanic and Atmospheric Administration (NOAA) meteorological final
analysis data and the Weather Research and Forecasting Model (WRF), version 4.1.1 [38].
MELCHIOR2 (Modèle Lagrangien de Chimie de l’Ozone à l’échelle Régionale) [39] is
used as chemistry interaction scheme. An emission inventory derived for 2015 from the
Emissions Database for Global Atmospheric Research EDGARv5.0 [40] is used for anthro-
pogenic gaseous and particulate matter emissions. The dust emission scheme implemented
in CHIMERE requires the knowledge of soil properties and wind conditions. This module
allows for the calculation of dust aerosol emissions and their size distribution, by model-
ing the processes of sandblasting and saltation [41,42]. It takes into account the uplift of
both silty and sandy soils, which are emitted from the northern Algerian region and the
Sahara, respectively [43]. It should be noted that non-negligible uncertainties remain in the
modeling of Saharan dust emission and transport [44].
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An evaluation of the accuracy of the AOD simulated by CHIMERE with respect to
AERONET reference measurements is shown in Figure 2b. For high aerosol abundance
cases, the CHIMERE AOD is clearly overestimated with respect to the AOD measured
by the AERONET sun photometers. The mean bias (MB) is positive and equal to 0.16,
but negative biases are observed for background AODs. The correlation coefficient is
significantly lower (0.63) than its value for the comparison of MODIS with AERONET
AOD (0.88). The RMSE is much larger, being 0.46 for CHIMERE AOD against 0.13 for
MODIS. The same behavior is observed for the mean absolute error (MAE). Other chemistry
transport models have also shown biases in the AOD simulated over North Africa, with
comparable overestimation, e.g., [45].

The map of the annual median difference between CHIMERE and MODIS AOD
(Figure 3) shows that the major overestimation is located over most of the Sahara Desert.
The positive bias of the CHIMERE AOD is most pronounced over a region northeast of
the Lake Tchad named the Bodélé Depression, where a bias greater than unity is found
for half of the days of the year. This region represents an important natural emission
source of mineral dust (Supplementary data, Figure S1b), with a frequency of about
100 days per year [46] and an estimated abundance of 40 million tons of dust per year.
The large positive biases of the CHIMERE simulation’s AOD may be related to the uncer-
tainties in the inputs of the dust emission model, e.g., near-surface wind speed and friction
velocity, but may also be due to the dust refractive index and size distribution used for the
AOD calculation.

Otherwise, the AOD over the Arabian Peninsula and northern Egypt is slightly un-
derestimated by CHIMERE, as compared to MODIS. We see a low correlation (0.53) and
a high standard deviation between the two estimates, leading to an RMSE of 0.62 and an
MAE of 0.35.

2.1.3. Dataset Preparation

We chose the days used for training following the common convention in the field of
machine learning, i.e., dividing the whole 12 months of 2021 into two parts: 66% is used
in the training and validation phase, and the remaining 33% is reserved for testing the
performance of the models.

Adequate size and diversity of the training data are important for a good generaliza-
tion of an ML model. In order to avoid the bias caused by seasonal variability, we take
two-thirds of each month in 2021 to build the models. Specifically, we use consecutive
days from the 1st to the 20th of each month for the training and validation stages, making
240 days from 2021. We call this dataset DTrain and it consists of about 1.4 million cloud-free
ground pixels. According to several tests performed during the design of the ML models,
this training data sampling strategy allows for good performance at any season and at
diverse pollution levels, from low background pollution to intense dust outbreaks. Even
though DTrain is made of sequences of shuffled pixels of consecutive images, the correlation
between a training subset and a validation subset is limited due to the decorrelation time
scale of the atmospheric processes. This is a key point to ensure that the test dataset is
independent and that the computed scores are robust to evaluate the generalization ability
of the ML model.

The period from the 21st to the end of each month are reserved to test the ML models,
which amounts to 122 days not used in the training process. We call this dataset DTest and it
consists of about 0.7 million ground pixels of the CHIMERE simulation. We had to exclude
the days 23, 24, and 25 of September 2021 due to the unavailability of MODIS observations.

