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Abstract: The new-generation FengYun geostationary meteorological satellite has a high spatial
and temporal resolution, which is advantageous in environmental assessments and air pollution
monitoring. This study researched the ground-level particulate matter concentration estimation,
based on satellite-observed radiations. The radiation of ground-level particulate matter is separate
from the apparent radiation observed by satellites. The positive correlation between PM2.5 and
PM10 is also considered to improve the accuracy of inversion results and the interpretability of
the estimation model. Then, PM2.5 and PM10 concentrations were estimated synchronously every
5 min in mainland China based on FY-4A satellite directly observed radiations. The validation
results showed that the improved model estimated results were close to the ground site measured
results, with a high determination coefficient (R2) (0.89 for PM2.5, and 0.90 for PM10), and a small
Root Mean Squared Error (RMSE) (4.69 µg/m3 for PM2.5 concentrations, and 13.77 µg/m3 for
PM10 concentrations). The estimation model presented a good performance in PM2.5 and PM10
concentrations during typical haze and dust storm cases, indicating that it is applicable in different
weather conditions and regions.

Keywords: FengYun-4 geostationary meteorological satellite; machine learning; PM2.5; PM10

1. Introduction

The ground-level particulate matter with a diameter of less than 2.5 µm (PM2.5)
and 10 µm (PM10) can stay in the atmosphere for a long period and transmit over a
long distance. The atmospheric pollution caused by ground-level particulate matter has
become a prominent environmental and public health problem [1–3]. The PM2.5 and PM10
concentration at ground level, as the basic indicator for air quality, provides references for
air quality evaluation. Moreover, the ground-level particulate matter could also accelerate
the material deterioration of buildings and other structures as well as objects of cultural
heritage [4,5]. Therefore, the monitoring of PM2.5 and PM10 concentration at ground level
is critical to air pollution control [6].

The ground-based monitoring sites provide the most accurate measurement. However,
the ground monitoring sites only measure the PM2.5 and PM10 concentrations in a point-
like distribution; therefore, it is difficult to provide a particulate matter observation at a
high temporal and spatial resolution over full-country coverage. By contrast, satellite-based
remote sensing has the feature of high temporal and spatial resolution observation in
a wide range of coverage. Then, the dynamic changes in aerosol temporal and spatial
distribution can be quickly obtained based on satellite remote sensing, which has obvious
advantages in environmental and construction materials deterioration assessment [5,7,8].
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The new generation of FengYun (FY-4) geostationary series meteorological satellites, with
features of high spatial–temporal resolutions and more observation channels, has the unique
advantage to provide a high-frequency observation of PM2.5 and PM10 concentrations at
ground level over the full coverage of China.

The aerosol optical depth (AOD) represents the integrated extinction of the aerosol,
which has a high correlation with particulate matter in the atmosphere. Satellite remote
sensing provides AOD retrieval products and it is widely used in air quality evalua-
tions [9,10]. Current research mainly estimates PM2.5 and PM10 concentrations based
on AOD products. Machine learning technology has the advantage of describing the
complex relationship between data, and showing the strong ability to extract the essential
characteristics of data-sets [11]. There are already successful cases using machine learning
technology to build the relationships between PM2.5 and PM10 concentration at ground
level and AOD [12–15]. Chen et al. [13] used the AOD product from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) to estimate the PM2.5 concentration at ground
level over China, and considered that the extreme gradient boosting (XGBOOST) model
would improve the estimation concentration of PM2.5. Wei et al. [14] improved the estima-
tion of PM2.5 concentration using the space–time extremely randomized tree model, based
on AOD products derived from MODIS and Multi-Angle Implementation of Atmospheric
Correction (MAIAC). A non-linear statistics model for the PM10 estimation was developed
by Wei et al. [15], based on monitoring stations measuring PM10 concentration in Xi′an
and MODIS AOD product. Therefore, the AOD-based method was successfully applied in
the estimation of particulate matter concentrations in the ground-level atmosphere.

