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Abstract: Automatic identification and mapping of tree species is an essential task in forestry and
conservation. However, applications that can geolocate individual trees and identify their species in
heterogeneous forests on a large scale are lacking. Here, we assessed the potential of the Convolutional
Neural Network algorithm, Faster R-CNN, which is an efficient end-to-end object detection approach,
combined with open-source aerial RGB imagery for the identification and geolocation of tree species in
the upper canopy layer of heterogeneous temperate forests. We studied four tree species, i.e., Norway
spruce (Picea abies (L.) H. Karst.), silver fir (Abies alba Mill.), Scots pine (Pinus sylvestris L.), and
European beech (Fagus sylvatica L.), growing in heterogeneous temperate forests. To fully explore the
potential of the approach for tree species identification, we trained single-species and multi-species
models. For the single-species models, the average detection accuracy (F1 score) was 0.76. Picea abies
was detected with the highest accuracy, with an average F1 of 0.86, followed by A. alba (F1 = 0.84),
F. sylvatica (F1 = 0.75), and Pinus sylvestris (F1 = 0.59). Detection accuracy increased in multi-species
models for Pinus sylvestris (F1 = 0.92), while it remained the same or decreased slightly for the other
species. Model performance was more influenced by site conditions, such as forest stand structure,
and less by illumination. Moreover, the misidentification of tree species decreased as the number
of species included in the models increased. In conclusion, the presented method can accurately
map the location of four individual tree species in heterogeneous forests and may serve as a basis for
future inventories and targeted management actions to support more resilient forests.

Keywords: forest monitoring; Convolutional Neural Network (CNN); conifer and deciduous species;
temperate forest; tree species geolocation

1. Introduction

Forests cover about 31% of the global land area and are home to 80% of the Earth’s ter-
restrial biodiversity [1]. Humans rely on forests for countless ecosystem services, but these
ecosystems are highly vulnerable to human-caused climate change. In a dynamic climate,
accurately mapping tree species distributions is critical for managing native and invasive
vegetation [2,3], designing policies to ensure the provision of ecosystem services [4,5], and
monitoring physiological stress [6,7]. Yet, tree species monitoring is a challenging task that
is time-consuming, costly, and limited to a small spatial and temporal scale, and the data
are often not publicly available [8]. Remote sensing, however, can contribute significantly
to addressing these challenges and there is a clear call to integrate new technologies from
that field into forestry and ecology [9–11].
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Many forest applications and machine learning classification processes are based on
satellite data (e.g., MODIS, Landsat, and Sentinel-2) that enable the coverage of vast areas.
For tree species identification, these satellite data have a high temporal resolution but a low
spatial resolution, making accurate identification of individual tree species challenging [12].
Nevertheless, the increasing availability of high-resolution remote sensing data combined
with the use of Deep Learning (DL) algorithms, such as Convolutional Neural Networks
(CNNs), is proving to be extremely useful for detailed large-scale ecosystem analysis [13,14].
CNNs can be trained to perform different classification tasks, depending on the architecture
chosen [15,16]. The four main CNN image classification methods differ in their complexity,
data input, and data output: (i) semantic segmentation provides pixel-based classification
and is currently used in several applications for species mapping [17–19]; (ii) object detec-
tion makes it possible to geolocate, identify, and count individual trees [20,21]; (iii) instance
segmentation can detect objects and predict pixel-level instances on objects by integrating
the previous methods (i) and (ii) [22,23]; and (iv) panoptic segmentation goes one step
further and integrates semantic and instance segmentation, delivering a unifying output
(e.g., tree species and the surrounding environment). Out of these methods, semantic
segmentation is the most established and frequently applied method for species mapping,
land use, and vegetation cover classification [17–19,24].