Besides the CHIMERE-simulated AOD, which we will refer to as the “RAW AOD”,
additional atmospheric composition variables from CHIMERE are used as inputs of the
ML models. We consider the following ones: vertical concentration profiles of desert dust,
sea salt, organic carbon particles, water droplets, ammonium particles (NH4

+), sulfate par-
ticles (SO4

2−), nitrate particles (NO3
−), particulate matter (PM10 and PM2.5 with diameters

smaller than, respectively, 10 and 2.5 µm), carbon monoxide (CO), ammonia (NH3), toluene,
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ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), nitrous acid (HNO2), specific
humidity, hydroperoxide (ROOH), non-methane hydrocarbons (NMHC), hydroxyl rad-
ical (OH), and the sum of nitrogen monoxide and dioxide (NOx) and reactive nitrogen
compounds (NOy). For these vertical profiles, we consider 4 simulation levels out of the
20 available, corresponding to approximately 967, 920, 797, and 560 hPa pressure levels.
The other CHIMERE outputs used as inputs for the ML are related to surface properties
and NOAA reanalysis meteorological variables: surface albedo, shortwave radiation flux,
soil moisture, surface relative humidity, boundary layer height, surface latent heat flux,
surface sensible heat flux, pressure profile, and relative humidity profile. We do not include
wind fields because they do not improve the AOD prediction residuals. All CHIMERE and
meteorological variables are taken at 13:00 LT, which is the closest to the AQUA platform
spacecraft overpass time. Therefore, DTrain and DTest have a total of 96 features (images).
The terms variable and feature could be used interchangeably, but to be specific, the first
one is used to denote any measurable geophysical quantity, while the second one can be
used to refer to a variable or a subset of a variable, such as the values of a variable at a
particular altitude.

In general, the ML input variables are expected to be directly or indirectly related
to the AOD or to aerosol concentrations (see Section 3.1 for related discussions). Select-
ing only a subset of the available variables accelerates the training and inference time,
mitigates the overfitting, and reduces the curse of dimensionality [47]. The selection of
the input variables for the ML models was based on numerous empirical tests. After
considering all the variables and performing several modeling trials, we excluded vari-
ables that showed a tendency to lower performance of the modeling (lower correlation
with reference data and higher modeling residuals) and kept those that gave better per-
formance (higher correlation and lower modeling residuals). Knowing that exhaustive
trials were not possible, these tests were conducted using the simplest and most straight-
forward ML model (i.e., the multiple linear regression, described in Section 2.2.1) to keep
the computation time relatively short. We kept correlated variables such as PM10 and
PM2.5 (see Supplementary Materials, Figure S2) when they improve the performance of
the AOD correction.

Although most features of DTrain as well as DTest follow a log-normal distribution
(e.g., PMs), using the normal logarithm of these variables as inputs to the ML models results
in underestimations of the predicted AODs. Our experiments show that preprocessing
techniques such as standardization/rescaling, and/or outlier removal do not significantly
improve the accuracy of the ML approach either. Therefore, we keep the input data, without
any preprocessing transformation. We use the same input variables for all ML models
developed in this study (see Section 2.2), to ensure consistency and comparability during
performance assessment in Section 3.

2.2. Bias Correction ML Models Construction

The fitting problem we are trying to solve is overdetermined and the high dimensional
input variables are not independent. We implement several machine learning approaches,
tree based, a neural network model, and the more classical linear regression model. In
the following sections, we describe how the four models are built (Sections 2.2.1–2.2.4)
using the Python programming language version 3.8 [48] and the web-based interactive
computing environment Jupyter notebook [49]. While training is partially performed on
a Quadro P620 GPU, inference runs only on a single thread of a CPU (i9 2.30 GHz). The
time required for training and inference of the ML models is an important indicator of the
usability of the developed method. The training phases are relatively short; in fact, the
multiple linear regression takes a few seconds, and the training of the other ML models
does not exceed one hour each (not counting the hyperparameter search step, which is
much longer). Regarding the inference time, all approaches perform the daily correction
of the AOD in less than half a second (Table 1), which allows for a potential use of these
models in real-time applications.
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Table 1. Average performance of each AOD bias corrector and raw CHIMERE on DTest with respect
to MODIS AOD. t: daily mean inference time cost; r: Pearson correlation coefficient; RMSE: root
mean squared error; MAE: mean absolute error; Skp: Pearson’s coefficient of skewness; and µ: mean;
percentages show the percentiles of the error. The metrics are calculated for the 737,129 pixels
making DTest.