However, satellite-based AOD products have uncertainties [16–18] that are adopted
in the PM2.5 and PM10 concentration estimations [19] and, therefore, cause even larger
uncertainties [20]. Theoretically, the satellite observation radiation could be directly re-
lated to the particulate matter concentrations and has less uncertainty than the estimation
method based on the AOD products [21]. A geo-intelligent method was developed by
Shen et al. [22] to directly estimate the PM2.5 concentration from reflectance at the top of
atmosphere (TOA) observed by MODIS, and the result proved the method was effective.
Yan et al. [23] tried to estimate the PM2.5 concentration at ground level, based on satellite
observation (MODIS) radiation directly, and the results showed that the retrieval accuracy
of near-ground particle concentration was better than that based on AOD products. The
above studies estimated PM2.5 and PM10 concentrations based on polar orbit satellite data.
However, polar orbit satellites have limits of swath width and low revisit frequency. By con-
trast, the geostationary satellites have higher temporal resolutions than polar orbit satellites
and observe the entire development and transmittance of the air pollutant. Wei et al. [24]
used the Himawari-8/AHI (Advanced Himawari Imager) AOD product to provide hourly
PM2.5 estimation data. However, the Himawari-8/AHI range cannot provide full coverage
of China [20].

FY-4A is the first-launched satellite of the new generation of FY geostationary series
meteorological satellites; the Advanced Geosynchronous Radiation Imager (AGRI) on FY-
4A provide observations over the full coverage of China, with higher temporal resolution
(5 min), which is more suitable for ground-level particulate matter monitoring over China.
Moreover, as the particulate matter in the atmosphere, the concentrations of PM2.5 and
PM10 showed a strong positive correlation [25,26]; considering the strong positive correla-
tion and the estimated PM2.5 and PM10 concentration synchronously should improve the
estimation results. Currently, there are few studies on the synchronous PM2.5 and PM10
estimation, based on FengYun geostationary meteorological satellite observed radiations. In
this research, we improved the XGBoost model to estimate the concentrations of PM2.5 and
PM10 synchronously every 5 min over mainland China, based on FY-4A/AGRI observed
radiations directly. The performance of the improved model was tested by cross-validation
between satellite-based estimation and ground site-measured concentrations of PM2.5 and
PM10. Moreover, the estimation results in different regions and weather conditions were
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evaluated by analyzing the estimated concentrations of PM2.5 and PM10 during haze and
dust storm events. This paper is organized as follows.

The datasets used in this article are described in Section 2. Section 3 introduces the
development of the particulate matter concentration estimation model, the data prepro-
cessing method and the result verification in detail. The FY-4A satellite-based estimation
of PM2.5 and PM10 concentration results are presented and discussed in Sections 4 and 5,
respectively. Finally, the conclusions are addressed in Section 6.

2. Data

This research aimed to estimate the concentrations of PM2.5 and PM10 synchronously
every 5 min over mainland China, based on FY-4A/AGRI observed radiations. Therefore,
satellite-observed radiation, ground-level particulate matter concentration, meteorological
data and land surface parameter data (a summary of datasets is listed in Table 1) were
employed to develop the PM2.5 and PM10 concentration estimation model.

Table 1. The datasets used in this study.

Datasets Variables Units Temporal
Resolution

Spatial
Resolution Data Source

The ground-level particulate
matter concentration

PM2.5
µg/m3 Hourly - CNEMC

PM10

Satellite observed Radiation
Reflectance (Channel 1–6) -

5 min (China
area) 4 km FY-4A/AGRIBrightness Temperature

(Channel 7–14) K

Meteorological data

Boundary Layer Height m

Hourly 0.25◦ ERA-5

Wind m/s

Integrated Water Vapor kg/m2

Surface pressure hpa

Temperature (16 layers,
500 hpa to 1000 hpa) K

Relative humidity (16 layers,
500 hpa to 1000 hpa) %

Land surface parameter data
Land Surface Albedo - 16 Days 0.05◦ MCD43C3

Land Surface Elevation m - 90 m SRTMGL1

NDVI - Monthly 0.05◦ MYD13C2

2.1. FY-4A Data

FengYun-4 is the new generation of the FengYun geostationary series meteorological
satellite of China, and the FY-4A satellite is the first-launched satellite of the FengYun-4
series. It launched on 11 December 2016, and the center longitude was located at 104.7◦E
since 25 May 2017. Both the use of navigation registration technology and three-axis
stabilization enhancement technology made the data of FY-4A have a higher navigation
registration accuracy and observation efficiency [27]. The FY-4A satellite has four instru-
ments [28]; among these instruments, AGRI is the primary load of the FY-4A satellite with
more spectral channels (Table 2 shows the spectral and spatial resolution of FY-4A/AGRI)
and a higher scanning efficiency (every 15 min for full disk, every 5 min for China area and
every 1 min for target area), which will greatly improve PM2.5 and PM10 estimations [29].
Therefore, FY-4A has a unique advantage to provide full coverage and high-frequency
PM2.5 and PM10 concentrations over China.
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Table 2. The channel parameters (spectral and spatial resolution) of FY-4A/AGRI.