Mapping the locations of individual trees and quantifying them are important tasks in
forestry. Of the four CNN methods described above, object detection has the advantage of
being able to geolocate and identify individual trees while also incorporating data from a
variety of tree species, making the object detection model transferable to other regions [25].
Object detection architectures fall into two categories: one-step algorithms such as Reti-
naNet [26], You Only Look Once (YOLO) [27], and Single-Shot Detector (SDD) [28], and
two-step algorithms such as the R-CNN family (e.g., Fast R-CNN, Faster R-CNN, and
Mask R-CNN). One-step algorithms are considered more computationally efficient, while
two-step algorithms deliver more precise output [16]. Faster R-CNN improves on Fast
R-CNN by introducing Region Proposal Networks (RPNs) to efficiently predict region pro-
posals, enabling end-to-end training and faster object detection [29]. Hence, Faster R-CNN
reduces the computation time required for object detection while improving the accuracy
over Fast R-CNN. Faster R-CNN can aid with automated data analysis and improve our
understanding of ecological processes, thus it has been employed in several ecological
applications [30–33].

The availability of high-resolution data, the variables used, and the forest hetero-
geneity play key roles in determining whether tree species can be accurately identified
with CNNs. While CNN methods have provided good results in detecting trees in urban
areas or plantations [7,30,34,35], identifying tree species in heterogeneous forests remains
a challenge [36]. Moreover, studies frequently rely on specialized and expensive sensors
to detect tree species in forests, such as hyperspectral, multispectral, or LiDAR sensors,
which provide more information but often require longer processing times [37–39]. In
recent decades, high-resolution aerial RGB imagery that is easy to use and available at low
cost has become widely accessible [40]. The development of an object detection approach
using only aerial RGB imagery would enable the cost-effective monitoring of tree species
with broad application potential. Further, this could help address ongoing challenges,
such as the differentiation between various tree species when visual differences are subtle,
model generalizability, imbalanced classes, variability in annotation, and complex tree
canopy structures.

Here, we aimed to evaluate the potential of an end-to-end object detection approach
based on aerial RGB imagery for the efficient and highly automated detection of individual
tree crowns and identification of tree species. To accomplish this, we trained and tested the
Faster R-CNN algorithm on a large, annotated dataset with different tree species growing
under various site conditions. We used open-source high-resolution aerial RGB imagery
and ground-truth data from four tree species that are widespread in Europe and are of
great economic and ecological importance: the three evergreen conifer species Norway
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spruce (Picea abies (L.) H. Karst.), silver fir (Abies alba Mill.), and Scots pine (Pinus sylvestris
L.), and the deciduous broadleaf species European beech (Fagus sylvatica L.). Specifically,
we (i) assessed the performance of the Faster R-CNN algorithm in enhancing model
performance; (ii) compared the detection performance of single- and multi-species models;
and (iii) assessed the influence of site conditions and stand structures on the accuracy of
tree species identification.

2. Materials and Methods
2.1. Study Area

The study area is situated in the northern part of Switzerland, in the Central Plateau
and Jura regions. Forests cover around 24% of the Central Plateau and 47% of the Jura
region. The study area falls within the boundaries of nine cantons: Vaud, Fribourg, Bern,
Solothurn, Luzern, Aargau, Jura, Basel-Landschaft, and St. Gallen (Figure 1) [41]. Within the
study area, the elevation ranges from 400 to 1200 m a.s.l. and the climate is temperate [42].
The upper parts of the study area are dominated by coniferous forests, with, e.g., Picea abies,
A. alba, and Pinus sylvestris, whereas the lower parts are dominated by mixed and broadleaf
forests, with, e.g., F. sylvatica L., maple (Acer spp.), European ash (Fraxinus excelsior L.), and
oak (Quercus spp.) [43].
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Figure 1. Map of the study area (light green color) and aerial RGB imagery of four of the 1-ha test
sites (1–4) and the four tree species (a–d).

2.2. Data
2.2.1. Aerial RGB Imagery

The Federal Office of Topography Swisstopo provides open-source aerial orthophotos
(SWISSIMAGE) at a 10 cm resolution across Switzerland [44]. The data were downloaded
from the Swisstopo website [44]. The image acquisition is carried out with the ADS100 cam-
era from Leica Geosystems (Heerbrugg, Switzerland). This sensor is based on push broom
scanning technology. The SWISSIMAGE product is orthorectified using the digital terrain
model (DTM) “swissALTI3D” at 50 cm resolution and is updated every 3 years. SWISSIM-
AGE collection takes place during either summer or winter, and the recording date of the
orthophoto image tiles is not provided with the metadata. For the analysis, orthophotos
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from the vegetation period (i.e., the period when trees had fully developed leaves) were
downloaded for nine cantons between 2017 and 2021 (1 × 1 km tiles; Figure 1). A mosaic
was created from the downloaded tiles, which formed the basis for further processing.