t(s) r RMSE MAE Skp µ Min 25% 50% 75% Max

RAW N/A 0.56 0.65 0.37 2.55 0.24 −3.57 −0.09 0.03 0.39 6.95

MLR 0.19 0.62 0.21 0.13 −3.9 0 −4.15 −0.06 0.03 0.1 2.49

NN 0.35 0.69 0.19 0.12 −3.18 0 −4.04 −0.06 0.02 0.09 5.09

RF 0.22 0.71 0.19 0.12 −3.45 0.01 −4.21 −0.05 0.03 0.1 2

XGB 0.3 0.71 0.19 0.12 −2.93 0.01 −3.96 −0.06 0.02 0.09 2.47

2.2.1. Multiple Linear Regression (MLR)

Multiple linear regression modeling is widely used in several fields because of its
simplicity and its ease of use and interpretation. While it is more appropriate when the
variables are independent, we tested it here to serve as a performance baseline and compare
it to the three other more sophisticated ML models. Training is performed on half of
randomly sampled DTrain data to keep the comparison fair with respect to the other ML
models, which also use sampled data during a tuning phase.

If F is the function that maps the input features X to the output denoted by y, our
goal is to find a function G that approximates F using a set of known solutions {Xi,yi}i

N.
Typically, the function is learned successively by minimizing the expected value of a loss
function L(y, G(X)). The residuals are assumed to be normally distributed with constant
variance. Given these assumptions and the fact that F is linear, we approximate it as the
following Equation (1):

y = β0 + β1X1 + β2X2 + . . . + βnXn + ε (1)

where ε represents the error associated with the approximation, β0 is the intercept, βi is the
regression coefficient corresponding to the feature Xi, where i is the feature order, and n the
total number of the input features, which is 96 in our case.

The cost function L (Equations (2) and (3)) is below, which represents the residuals
from the model and the observation is solved using the least squares method.

L =
N

∑
j=1

(
yj − y′ j

)2
(2)

=
N

∑
j=1

(
yj − β0 −

n

∑
i=1
βiXi,j

)2

(3)

where N is the number of the observations available, and y′i is the prediction of the multiple
linear regression model for the feature of order i. For this work, we use its implementation
in the sklearn v1.0.2 library [50].

2.2.2. Feed-Forward Neural Networks (NN)

Neural network regression is a modeling technique that is increasingly being used
in many fields, thanks to the advancement of big data and parallelized hardware. The
principle is to use perceptrons that are stacked in layers to approximate a non-linear
relationship [51], where the weight of each perceptron is learned from a reference dataset
by gradient backpropagation [47,52,53]. The technique can model non-linear relationships
by using some activation functions [54]. Optimizing multi-dimensional functions with
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neural networks is difficult because of the proliferation of saddle points [55], but stochastic
gradient descent algorithms are good at finding the global minimum [56–58].

Training of the NN AOD bias corrector is performed using the Tensorflow library
v2.5.0 [59]. First, we search for a suitable network architecture for the problem by running
100 trials of feed-forward neural networks with dense layers. The architectures are sampled
from an arbitrary reasonable hyperparameter search space (Supplementary Materials, Table S1).
We use the random search tool of the Keras-tuner 1.0.3 library [60] to find the best network.
All the tested networks use batch-normalized input feed [61] and a rectified linear unit [62]
as the activation function. The use of a dropout layer [63,64] degrades the accuracy so
we do not use it here. The weights of the network are optimized using the Adam op-
timizer [65], which is a variant of stochastic gradient descent, with respect to the mean
squared error. The training is performed for 100 epochs, we set early stopping in the
conditions when the validation loss either exceeds 0.1 or stabilizes at 0.01. We notice that
increasing in the number of neurons (perceptrons) does not improve the accuracy of the
estimator. Knowing that the architecture search is not exhaustive, we manage to obtain the
same performance as the best randomly generated NN model using a bottleneck architec-
ture, with less complexity and fewer parameters (Supplementary Materials, Table S2). The
network has 3943 trainable parameters.

2.2.3. Random Forest (RF)

A random forest regressor [66] is an ensemble model that is widely used in both
classification and regression problems. Each member of the ensemble, called a tree [67], is
constructed using different randomized parameters. The final prediction is the average of
the predictions of all the trees (forest).