Wavelength (µm) Spatial Resolution (km)

Visible channels
0.47 1

0.65 0.5

Near-infrared visible channel 0.83 1

Shortwave infrared visible channels

1.37 2

1.61 2

2.22 2

Medium-wave infrared visible channels
3.72 high 2

3.72 low 4

Water vapor visible channels
6.25 4

7.1 4

Thermal infrared visible channels

8.5 4

10.8 4

12.0 4

13.5 4

In this study, we used the reflectance and brightness temperature (derived from all
visible and infrared channels in Table 2) at TOA observed by FY-4A/AGRI, instead of the
AOD product, to directly estimate the PM2.5 and PM10 concentration. The implementation
of de-cloud processing was based on the CLoud Mask (CLM) product to avoid cloud
impacts on the PM estimation. To estimate the concentrations of PM2.5 and PM10 in the
dust storm region, we used the Dust Storm Detection (DSD) product to detect the dust
storm region. Then, the concentration of PM2.5 and PM10 over clear-sky, dust storm and
haze regions could be estimated separately based on FY-4A/AGRI observations.

The FY-4A/AGRI observed reflectance and the brightness temperature of L1 data and
CLM and DSD products were open-accessed from the National Satellite Meteorological
Center (NSMC) (http://satellite.nsmc.org.cn (accessed on 3 January 2023)). The TOA
radiation data and CLM and DSD products from the FY-4A satellite had a 4 km spatial
resolution and 5 min time resolution, with a temporal range covering 2021 and 2022.

2.2. The Ground Level PM2.5 and PM10 Concentration Monitoring Data

The ground-based site-measured concentrations of PM2.5 and PM10 data were ac-
cessed from the China Environmental Monitoring Center (CNEMC)’s website (http://
www.cnemc.cn (accessed on 10 January 2023)). The ground-based sites over mainland
China were used to measure and collect air quality data, which included the hourly moni-
toring of the data of the PM2.5 and PM10 concentrations. The ground-based site-measured
air quality data were quality-controlled following China’s National Ambient Air Quality
Standard (CNAAQS) to improve the data accuracy [13]; the uncertainty of the particulate
matter concentration measurement is less than 5 µg/m3 [30].

In this study, we collected the site-measured concentrations of PM2.5 and PM10 from
2027 ground-based sites over mainland China; the temporal ranges of the data were from
2021 to 2022. Figure 1 shows the distribution map of the ground-based sites and the
research area across mainland China. We conducted quality control on hourly PM2.5 data
to remove missing values and severe data outliers.

http://satellite.nsmc.org.cn
http://www.cnemc.cn
http://www.cnemc.cn
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2.3. Meteorological Data

The distribution of the ground-level PM concentration not only has seasonal varia-
tions, but also temporal and spatial fluctuations caused by meteorological factors [31–33].
Therefore, the meteorological factors significantly impact the estimation and predictions of
PM2.5 and PM10. Previous studies demonstrated that boundary layer height, wind, water
vapor, surface pressure, temperature and relative humidity greatly impact the formation
and dissipation of PM2.5 and PM10 [24,34,35].

The meteorological factors, including boundary layer height, wind, water vapor,
surface pressure, the profile of temperature and relative humidity data, were from the fifth
generation of atmospheric reanalysis of the global climate (ERA-5) data from European
Centre for Medium-range Weather Forecasts (ECMWF) (https://cds.climate.copernicus.eu/
(accessed on 10 January 2023)) and were collected in this research. The ERA-5 data were
hourly grided in a spatial resolution of 0.25◦ × 0.25◦.

2.4. Land Surface Parameters Data

The apparent radiation observed by a satellite was from the land’s surface and at-
mosphere, while the ground-level particles matters were mainly below the boundary
layer [33,36]. Therefore, separating the radiation of ground-level particulate matters from
the apparent radiation observed by satellites was important when estimating the concen-
trations of PM2.5 and PM10. The land surface parameters were helpful for the land surface
and atmosphere radiation separation.