2.2.2. Training and Validation Data

To develop a CNN model, the reference dataset has to be split into training, validation,
and test data [14]. Commonly used datasets for the development of CNNs, such as
COCO [45], KITTI [46], and Open Images Dataset [47], provide a large amount of data but
are not representative of the studied tree species. In forestry, reference data usually come
from ground-based surveys as geolocated point observations. Hence, in this study, a new
dataset for tree species was created, based on ground-truth data and aerial RGB imagery.

A dataset of 17,610 geolocated trees was compiled from three main sources: Arborizer
data [48], Long-term Forest Ecosystem Research program (LWF) data [49], and Swiss
National Forest Inventory (NFI) data [50]. The ground-truth dataset was gathered between
1995 and 2020 and includes information on tree species, coordinates, diameter at breast
height (dbh), and social status (dominant, co-dominant, dominated, suppressed, and none).
There are certain class imbalances because the data are based on real-world reference data;
for instance, Pinus sylvestris is less represented in the dataset. For data processing, the
ArcGIS Pro (v. 2.9.0) software was used.

The geolocated tree (i.e., the ground-truth points) from the NFI and LWF datasets
did not always perfectly overlap with the corresponding tree canopy on the aerial RGB
imagery. This inaccuracy was mainly due to two reasons. First, all tree ground-truth points
are subject to some error which is usually in the sub-meter range [50]. Second, the tiles of
the SWISSIMAGE orthophotos are georectified using a DTM [44]. However, tree crowns
are above the Earth’s surface and can have a tilt effect. Even if the ground-truth points
on the ground are accurate, the crown can be shifted on the aerial RGB imagery. Based
on dbh (conifers ≥ 20 cm, deciduous ≥ 25 cm), social status (dominant and co-dominant),
and visual inspection, the dataset of 17,610 geolocated trees was filtered to ensure that
the tree crowns were visible on the orthophotos. A manual correction was performed
where ground-truth points did not overlap perfectly with the associated tree crown on the
orthophoto. For instance, if the ground truth point did not overlap perfectly with the tree
canopy, it was either moved to the nearest tree canopy of that species or deleted if it was
clearly mislabeled. This data pre-filtering and cleaning was performed to obtain the most
informative training data possible.

The tree-crown extent was generated automatically using a buffer of 4 m for coniferous
and 5 m for deciduous trees. The buffer size was chosen after multiple tests and represented
the best approximation of crown extent over the whole dataset. This resulted in a total of
11,437 and 10,614 geolocated trees for training and validation, respectively (Table 1). For the
Deep Learning (DL) approach, training data were extracted based on the ground-truth data
and the SWISSIMAGE dataset. Image tiles with a 256× 256-pixel size stride were generated
as TIFs, using the PASCAL VOC format. The dataset was split into 90% for training and 10%
for validation. The data split was performed on a spatial basis to ensure that no neighboring
trees appeared in both the training and validation datasets. To test the augmentation
potential, the model was trained without and with augmentation (rotating the tiles 90◦).
The training data can be accessed at https://doi.org/10.5281/zenodo.7528566.

Table 1. The analyzed tree species and the corresponding training, validation, and test data.

Scientific Name Common Name Training Validation Test Total

Picea abies Norway spruce 3113 346 497 3956
Abies alba Silver fir 2137 238 128 2503

Pinus sylvestris Scots pine 539 60 26 625
Fagus sylvatica European beech 3763 418 172 4353

Total 9552 1062 823 11,437

https://doi.org/10.5281/zenodo.7528566
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2.2.3. Test Data

A test dataset is used to independently evaluate the performance of the final CNNs.
To optimize the generalization of the CNN models, multiple test sites with a wide variety
of environmental conditions are desirable [37]. Here, eight independent test sites were
used to assess the object detection models’ generalization performance and transferability
to forest stands with different species combinations and site conditions (Figure 1). Four
1-ha test sites were chosen, each with at least three of the examined species. The other
four test 1-ha sites were selected from a heterogeneous forest with diverse forest stand
conditions and a slope of 3 to 10◦. Specifically, two test sites were in forest stands with low
illuminance, on a north-facing slope of ~35◦, and homogeneous tree density, while the other
two test sites were in forests with optimal illuminance, a slope of ~3◦, and homogeneous
and heterogeneous tree density, respectively. The test data were mapped manually based
on expert knowledge. In total, the test dataset consisted of 823 trees.