The model is tuned for three key hyperparameters: number of estimators (trees),
minimum samples in a leaf, and maximum number of features. The tuning is performed
using the brute-force search method with two cross-fold validations on 10,000 randomly
selected ground pixel data from DTrain. Using only a subset of the available training dataset
speeds up the search process and saves memory. We find out that the best performing RF
candidate has a maximum of 20 features, a minimum of 4 samples in leaf, and 100 estimators.
We then train the best model using half of DTrain. The training was performed using scikit-
learn v1.0.2.

2.2.4. Gradient Boosting (XGB)

A gradient boosting regressor [68,69] is also a tree-based modeling technique, but it
constructs trees successively in such a way that each tree minimizes the residuals of the
preceding trees. The final estimate is the sum of predictions of all the trees.

We use the Tree-based Pipeline Optimization Tool (TPOT) library v0.11.7. It is a genetic
programming-based automated ML system that optimizes a set of feature preprocessors and
ML models to build a better data processing pipeline for supervised tasks [70]. We let TPOT
determine the best pipeline for correcting the CHIMERE AOD using 10,000 randomly
selected data from DTrain. The number of generations is set empirically to 20 and the
population size is set to 20, because further increasing these numbers slows down the
search process. The best pipeline suggested by TPOT added the zeros and non-zero counts
to the input features, and uses the XGBoost model (XGB) [69], which is a variation of
the gradient boost model that uses L1 and L2 regularization. The XGB post-processor
consists of 100 estimators, with a maximum depth of 9 and a minimum child weight of
17 (see the documentation [71] for more details on the meaning of these hyperparameters).
The best pipeline proposed by TPOT is retrained using half of the DTrain dataset and is
randomly sampled.

3. Results and Discussion

In this section, we analyze the performance of the trained AOD bias correctors on
DTest against the MODIS observations. First, we detail a case study (a in Section 3.1) where



Remote Sens. 2023, 15, 1510 9 of 22

we investigate the influence of the input features on the predicted AOD. We discuss the
statistical performance of the ML models in b in Section 3.1, then present a use case of
the AOD correction at a time of the day that is different from the one used for training
the ML models (c in Section 3.1). Finally, we present a comparison against ground-based
AERONET measurements (Section 3.2).

3.1. Comparison against Independent MODIS Observations

a. Case study of 30 September 2021

The bias-corrected AODs predicted with the four ML models (Figure 4c–f) are com-
pared with the MODIS AOD measurements (Figure 4a) and with the CHIMERE raw
(uncorrected) AOD simulations (Figure 4b) for the case study of 30 September 2021. This
event is characterized by a large desert dust outbreak originating from the southern border
of the Sahara (as typically observed during summertime in this region, e.g., [72]), and
anthropogenic pollution fine particles located over the southeastern part of the Arabian
Peninsula. This is consistently shown by CHIMERE simulation and also by the aerosol
Ångström exponent values derived from MODIS AQUA Deep Blue (maps available in the
Worldview portal [73]). As expected, the latter are close to zero over the Sahara, which is
typical for coarse particles such as desert dust, but they are significantly higher (about 1.8)
over the AOD patches over the Arabian Peninsula, thus suggesting the presence of fine
particles as those of anthropogenic origin.

Compared to the satellite data, the corrected AOD maps predicted by the ML models
provide a clear added value with their full geographic coverage. They are not affected
by the cloud cover or the satellite swath size, while offering better accuracy than the raw
CHIMERE simulations. The ML models successfully corrected the AOD by reducing the
raw CHIMERE values in the high desert dust load regions such as the Southern, Central,
and Western Sahara. Additionally, they increase the low AOD values over the northern
and southern Arabian Peninsula that are underestimated by CHIMERE. This significantly
improves the agreement with respect to MODIS measurements. Despite the independent
pixel-by-pixel processing of the ML approaches, the horizontal structures of the corrected
AOD features are continuous and homogeneous in most of the regions. This is true for most
of the dates of the DTest dates. There are exceptions, such as some horizontal discontinuities
seen near the southwest coast of North Africa on 30 September 2021 from the NN and
MLR predictions (Figure 4c,d). According to MODIS observations, these discontinuities
in the AOD do not reflect the natural concentration gradient found in these dust plumes.
In the case of MLR (Figure 4c), the issue could be associated with the use of negative
regression coefficients. For the NN model, the problem might be explained by the fact that
multi-layer perceptrons may not extrapolate well the non-linear relationships outside the
training set [74]. In fact, its low performance has also been observed in another model’s
inter-comparison work [20]. The XGB and RF bias correctors do not show such artifacts
(Figure 4e,f). However, we note that XGB is slightly noisier, suggesting an overfit to the
MODIS AOD pixel noise. In fact, Breiman suggests that using a random selection of features
to split each node in tree-based models yields error rates that are comparable to adaptive
boosting (Adaboost) but more robust to noise [66].
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available at the link provided in the data availability clause.