In this study, we used the land surface albedo, land surface elevation and Normalized
Difference Vegetation Index (NDVI) data as the land surface parameters to input into the
estimation model to estimate the concentrations of PM 2.5 and PM10 at ground level.

The surface radiation characteristics were very important to separate the radiation
of land from the apparent radiation observed by satellites. In this research, we used the
MODIS Collection6 albedo product dataset (MCD43C3) [37–39] to provide high-quality
land surface reflectance and albedo data over various types of land surfaces using the

https://cds.climate.copernicus.eu/
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anisotropy retrievals algorithm [40–43]. The shortwave white-sky albedo (WSA) and black-
sky albedo (BSA) from the MCD43C3 product were used to obtain the SW broadband
(0.3–5.0 µm) land surface albedo [44,45].

The surface elevation was obtained from the Shuttle Radar Topography Mission
(SRTM) Digital Elevation Model (DEM) product. The SRTM provided high-resolution DEM
that was high quality and openly accessible [45]. In this study, we used DEM from Version
3.0 SRTM Global 1 arc second product (SRTMGL1).

NDVI can be used to represent the land cover and vegetation condition. The MYD13C2
product provided monthly cloud-free NDVI in 0.05-degree grid, based on AQUA/MODIS
observations. In this study, NDVI from MYD13C2 Version 6.1 product was used as a proxy
for the land cover data to estimate the concentration of PM2.5 and PM10 at ground level.

The SRTMGL1, MCD43C3 and MYD13C2 product data can be obtained from Aero-
nautics and Space Administration (NASA) (https://search.earthdata.nasa.gov/ (accessed
on 10 January 2023)).

3. Methods
3.1. The PM2.5 and PM10 Concentration Estimation Model

XGBoost is an ensemble machine learning algorithm using the Gradient Boosting
framework based on the boosting algorithm. XGBoost solved many data science problems
efficiently and accurately. Therefore, XGBoost is widely used in many fields [46]. There
are also many successful cases of particulate matter concentration estimation based on
the XGBoost model [13,47–50]. These results proved that XGBoost outperformed various
statistical models. Therefore, XGBoost was suitable for the application of the particulate
matter concentration estimation.

In this research, the positive correlation between PM2.5 and PM10 concentration was
considered, and the XGBoost model was improved and rebuilt to estimate the concentra-
tions of PM2.5 and PM10 synchronously. Figure 2 shows the procedures of the estimation
model, which includes the following three steps:

Step 1 was data integration. Firstly, the satellite data, ground site-measured PM
concentration data, meteorological data and land surface parameters data were subject
to data quality control and temporal–spatial matching. All kinds of data (summary of
datasets listed in Table 1) were sampled from ground site locations (the nearest grid data
from ground sites) to obtain hourly (temporal resolution of ground site measurements)
matched datasets. Then, the matched dataset was normalized, and the matched dataset
was also divided into the training set, testing set and validation set for model training,
testing and result validating, respectively. In this study, the matched dataset in 2021 was
randomly and uniformly assigned, training sets were composed by 80% of the matched
dataset in 2021, and testing sets were composed by 20% of the matched dataset in 2021.

Step 2 was model development. Parameter tuning was essential to improve the
model and achieve an optimal performance. Therefore, we evaluated the model based
on the testing set and the parameter optimized in training. Then, the model parameters
max_depth = 12 (maximum depth of the tree), eta = 0.06 (learning rate), n_estimators = 160
(number of gradient boosting trees), subsample = 0.8 (sampling rate of training samples),
objective = reg:squarederror (specify the learning task and the corresponding learning
objective) were used in the study for PM2.5 and PM10 estimation. The max_depth value
indicates the complex of the model, increasing max_depth would make the model more
complex and more likely to overfit. The eta value indicates the step size of the model, the
shrinkage of eta would update to prevents overfitting, and eta shrinks the feature weights
to make the boosting process of the model more conservative. Gradient boosting is fairly
robust to over-fitting so a large n-estimators value usually results in better performance.
The subsample value controls the sampling rate of training data, setting it to 0.8 means
that model would randomly sample 80% of the training set data, and this would prevent
overfitting. The objective defined the “specify the learning task” and the corresponding
learning objective, reg:squarederror indicated regression with squared loss. Moreover, the

https://search.earthdata.nasa.gov/
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positive correlation between PM2.5 and PM10 was considered, and the XGBoost model
was rebuilt to a multi-output model by using MultiOutputRegressor from Scikit-learn
library. This strategy extended regressors of XGBoost to support multi-target regression, it
consisted of fitting one regressor per target, and established the connection between targets.
Therefore, the model was improved to estimate the PM2.5 and PM10 concentrations at
ground level, synchronously.