The workflow of data processing, model training, and accuracy assessment is pre-
sented in Figure 2. The Picea abies models were tested on sites with different tree densities (a
young forest monoculture and a mature mixed forest) and illumination levels (north-facing
slope with heavy shading and a forest stand with no shading).
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2.3. CNN-Based Tree Species Mapping

The Faster R-CNN architecture [29] with a ResNet-101 backbone was investigated.
Faster R-CNN consists of two modules, a deep fully convolutional network that proposes
regions (RPN) and a detector that uses the proposed regions [29]. Faster R-CNN was trained
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over 50 epochs, using non-overlapping chips with a size of 256 × 256 pixels (25.6 × 25.6 m)
and a batch size of 16. These network hyperparameters were chosen based on prior tuning.
The backbone’s weights and biases were unfrozen so they could be adjusted to fit the
training samples and enhance object detection performance. To optimize the network
training flow, Stochastic Gradient Descent with a learning rate of 0.0001 was used. The
original Faster R-CNN uses the log loss (also called cross-entropy loss) as a classification
loss (Lclas) and a smooth L1 loss as a regression loss function [29]. The Focal Loss function
was used, which is an enhancement of the Cross-Entropy Loss function and addresses
class imbalance during training [26]. To limit the possibility of false negatives for smaller
tree canopies that blend in with the background, the minimum confidence threshold was
adjusted to 0.5.

Early stopping was used as the regularization technique to avoid overfitting. During
training, validation loss was monitored to assess when to stop model training. This reduced
the risk of overfitting, shortened training time, and produced better results. All Faster
R-CNN models trained with non-augmented training data input reached a minimum
validation loss during 50 epochs. Training time ranged from 30 min for single species
to over 6 h for multi-species detection, and from 3 to over 14 h for augmented training
data. In some cases, the object detection approach returned more than one bounding
box for the same object, which is a tiling side effect. To correct this, duplicate bounding
boxes with the lowest confidence were removed using the non-maximum suppression
approach [7,51,52]. Thus, if two bounding boxes overlapped by more than 70%, the box
with the lowest confidence value was removed. Our models’ weights and training data can
be accessed at https://doi.org/10.5281/zenodo.7528566.

2.4. Model Performance Assessment

The performance of the Faster R-CNN model on test data was assessed using five
accuracy metrics: (1) precision, (2) recall, (3) F1 score (F1), (4) intersection over union (IoU),
and (5) average precision (AP). F1 is a weighted average of the precision and recall that
is robust for imbalanced datasets, with values closer to 1 indicating higher accuracy [14].
The IoU threshold for this study was 0.5. IoU is the ratio between the area of intersection
and the area of the union of the predicted bounding box and the ground-truth bounding
box. AP is the area under the precision-recall curve, i.e., the precision average across all
recall values between 0 and 1 at an IoU threshold. IoU was used to determine if a predicted
result was a true positive (TP) or a false positive (FP).

Precision =
TP

TP + FP
=

Correctly predicted individual trees
All predicted individual trees

(1)

Recall =
TP

TP + FN
=

Correctly predicted individual trees
All ground− truthed individual trees

(2)

F1− score =
Precision× Recall

Precision+Recall
2

(3)

IoU =
bbox Pred ∩ bboxRe f

bbox Pred ∪ bboxRe f
(4)

AP =
∫ 1

0
p(r)dr ≈

n

∑
k=1

pk · (rk − rk−1) (5)

In the precision and recall function, TP represents the number of correctly detected
trees, FP is the number of incorrectly detected trees, and FN (false negative) is the number
of trees that the model failed to detect. In the AP function, r and p represent the recall
and precision, respectively, and pk and rk are the recall and precision values at the kth
subinterval of the interval from 0 to 1 [53]. A confusion matrix was used to represent the
performance of each model (single- and multi-species models), including TP, FP, and FN.