Additional analyses of the performance of the ML approaches are provided by feature
importance values (Figures 5–7) computed using the Shapley Additive exPlanations (SHAP)
framework [75]. Shapley values are commonly used in cooperative game theory to fairly
determine each player’s contribution to the total payoff, taking into account all the possible
coalitions of players. In our study, they allow us to the investigate the source of the spatial
artifacts and help us understand which input features are the most important and how they
spatially affect the prediction of the ML models. These values are computed considering all
the possible combinations of the input features while estimating the marginal contribution
(either positive or negative) of each one of them to the model output. Input features of 3D
variable fields are vertically summed up to obtain the contribution of the actual geophysical
variable, rather than a unique feature (for each individual altitude). All of these calculations
are quite computationally costly. Therefore, the following variable importance analysis is
limited to the test case of 30 September 2021.

Figure 5 shows the horizontally averaged absolute contribution of each input variable
for the four ML models in terms of Shapley values. It shows that a larger number of
variables contribute relatively evenly to the prediction of the AOD values for the RF
and XGB models than those of MLR and NN. For the latter, some variables, such as the
abundance of ammonium particles and OH radicals, show almost zero importance. For
all ML models, as expected, the raw CHIMERE AOD is important for the predictions, and
in the case of RF, this is also true for other variables that also represent the abundance
of aerosols, such as particle mass concentrations in terms of PM2.5, PM10, and total dust
concentration. Another important variable for all the ML models is the specific humidity,
especially for the MLR model, where three humidity-related variables share half of the
total prediction importance. As noted in the following paragraph, the ML models appear
to use humidity to numerically adjust the background values of AODs in different ways
over either dry or humid regions. In the case of RF and XGB, moderate importance is
also seen for meteorological variables (such as atmospheric pressure, shortwave radiation,
sensible heat flux, and water droplet precipitation) and also for atmospheric species related
to anthropogenic activities and chemically active species, such as nitrate, sulfate particles,
and OH. The latter suggests a potential ability of the two ML models mentioned above
to account for contrasting meteorological conditions on aerosol evolution (e.g., clear skies
during high-pressure situations or the influence of low-pressure systems with increasing
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cloudiness) and the influence of anthropogenic emissions on particle abundances (the
geographical influence of the latter is discussed in the following paragraphs).
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The horizontal distribution of the Shapley values is very valuable for explaining the
role of each input feature in correcting the AOD (see Figures 6 and 7 for, respectively, RF
and MLR models). Shapely maps for the CHIMERE raw AODs show that this feature is
used to modulate the AOD in the regions affected by the desert dust outbreak in the central
Sahara (see the very intense reddish values in Figure 6a). A similar use is expected for the
PM10 variable, but with some local differences (such as over northern part of the Sahara)
and a more moderate intensity (Figure 6c). The map of Shapley values for the specific
humidity shows a quite different structure, with significant and negative values north of
20◦N. Over northeast Africa, this region is dry and shows rather low values of desert dust
AODs, which are underestimated by CHIMERE (see Figure 4a,b). We suggest that the ML
models may use these co-located conditions as a corrector for these background values of
desert dust AOD (see the correction of this bias in Figure 4c–f).

Another very interesting aspect is highlighted by the Shapley values for nitrate parti-
cles (Figure 6d). We notice that their most important influence is located over the Arabian
Peninsula, collocated with the anthropogenic particle event prevailing over this region.
Interestingly, we clearly see that the ML models (especially RF and XGB, Figure 4c–f) can
adequately correct this negative bias of the raw simulation’s AOD, which is related to parti-
cles of a different origin (anthropogenic activity) as over North Africa, and appropriately
use the nitrate particle concentration for its prediction.