Step 3 was model application. FY-4A/AGRI data, meteorological data and land surface
parameters data were each projected and interpolated (using the bilinear interpolation
method) to a 4 km resolution used for the improved estimation model input, and the
improved estimation model was applied to estimate PM2.5 and PM10 concentrations
synchronously over mainland China every 5 min.
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3.2. Results Verification Method

The performance of the improved estimation model was evaluated using statistical
results, including the coefficient of determination (R2), the Root Mean Square Error (RMSE),
Mean Error (ME) and the Agreement index (Aindex).

R2 = 1 − ∑N
i (yi − yestimate)

2

∑(yi − y)2 (1)

RMSE =

√
∑N

i (yi − yestimate)
2

N
(2)

ME =
∑N

i (yi − yestimate)

N
(3)

Aindex = 1 − ∑N
i (yestimate − yi)

2

∑N
i (|yestimate − yi| − |yi − yi|)2 (4)

where yestimate represents the estimated PM2.5 and PM10 concentrations based on FY-
4A/AGRI observations, yi is the ground site-measured values, yi is the mean value of
ground site-measured results and N is the number of the ground site measurements.

4. Results

The improved XGBoost model was applied to estimate the concentrations of PM2.5
and PM10 every 5 min over mainland China based on FY-4A/AGRI observed radiations
directly. In this section, the accuracy of the estimation results was tested by ground site
measurements. Moreover, the concentrations of PM2.5 and PM10 during typical haze and
dust storm cases were analyzed separately to test the applicability of the improved model
in various weather conditions and regions.

4.1. Evaluation of the Estimation Model

The validation set (22,980 points, independent matched data set in 2022, 12% of
integration data in 2022 were randomly and uniformly sampled) was used to evaluate the
estimation model by comparing the concentrations of PM2.5 and PM10 estimation results
and ground-based site-measured results.

Figure 3 shows the cross-validation of the PM2.5 concentration (Figure 3a) and PM10
(Figure 3b) concentration between satellite-based estimations and ground site-based mea-
surements. The results show that the FY-4A satellite-based estimation PM2.5 and the
PM10 concentration were highly consistent with the ground site-measured results, with a
high determination coefficient (R2) (0.81 for PM2.5, and 0.73 for PM10) and a small Root
Mean Squared Error (RMSE) (11.58 µg/m3 for PM2.5 concentration, and 23.69 µg/m3 for
PM10 concentration).

The difference histogram (Figure 4) shows there are few differences between satellite-
based estimations and ground-based site measurements PM2.5 (mean error was−0.012 µg/m3,
and median error was −0.0007 µg/m3) and PM10 (mean error was −0.18 µg/m3, and
median error was −0.0011 µg/m3) concentration. The difference corresponded to the
normal distribution; the errors were mainly around 0 µg/m3.

The monthly mean concentrations of PM2.5 and PM10 from satellite-based estima-
tion results were also evaluated by ground-based site-measured results (monthly mean
of 2027 site measurements). Figure 5 shows the cross-validation of the monthly mean
PM2.5 concentration (Figure 5a) and PM10 (Figure 5b) concentration between satellite-
based estimation and ground site-based measurements in March 2022. The result shows
that the FY-4A satellite-based estimated monthly mean PM2.5 and PM10 concentrations
were highly consistent with the ground site-measured results, with a high determina-
tion coefficient (R2) (0.89 for PM2.5, and 0.90 for PM10) and a small Root Mean Squared
Error (RMSE) (4.69 µg/m3 for PM2.5 concentrations, and 13.77 µg/m3 for PM10 con-
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centrations). The difference histogram (Figure 6) between satellite-based estimation and
ground-based site-measured results shows that the difference corresponds to the normal
distribution; there was also little difference between satellite-based estimation and ground-
based site-measured monthly mean PM2.5 (mean error was −0.23 µg/m3, and median
error was −0.38 µg/m3) and PM10 (mean error was −0.006 µg/m3, and median error was
−0.93 µg/m3) concentration.
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The monthly mean PM2.5 and PM10 concentrations estimated by FY-4A/AGRI sam-
pled point-like data following ground-based site locations. The distribution maps of
satellite-based estimated monthly mean PM2.5 (Figure 7c) and PM10 (Figure 7d) concentra-
tions in March 2022 were highly consistent with ground site measured results (Figure 7a,b),
both results show high-value regions in North China (haze) and Xinjiang (dust). This
indicates that the particulate matter concentration estimation results based on FY-4A/AGRI
have a high accuracy and rationality. Some regions show the difference between ground
site measurements, especially in high PM2.5 and PM10 concentration value regions over
high land surface albedo regions.
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The performance of the PM2.5 and PM10 concentration estimations was also evaluated
in different months. The temporal evolution results indicated the characteristics of seasonal
variation. Figure 8 shows the PM2.5 and PM10 estimation results had a higher accuracy
(lower RMSE) in warm seasons and a lower accuracy (higher RMSE) in cold seasons; this
may have resulted from the land cover changes. The land surface albedo was quite high and
was not stable due to the snow cover in cold seasons and the relationships between visible
and SWIR channels over bright regions resulting in large difficulties in land surface albedo
estimation [18,40–43,50]. Therefore, the ground-level particulate matter concentration
estimations may have larger uncertainties in cold seasons.