https://doi.org/10.5281/zenodo.7528566
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3. Results
3.1. CNN Performance for Single-Species Detection Models

Faster R-CNN models trained on non-augmented single-species data achieved a mean
F1 of 0.76. Picea abies was the best-detected species, followed by A. alba, F. sylvatica, and
finally Pinus sylvestris (Table 2 and Figure 3a,b). Single-species detection models generally
exhibited greater variability and lower precision than multi-species detection models
(Figure 3b,d). Hence, Pinus sylvestris was detected better in the multi-species models than
in the single-species models. Picea abies and F. sylvatica were the least and most misidentified
(FP) species, respectively (Table 2). Picea abies and A. alba had similar AP values, but 4% of
Picea abies trees were misidentified as A. alba while only 2% of A. alba were misidentified as
Picea abies (Figure 4a). Moreover, 7% of A. alba trees were misidentified as Pinus sylvestris
(Figure 4a). Further, 7% of F. sylvatica trees were misidentified as A. alba, whereas 31% of
Pinus sylvestris trees were misidentified as A. alba (Figure 4a).

Table 2. Single-species model (non-augmented data) detection accuracy for an intersection over
union (IoU) threshold of 0.5. AP = average precision, TP = true positive, FP = false positive, FN = false
negative. Detected sp. = detected species, spruce = Picea abies, fir = Abies alba, pine = Pinus sylvestris,
and beech = Fagus sylvatica.

Model Detected sp. Precision Recall F1 Score AP TP FP FN

Spruce Spruce 0.93 0.80 0.86 0.78 189 15 48
Fir Fir 0.81 0.86 0.84 0.78 110 25 18

Pine Pine 0.50 0.73 0.59 0.57 19 19 7
Beech Beech 0.77 0.74 0.75 0.64 126 38 46
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3.2. CNs Performance for Multi-Species Detection Models

The performance of the multi-species CNN models was dependent on the combination
of tree species and site conditions. The models detecting coniferous species performed
better than those including the deciduous species F. sylvatica (Table 3). Among the four
multi-species models, the one detecting all three conifers (spruce-fir-pine model) had
the highest average F1 (0.81). Pinus sylvestris was the best-detected species (F1 = 0.92),
followed by Picea abies (F1 = 0.79; Figure 3c). The detection of A. alba and F. sylvatica varied
depending on the species combination and site conditions. The low detection accuracy was
primarily due to low recall (correctly detected trees), i.e., the models had a high number of
unidentified trees (FN) (Table 3). Multi-species models had a higher precision than recall
for all species (Figure 3d).

Table 3. Accuracy assessment of Faster R-CNN for multi-species detection across test sites and
species. AP = average precision, TP = true positive, FP = false positive, FN = false negative, and
Detected sp. = detected species. Spruce = Picea abies, fir = Abies alba, pine = Pinus sylvestris, and
beech = Fagus sylvatica.

Model Detected sp. Precision Recall F1 Score AP TP FP FN

Spruce-fir Spruce 0.91 0.79 0.85 0.77 188 18 49
Fir 0.94 0.38 0.54 0.37 49 3 79

Spruce-fir-pine
Spruce 0.96 0.68 0.79 0.66 160 6 77

Fir 0.83 0.63 0.72 0.58 81 17 47
Pine 1.00 0.85 0.92 0.85 22 0 4
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Table 3. Cont.