Furthermore, the artifacts of sharp variations of the AOD with very low values over
southwestern part of the Sahara for the MLR and NN model predictions (Figure 4c,d)
can also be explained by the SHAP analysis (Figure 7). It shows that two variables are
responsible for this artifact, the hydroperoxide radical and the non-methane hydrocarbon
concentrations (Figure 7 for MLR). The negative contribution of these two variables in the
region around 10◦W, 15◦N dominates the overall prediction of the AOD, leading to the
abnormally low values (Figure 4c,d). This is not observed for RF and XGB.

b. Statistical analysis on the testing dataset

For the entire DTest dataset in 2021, we compare the estimates of the raw AOD
CHIMERE simulation and the inferences from the ML models with respect to the MODIS
observations that are not used in the training phase (Table 1). The table shows that the
ML models successfully correct the raw CHIMERE AODs in a statistically consistent and
stable manner throughout the year 2021. They all show a comparable improvement in
AOD correction, with both larger correlation coefficients r with MODIS AOD (r between
0.62 and 0.71) and smaller RMSE (from 0.19 to 0.21) and MAE. The improvement in AOD
estimation is clearly evident when comparing to the raw CHIMERE AODs performance
(r value of 0.56 and RMSE of 0.65). We note that the XGB and RF are the best-performing
bias correctors in terms of the correlation coefficient (0.71) and RMSE (0.19). The NN model
follows with the same RMSE but a slightly lower correlation coefficient (0.69). Finally, the
MLR corrector offers a slightly lower correlation coefficient (0.62) and a higher RMSE (0.21).

The AOD correction biases (with respect to MODIS observations) show frequency
histograms that are bell-shaped and centered around a small positive value. This suggests
a small overall positive overcorrection of the raw AOD (Figure 8). This is consistent with
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the positive values of the medians (50% percentile) and the negative skewness in Table 1.
On the other hand, the mean bias values (µ) are close to or equal to zero, which is expected
since the models are trained by minimizing the mean squared error.
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The model bias ranges are also quite similar. The minimum bias is rather similar for
all ML models (between −4.21 and −3.96). The maximum bias values on the other hand,
which correspond to the extreme underestimation of the AOD, come from the NN model
with a maximum bias of 5.09; while the best model in terms of underestimation is the RF
model with a maximum bias of 2.

We observe that the distributions of the AOD bias corrections of CHIMERE (Figure 8)
are skewed toward higher values. This is because there are more background AOD pixels
that are underestimated by CHIMEREs raw AODs, while they are overestimated for the
high AOD episodes. The overestimation occurs in most of the dust emission episodes with
very large bias values, as shown in Figure 3, which is why the bias RMSE is high, and the
median bias is positive (0.03) in Table 1.

According to the RF and XGB models, the most important input feature is the
CHIMERE raw AOD (Figure 5). Therefore, it is interesting to compare the correction
versus the a priori (CHIMERE raw) AOD, which indicates the relationship between the a
priori AOD in terms of intensities on the predicted AOD. The bias in the AOD correction of
the different ML models is found to be only slightly dependent on the a priori AOD values
(Figure 9). For all of them, we observe that for high a priori AODs (above a 0.5 value),
the correction can be significant. While for low a priori values, the AODs correction is
more limited, suggesting low bias for raw CHIMERE AODs typically under 0.3 (in the
majority of the pixels). This may be attributed to the fact that there are more pixels available
for training with a typically low background AOD level. The same model behavior was
observed in previous research [20].

The analysis of the predicted AOD of the different ML models varies according to
the AOD level (Figure 10). For low AOD levels (below 1), the models mostly correct the
AOD of CHIMERE to an acceptable degree (yellow colors), with a slightly insufficient
correction for higher AOD levels. The MLR model (Figure 10a) infers negative AODs for
some pixels. This is an artifact (see also Figure 4c) that is associated with the use of negative
regression coefficients, which improves the overall performance (r) of the MLR model. In
these terms, the best performing ML model is the XGB (Figure 10d) with a linear fit slope
of 0.52, followed by the RF model.
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Figure 9. Scatterplots showing the AOD biases amplitudes corrected by the following ML models:
(a) MLR, (b) NN, (c) RF, and (d) MLR, with respect to the a priori AODs (raw CHIMERE AOD550

estimates) for DTest. The green line represents the linear fit with a slope a and the intercept b. Colormap
represents the occurrence.