4.2. Estimation of PM2.5 and PM10 Concentration during Haze and Dust Storm Weather

The estimation model performance of applicability in different weather conditions
and regions was tested by estimating particulate matter concentrations during typical haze
and dust storm cases.

The typical haze cases occurred over north China on 10 March 2022. The true color
image observed by FY-4A/AGRI (Figure 9a) showed obvious haze regions over north
China. The novel algorithm of haze identification was employed to detect haze regions [51];
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the algorithm was built upon the spectral characteristics of different pixels: the visible
band reflectance of the cloud pixels was greater than clear sky pixels, while the brightness
temperature in the infrared channels was usually lower than the clear sky and haze pixels,
and the brightness temperature difference was also higher than that of the clear sky and
haze pixels. Then, the above characteristics were taken, and the adaptive improvements
to the threshold selection were carried out for haze detection based on FY-4A/AGRI, and
the PM2.5 (Figure 9b) and PM10 (Figure 9c) concentrations were estimated during the
haze pollution processes. The satellite-based estimation results were highly consistent with
ground-site-measured PM2.5 (Figure 9d) and PM10 (Figure 9e) concentration; both results
showed a high-value center over the Hebei province and a low value in clear-sky regions.
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A strong dust storm occurred over the northwest of China on 20 April 2022. The dust
storm was also observed by FY-4A/AGRI (Figure 10a), dust storm regions were detected by
FY-4A DSD product, and PM2.5 (Figure 10b) and PM10 (Figure 10c) concentration estimated
both over dust storm and clear-sky regions using the PM2.5 and PM10 concentration
estimation model developed in this paper. The estimated results compared to ground-
site-measured results are presented in Figure 10d,e. The satellite-based estimation results
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were highly consistent with ground site-measured results; both results showed high-value
regions over Xinjiang, Inner Mongolia and the northeast of China, and a low value in
clear-sky regions.
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In order to analyze the development and dissipation process of air pollution, the
aerosols over Shijiazhuang were mainly considered as mainly sources of anthropogenic
aerosols from biomass burning and industrial activities [52]. Hotan city is surrounded
by the Taklimakan desert and the major aerosol over Hotan is dust aerosol during the
dusty period [53]. Typical haze and dust storms occurred over the northwest of China on
10 March and 20 April, respectively. Therefore, we collected the air quality data measured
by the ground site (PM2.5 and PM10 concentrations) in Shijiazhuang (site number 1029A,
located at 114.4422◦E, 38.0444◦N, • in Figure 1) and Hotan (site number 3615A, located at
79.9131◦E, 37.113◦N, N in Figure 1) during the haze and dust storm cases that occurred on
10 March and 20 April 2022.