Model Detected sp. Precision Recall F1 Score AP TP FP FN

Spruce-fir-beech
Spruce 0.94 0.80 0.86 0.78 189 12 48

Fir 0.95 0.44 0.60 0.42 56 3 72
Beech 0.97 0.40 0.56 0.39 66 2 105

Spruce-fir-pine-beech

Spruce 0.99 0.63 0.77 0.63 150 1 87
Fir 1.00 0.38 0.55 0.38 48 0 80

Pine 0.96 0.88 0.92 0.88 23 1 3
Beech 0.93 0.30 0.46 0.29 52 4 121

The confusion matrix (Figure 4a,b) shows the correctly detected species (TP), misidenti-
fied species (FP), and not detected trees (FN) for both the single and multi-species detection
models. Even though the multi-species models did not detect more trees (FN), misidentifi-
cation (FP) decreased as the number of species used to train the model increased (Table 3
and Figure 4b). For instance, in the spruce-fir-pine-beech model, only 4% of F. sylvatica trees
were misidentified as Pinus sylvestris (Figure 4b). As a result, while training a model with
several species took longer (≥6 h) than training with a single species (30 min), the number
of false positives was considerably lower in the multi-species models (Table 3). Further,
compared with single-species models, multi-species models had improved precision but
decreased recall. Figure 5a,b illustrates the data input (aerial RGB images and the buffers
for the ground data) and the detection of conifers (i) and coniferous and deciduous trees
(ii). The detection performance for all four species (spruce-fir-pine-beech model) was
site-specific (Figure 6a,b).
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3.3. Effect of Training Data Augmentation and Forest Stand Conditions on Model Performance

For single-species CNN models, data augmentation did not conclusively result in
higher F1 scores across all species. The effect of data augmentation was more pronounced
for multi-species models than for single-species models. Augmented multi-species models
performed better than non-augmented ones for certain species (Table 4).

Table 4. Average F1 score for multi-species detection across test sites for an intersection over
union (IoU) threshold of 0.5. Non-aug = non-augmented and aug = augmented training data.
Spruce = Picea abies, fir = Abies alba, pine = Pinus sylvestris, and beech = Fagus sylvatica.

Model
Spruce-Fir Spruce-Fir-Pine Spruce-Fir-Beech Spruce-Fir-Pine-Beech

Non-Aug Aug Non-Aug Aug Non-Aug Aug Non-Aug Aug

All species 0.70 0.81 0.81 0.69 0.68 0.71 0.67 0.73
Spruce 0.85 0.87 0.79 0.67 0.86 0.86 0.77 0.85

Fir 0.54 0.74 0.72 0.65 0.60 0.75 0.55 0.80
Pine - - 0.92 0.84 - - 0.92 0.39

Beech - - - - 0.55 0.37 0.46 0.49

The influence of tree density and illumination conditions on detection performance
was tested for Picea abies. Compared with sites with optimal illumination (average F1 = 0.85,
Table 2), the detection performance was slightly lower for heavily shaded sites located on a
north-facing slope of ~35◦ (average F1 = 0.80). The object detection model performed better
in mature forest stands with homogeneous density than in stands with heterogeneous
density, with a difference in F1 of 0.14. Specifically, younger tree groups were less detected.
For example, in a heterogeneous stand (1 ha) with trees of different ages and densities,
only three individuals were detected from 25 trees growing in an ~30 × 30 m patch within
the test site. As a result, detection accuracy decreased slightly for stands with higher
tree density.
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4. Discussion
4.1. Significance of the Study

In this study, we demonstrated that it is possible to automatically identify and ge-
olocate four important tree species in heterogeneous temperate forests using a DL object
detection approach with a CNN architecture and open-source aerial RGB imagery. The
trained Faster R-CNN model applied in this study was both accurate and computationally
efficient in identifying and geolocating Picea abies, A. alba, Pinus sylvestris, and F. sylvatica.
While labeling the tree species and training the models were time-intensive steps, subse-
quent model applications could easily build upon the models and the dataset of >10,000
annotated individual trees presented here. Our work represents a first step towards the de-
velopment of a large tree species database and a deep-learning-based automatic framework
for the identification of individual tree species from aerial RGB imagery.

4.2. Performance of CNNs in Detecting Individual Tree Species with Single-Species Models

We found that Picea abies was detected best with the lowest inter-site variability.
The overall high Picea abies detection is likely due to its unique radial crown branching
pattern [54]. The detection performance of the single-species detection models (Table 2)
was similar to that achieved with more common methods that do not offer the same level
of information. For example, Schiefer et al. [18] reported a mean F1 score of 0.93 for
Picea abies. Further, in our single-species models, the slightly lower F1 scores for Abies alba
and F. sylvatica (Table 2) are in accordance with values based on the SDD approach [21],
where an F1 score of 0.78 was reported for detecting these species in a wooden pasture based
on aerial RGB imagery. The detection of Pinus sylvestris had the lowest F1 score in our
single-species detection models, and A. alba was often falsely identified as Pinus sylvestris.
Meanwhile, Picea abies was the best-identified species, and only a few trees were misiden-
tified as A. alba. Species misidentification was also observed in a study where a Random
Forest classification model was used [55]. In our Faster R-CNN approach, the low detection
and high misidentification of Pinus sylvestris in single-species models was most likely the
result of the small number of training samples provided.