Figure 11 shows an evaluation of the performance of the four ML-based bias correctors
in terms of the median bias of the AOD correction over the entire test dataset, DTest. The
median bias does not exceed 0.3 in most of the domain, and it is significantly smaller than
that of the raw CHIMERE simulations (Figure 3). Similar biases are seen for the four cor-
rectors, with some positive and some negative biases for several regions characterized
by high annual mean AOD values (Supplementary Material, Figure S1b), and they are
smaller in absolute terms for RF and XGB, especially over the Arabian Peninsula and the
southwestern part of the Sahara. A common behavior of all the ML models is that they
strongly underestimate the AOD over a zone (10◦ to 20◦E, 14◦ to 20◦N) corresponding to
the Bodélé Depression (Figure 11).

The Bodélé Depression region is known to be a major source of desert dust [46].
The region is part of the former paleolake Megachad, which was the largest lake on the
planet 7000 years ago [76]. Mineral dust emissions from the Bodélé Depression region are
generally relatively fine-grained coarse dusts dominated by quartz, with admixtures of
clay minerals and Fe oxyhydrates [77]. Therefore, they are brighter (higher reflectance)
and whiter (flat reflectance spectrum), compared to the rest of the Saharan plumes [78]
(Supplementary Materials, Figure S1a). Indeed, Algerian Saharan dust [79] and the Bodélé
Depression region dust [80] have different refractive indices. In contrast to the CHIMERE
CTM model, the aerosol retrieval algorithm Deep Blue uses two different single scattering
albedos for the dust AOD retrieval [78], one for the redder dust, and one for the whiter
dust. Furthermore, an upper limit of 3.5 is set for the AOD values derived from the MODIS
AQUA operational algorithm [22].
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These remarks suggest that potential improvements in the representation of the particle
optical properties and the size within CHIMERE, along with the accuracy of the near-surface
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wind speeds responsible for the dust uplift, could reduce the bias in the simulated AOD in
North Africa. However, this is beyond the scope of this paper.

c. Prediction of bias corrected AODs at the different daytimes

The AOD correction models are trained using MODIS AQUA satellite observations,
which has an overpass time of (13:30 LT). It is necessary to ensure that the models are
temporally stable and usable outside the AQUA overpass time. For this purpose, we correct
the raw CHIMERE AOD outputs at 10:00 LT using the RF model, and then compare the
inferred AODs to MODIS observations from the Terra satellite, which has a local overpass
time of 10:30 LT. Thus, the daytime of the training database (13:30 LT) is different from
that of the test (10:30 LT). We chose only the RF model to perform the upcoming analysis
because the statistical performance of the other ML models is similar. The comparison
shows that improvement in correlation and residuals is comparable to the corrected AODs
at 13:00 LT. From Table 2, we can see that the residuals (RMSE, MAE, and MB) are improved.
The RMSE is reduced by 0.68% and the correlation is increased to 0.68 (from 0.52 for the raw
CHIMERE AODs). This good AOD correction for a morning hour implies the possibility of
using the correction method for different simulation hours of the day. However, we remain
conservative in using the AOD correction method during night hours as the ML model
will more often have to extrapolate unseen situations, e.g., low boundary layer heights,
low temperatures, etc.

Table 2. Correlation and residuals of AOD estimations for the year 2021 against MODIS Terra
observation. The raw AODs are CHIMERE outputs at 10:00 LT and for the corrected AOD with the RF
model (trained with MODIS AQUA observations at 13:30 LT). Number of data points is 3.7 million.

r RMSE MAE MB

RAW 0.52 0.59 0.34 −0.23

RF-corrected 0.68 0.19 0.12 −0.03

3.2. Comparison with AERONET Ground-Based Measurements

The performance of the RF model together with that of MODIS is assessed against
the collocated AERONET measurements at the eight stations for test dates (Table 3). We
see an improvement in the correlation coefficient r to 0.73 (from 0.54 for the raw AOD).
The residuals also improve as the RMSE and MAE decrease from 0.45 and 0.27 to about
0.16 and 0.12, respectively. The MB is significantly reduced from 0.18 to about 0.6 for the
corrected AOD.