Figure 11 shows the time series observation and estimation of particulate matter
concentrations over ground-based sites 1029A (Figure 11a) and 3615A (Figure 11b) on
March 10 and April 20 separately. The result shows that concentrations of PM2.5 and PM10
estimated by FY-4A/AGRI highly agreed with the ground site-measured results in time
series (with the agreement index of 0.93 and 0.79 for PM2.5, 0.96 and 0.93 for PM10 on
March 10 and April 20 over ground sites 1029A and 3615A, respectively), which accurately
monitor the development process of ground level particulate matters during haze and
dust storm cases. The analysis and statistics of the results showed that PM2.5 accounted
for about 50% of PM10 over haze regions, and about 25% over dust storm regions; this
indicates that the particulate matter is mostly fine particles over haze regions and mostly
coarse particles over dust storm regions.
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Figure 11. The time series observation and estimation of PM2.5 and PM10 concentrations over ground
sites (a) 1029A and (b) 3615A.

The estimated results during haze and dust storm weather conformed to haze and
dust aerosol characteristics; this indicates that the estimation model performed well under
different weather conditions and in different regions.

5. Discussion

In this study, the concentrations of PM2.5 and PM10 at ground level were esti-
mated synchronously every 5 min in mainland China based on FY-4A/AGRI directly
observed radiations.

The validation results showed that the improved model of the PM2.5 and PM10
concentration estimation was close to ground site-measured results, with a high deter-
mination coefficient (R2) (0.89 for PM2.5 concentration, and 0.90 for PM10 concentration)
and a small Root Mean Squared Error (RMSE) (4.69 µg/m3 for PM2.5 concentration, and
13.77 µg/m3 for PM10 concentration). The accuracy of the PM2.5 and PM10 concentration
estimation result based on FY-4A/AGRI in this paper was comparable to other studies
(Table 3) [13–15,22–24,47,54].
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Table 3. The ground-level particulate matter concentration estimated from different studies.

Research Study Area Model Temporal
Resolution

Spatial
Resolution R2 RMSE (µg/m3)

Wei et al.
(2016) [15] Xi’an A nonlinear model Daily 10 km 0.79 (PM10) 11.7 (PM10)

Li et al. (2017) Wuhan Urban
Agglomeration

Deep Belief Network
(DBN) Daily 1 km 0.87 (PM2.5) 9.89 (PM2.5)

Chen et al.
(2019) [13]

Mainland
China XGboost Daily 3 km 0.86 (PM2.5) 14.98 (PM2.5)

Gui et al.
(2020) [47]

Mainland
China XGboost Hourly 0.5◦ × 0.625◦ 0.80 (PM2.5) 14.75 (PM2.5)

Yan et al.
(2021) [23]

Mainland
China

Spatial-Temporal
Interpretable Deep

Learning Model
(SIDLM)

Daily

250 m (PM2.5) 0.62 (PM2.5) 16.01 (PM2.5)

3 km (PM2.5) 0.66 (PM2.5) 15.96 (PM2.5)

10 km (PM2.5) 0.70 (PM2.5) 15.30 (PM2.5)

Wei et al.
(2020) [14]

Mainland
China

Space–Time
Extremely

randomized Trees
(STET)

Daily 1 km 0.89 (PM2.5) 10.35 (PM2.5)

Wei et al.
(2021) [24] Eastern China

Light Gradient
Boosting Machine

(LightGBM)
Hourly 5 km 0.98 (PM2.5) 3.23 (PM2.5)

Mao et al. [54] Mainland
China

Random Forest
model Hourly 4 km 0.88–0.95

(PM2.5)
5.02-12.43
(PM2.5)

This study Mainland
China

Improved XGboost 5 min 4 km
0.89 (PM2.5) 4.69 (PM2.5)

0.90 (PM10) 13.77 (PM10)

The estimation model presented a good performance during the typical haze and
dust storm cases, and the results correctly presented the actual distribution and variation
in ground-level particulate matters, indicating that it was applicable in different weather
conditions and regions. Moreover, the concentrations of PM2.5 and PM10 were estimated
in 5 min intervals, which greatly improved the temporal resolution of the PM2.5 and
PM10 estimation in the current research (hourly) [24,48,54]. The high-temporal-resolution
observation was important in the monitoring of PM2.5 and PM10 and the analysis of the
generation and transmission of the particulate matter in the atmosphere.

There were still several potential limitations in this research. Although the particulate
matter concentrations estimated by FY-4A/AGRI were highly consistent with ground-site-
measured results in the spatial and time series, there were still differences with ground
site measurements (Figures 8 and 11). To solve this problem, the advantage of the high
spatial–temporal resolution observation from FY-4A/AGRI should be fully taken, and the
spatial–temporal self-correlation of ground-level particulate matter should be considered
for future improvements in PM2.5 and PM10 estimation.