4.3. Performance of CNNs in Detecting Multiple Tree Species in Multi-Species Models

The multi-species detection models achieved an average accuracy similar to single-
species models (F1 scores of 0.73 and 0.74, respectively), but despite the small amount
of training data, Pinus sylvestris was the best identified of the four species (Table 2).
Fricker et al. [56] likewise found that their segmentation approach based on aerial RGB
imagery performed best for the Pinus species compared with other tree species. When
considered in combination with other species, the spectral characteristics of Pinus sylvestris
trees seem to be advantageous for species identification. As in the single-species models,
Picea abies was well detected in multi-species models, while A. alba was the third-best
detected species. Schiefer et al. [18] similarly reported a lower A. alba classification com-
pared with Picea abies based on a semantic segmentation approach (U-net). This could
indicate the lower suitability of the spectral and structural characteristics of A. alba for
CNN applications. A drawback of multi-species models is the slight decrease in recall
that can occur compared with single-species models. However, the multi-species CNN
models applied here consistently resulted in high precision and low misidentification. High
precision was especially prevalent when the model was trained with more tree species.

The multi-species detection approach requires more training time than single-species
models, but the advantage is a reduction in the amount of training data required per species
and fewer false species detections. In this work, we used an extensive training dataset
and developed a model that could be further trained with more data and applied to other
regions. In comparison to the tree detection model (recall of 0.69 and precision of 0.61)
proposed by Weinstein et al. [20], our CNN models had significantly higher recall and
precision values. Thus, these CNN models not only provide better tree detection in general
but are also capable of identifying up to four tree species in a natural temperate forest setting.
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Given that the CNN object detection approach is highly applicable to other regions where
the same species occur, it has the potential to become a universal model [25]. Therefore,
there is currently intensive research on tree identification using object detection [21,57].

4.4. Model Generalization

The validation of the DL object using the test dataset showed a high generalization
capability for the identification and geolocation of the four tree species in heterogeneous
forests (Figure 3) and uniformly distributed species-specific performance across all site
conditions, species combinations, and years. Similarly, Weinstein et al. [25] reported that
RetinaNet object detection with a ResNet-50 backbone has a high generalization capability
when detecting individual trees in four different forest types. The data used in our study
were collected across different forest types (deciduous, coniferous, and mixed), forest
management regimes, areas (nine cantons), terrain conditions (slope and elevation), and
growth stages. The aerial RGB orthophotos were acquired over 5 years during the growing
season and covered a wide range of illumination conditions. Thus, we conclude that the
high generalization capabilities of the CNNs, as indicated by the F1 and the AP values
evenly distributed across all sites, are the result of the aerial RGB imagery variations in
brightness, contrast, and shadow, due to the different times of day and year when the
images were taken and the different site conditions.

The developed CNN models were able to correctly identify many individual trees
(TP). Nevertheless, our models were not able to identify all individual trees, specifically,
the FN increased with the number of species included in the model (Figure 4). In this
case, additional training data, especially phenological information, and further data aug-
mentation could help. Further, to make CNN models and their decision-making process
more interpretable, further studies should focus on the explainability of CNN models. As
previously demonstrated, species have structural traits which can aid in detection [19].

Heterogeneous training data (e.g., growth stage, forest structure, illumination, season,
and year) are highly relevant for improving the accuracy and generalization of CNN
models [18,25]. Natesan et al. [58] showed that training CNNs with samples from different
years increases classification accuracy by 30%. This can ensure that the CNN models
learn the characteristics of tree species that are representative of different site conditions
and growth stages. Forest stand conditions, such as foliage density, crown size, and
illumination conditions, also contribute to the success of tree species identification [37,59].
Lopatin et al. [2] reported that shadows significantly lowered the prediction accuracies of
a maximum-entropy classifier modeling the occurrence of invasive woody species from
unmanned aerial vehicle (UAV) imagery. Our results support the large influence of forest
stand structure (crown size and tree density) on tree detection, whereas illumination
conditions played a less important role in our case. Thus, our findings indicate that low-
cost or open-source aerial RGB data can provide a reliable basis for object detection models
to identify individual tree species at larger spatial scales.