Table 3. Correlation and residuals of 330 AOD estimations on testing dates that are collocated with
the 8 AERONET stations.

r RMSE MAE MB

MODIS 0.85 0.12 0.09 0.03

RAW 0.54 0.45 0.27 0.18

RF 0.73 0.16 0.12 0.06

Figure 12 illustrates the daily evolution and temporal consistency of the performance
of the RF model. It is worth noting that for visual completeness, the figure also shows
comparisons for the days used in the training phase (in the gray background), but we
limit the analysis to the test dates (in the white background). We chose the measurement
time series from the station of Cairo for this purpose because of its good data coverage
of the period and because it shows situations of positive and negative corrections of the
biases, with desert dust and anthropogenic aerosol events (the same kind of figures for
other sites can be found at the link in the data availability clause). A number of high AOD
episodes are seen in March and April and from 24 to 29 October 2021. In these cases, the raw
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AODs simulated by CHIMERE (orange lines) are clearly overestimated with respect to the
AERONET measurements (black lines). The ML-based corrector reduces the AOD values
(blue lines) to clearly approach the sun photometer measurements, while still depicting the
AOD peaks.
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On the other hand, CHIMERE simulations underestimate the AOD during the periods
of 20–27 June and 21 to 30 September. These periods are characterized by background
anthropogenic pollution, as suggested by co-located relatively high aerosol Angstrom
exponents (around 1.8) measured by MODIS AQUA (seen in the Worldview portal, not
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shown). In this case, the ML-corrected AODs are successfully improved to reach values
that are closer to both AERONET and MODIS measurements (red triangles). Moreover,
in cases of rather correct raw CHIMERE AODs (e.g., on 20–21 May), the ML-derived bias
corrector does not modify the AOD, which remains around 0.24.

4. Conclusions

In this work, we develop a new ML-based model to significantly improve the accuracy
of AOD maps, initially derived from CHIMERE chemistry transport model simulations.
The ML model is trained with MODIS satellite measurements, which are not used in the in-
ference stage. This approach provides full-coverage daily maps of AODs over North Africa
and the Arabian Peninsula with a clearly better agreement with respect to satellite and
ground-based observations as compared to AODs from raw, uncorrected CHIMERE simu-
lations. The AODs corrected by the ML models show substantially higher correlations and
lower errors (RMSE and MAE) than the raw AOD simulations, as compared to MODIS satel-
lite measurements. The RMSE of the AODs is reduced from 0.65 (raw CHIMERE) to 0.19 (RF
bias corrector), and the correlation coefficient r is increased from 0.56 to 0.71 (respectively,
for raw CHIMERE and the RF corrector). The bias corrector reduces the overestimation
in the AOD maps over the Saharan desert and the underestimation over the Arabian
Peninsula. This is performed not only for desert dust during outbreaks and background
conditions, but also for anthropogenic pollution aerosols. However, a slight overestimation
of the correction is observed at low aerosol loads.

The spatially continuous AOD correction could potentially be used as a gap-filling
system for the global MODIS AOD observations. Additionally, this current accomplishment
suggests the possibility of using advanced retrievals of the 3D distribution of aerosols
such as AEROIASI [81], and AEROS5P [82], which utilize Infrared Atmospheric Sounding
Interferometer (IASI) thermal infrared measurements for coarse particles and TROPospheric
Ozone Monitoring Instrument (TROPOMI) measurements for fine particles, respectively, to
correct the CHIMERE vertical profile of aerosol concentrations.

Among the four ML-based bias correctors, the best results are found for the RF
regressor, which gives a spatially smooth AOD in good agreement with MODIS AODs.
The other bias correctors used here (MLR, XGB, and NN) also improve the accuracy
of the AOD, but show spatial artifacts, some of them related to overfitting. The AOD
correction was tested for a different time of the day than the one used for the training.
The comparison of the CHIMERE AOD correction at 10:00 LT with that of MODIS Terra,
which has a close overpass time (10:30 LT), shows that the RF model also provides good
results even for this time of the day, which is different from that of the training dataset.
This is a step toward validating the AOD correction for any daytime application of the
CHIMERE simulation.

Evaluation of the daily consistency of the corrected AOD shows that the overestimation
of peaks and the underestimation of background values at a given location (shown for Cairo)
have been successfully improved, for both desert dust and anthropogenic aerosol loads.
These results are consistent with analyses of the influence of the input features, showing
that the RF model adequately uses different atmospheric constituents to deal with different
situation (e.g., desert dust, anthropogenic pollution, and background concentrations).
We also find that the ML-derived AODs may still underestimate very high AOD values
compared to MODIS observations.

In this study, ML models are implemented with CHIMERE simulations that are
performed with meteorological analysis data. Therefore, the AOD correction applied to
CHIMERE simulations using meteorological forecasts may be less accurate. Adjustments
to the ML models may be required. Furthermore, a deep understanding of the contri-
bution of different features will help to improve the temporal stability and reduce the
spatial artifacts.
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