4.5. Reference Data and Application

In our study, reference data were based on information from forest inventories (i.e.,
tree stem coordinates, tree height, dbh, and tree species). In addition, the database was
inspected visually to ensure the spatially explicit association with the target variable (i.e.,
tree canopy) on the aerial RGB imagery. Visual interpretation is time-consuming and can
lead to misinterpretation; however, given the large amounts of data required for CNNs and
the need to obtain highly accurate data, using data from forest inventories and conducting
visual inspection seems to be the most efficient and accurate method for collecting reference
data. In heterogeneous forests, tree canopies are often clustered, vary in size, and are
obscured by the canopies of other tree species, making detection difficult. As a result, the
ground-truth data available for this study were of great importance for annotating the trees
in training images; the model’s performance decreases when annotations are missing [60].
To avoid missing annotations during object detection, in our study, a smaller image chip
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(256 × 256 pixels) was used that contained fewer trees. Labels may have been missing,
however, especially for smaller objects, and the time lag between the ground-truth and
remote sensing data may have affected the performance of the models [60]. To ensure the
efficient development of CNN models for the automatic identification of tree species in
different forest ecosystems, a tree species database should be considered a priority in the
future [61,62].

To improve the current models, further ground-truth data, as well as data augmenta-
tion, could be used. In our study, data augmentation required a long computation time,
but it resulted in species- and site-specific performance improvements. Similarly, a slight
improvement in the robustness of the detector to varying conditions has been reported in
other studies [14,63]. Therefore, we believe that the added benefit of data augmentation for
tree species detection should be explored further, and additional augmentation methods,
such as brightness and contrast variations, should be considered. Moreover, phenology
has been reported to be a useful trait for species discrimination [37]. Given the unavail-
ability of the acquisition date for the aerial RGB images in the present study, it was not
possible to specifically assess the influence of phenology. Overall, our DL object detection
models could be trained further with more RGB data at a different resolution and with
phenological information, and they could be applied to other regions. In Switzerland, for
example, MeteoSwiss has begun to deploy a national network of geolocated ground-based
360◦ cameras (e.g., Roundshot Livecams [64]) for assessing phenology, which could be used
as additional phenological training datasets.

Our results are essential for decision-making in forestry, ecology, biodiversity monitor-
ing, and conservation. Specifically, they provide data on individual tree species geolocation
and counts, which can support the development of species distribution models that rely on
species occurrence data for calibration [65,66]. In addition, further applications of these
models could include the detection of tree vitality [7,40,67,68] and tree dynamics at the
treeline [69,70], as well as the monitoring of pathogens, to generate accurate priority maps
for preventive management actions.

5. Conclusions

In this study, we evaluated the potential of Faster R-CNN for highly automated tree-
crown detection and tree species identification in heterogeneous forests based on publicly
available high-resolution aerial RGB imagery. Our models performed well in identifying the
four major tree species Picea abies, A. alba, Pinus sylvestris, and F. sylvatica. Further, training
the Faster R-CNN model for multi-species identification decreased species misidentifica-
tion and yielded improved results for species detection, particularly for underrepresented
species. Our CNN models could therefore support an automatic tree inventory of the upper
layer of heterogeneous forests, including tree species identity, count, and geolocation, using
only low-cost or open-source aerial RGB imagery. In addition, our models could comple-
ment traditional field-based tree inventories in heterogeneous forests, thereby reducing the
need for intensive field surveys.

This highly automatic and accessible approach for streamlining four-tree species
identification and geolocation can be universally applied where overhead aerial RGB
imagery is available. The tree species database created here (of >10,000 annotated individual
trees) is available online and could be used for further model development. Given the
growing interest in forest resilience and maintenance of forest ecosystem services in a
rapidly changing climate, the CNN object detection models presented here could be useful
to support the above goals. Moreover, with further improvements and the addition of
more tree species, these models could become a promising tool for universal tree species
identification in heterogeneous forests.
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