6. Conclusions

In this research, we improved the XGBoost model, estimating the concentrations of
PM2.5 and PM10 synchronously over mainland China every 5 min, based on FY-4A/AGRI
directly observed radiation, which greatly improved the temporal resolution of PM2.5
and PM10 estimation in the current studies (hourly). The accuracy of the particulate
matter concentration estimation results was tested by ground site measurements, and the
concentrations of PM2.5 and PM10 were estimated during typical haze and dust storm
cases. The validation results showed that the improved model estimated monthly mean
concentrations of PM2.5 and PM10 were close to the ground site-measured results, with a
high determination coefficient (R2) (0.89 for PM2.5, and 0.90 for PM10) and a small Root
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Mean Squared Error (RMSE) (4.69 µg/m3 for PM2.5 concentrations, and 13.77 µg/m3 for
PM10 concentrations). The results correctly presented the actual distribution and variation
of the ground-level particulate matter, indicating that it was applicable under different
weather conditions and in different regions.

Future research on ground-level particulate matter should consider the spatial–temporal
self-correlation of particulate matter to improve the PM2.5 and PM10 estimation, achieve
the goal of accurate observation of the ground-level particulate matter concentration with a
high temporal and spatial resolution, and provide a reference for air pollution control and
construction materials deterioration.

Author Contributions: Conceptualization, L.C. and P.Z.; methodology, L.C., L.T. and Y.S.; validation,
L.T., B.H. and Y.G.; formal analysis, L.T. and Y.G.; investigation, L.C. and L.T.; data curation, L.T.,
B.H. and Y.S.; writing—original draft preparation, L.T. and L.C.; writing—review and editing, L.C.
and P.Z.; visualization, L.T. and Y.S.; supervision, L.C. and P.Z.; project administration, L.C. and P.Z.;
funding acquisition, L.C., L.T. and Y.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (grant number 2021YFB3901000, 2021YFB3901005), the National Natural Science Foundation
of China (grant number 41875133) and the Beijing Municipal Natural Science Foundation (grant
number 8214065).

Acknowledgments: The authors would like to thank the following for their support: FY-4A L1
data and products (CLM and DSD) from NSMC, PM2.5 and PM10 concentration measured data
from the CNEMC; meteorological data (boundary layer height, wind, water vapor, surface pressure,
temperature and relative humidity) from ECMWF and land surface parameters data (SRTMGL1,
MCD43C3 and MYD13C2 products) from NASA.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on

Human Health. J. Med. Toxicol. 2012, 8, 166–175. [CrossRef] [PubMed]
2. Gui, K.; Che, H.; Wang, Y.; Wang, H.; Zhang, L.; Zhao, H.; Zheng, Y.; Sun, T.; Zhang, X. Satellite-derived PM2.5 concentration

trends over Eastern China from 1998 to 2016: Relationships to emissions and meteorological parameters. Environ. Pollut. 2019,
247, 1125–1133. [CrossRef] [PubMed]

3. Beloconi, A.; Vounatsou, P. Substantial Reduction in Particulate Matter Air Pollution across Europe during 2006–2019: A
Spatiotemporal Modeling Analysis. Environ. Sci. Technol. 2021, 55, 15505–15518. [CrossRef] [PubMed]

4. Varotsos, C.; Tzanis, C.; Cracknell, A. The enhanced deterioration of the cultural heritage monuments due to air pollution.
Environ. Sci. Pollut. Res. 2009, 16, 590–592. [CrossRef] [PubMed]

5. Christodoulakis, J.; Varotsos, C.A.; Cracknell, A.P.; Kouremadas, G.A. The deterioration of materials as a result of air pollution as
derived from satellite and ground based observations. Atmos. Environ. 2018, 185, 91–99. [CrossRef]

6. Chae, S.; Shin, J.; Kwon, S.; Lee, S.; Kang, S.; Lee, D. PM10 and PM2.5 real-time prediction models using an interpolated
convolutional neural network. Sci. Rep. 2021, 11, 11952. [CrossRef]

7. Guo, J.-P.; Zhang, X.-Y.; Che, H.-Z.; Gong, S.-L.; An, X.; Cao, C.-X.; Guang, J.; Zhang, H.; Wang, Y.-Q.; Zhang, X.-C.; et al.
Correlation between PM concentrations and aerosol optical depth in eastern China. Atmos. Environ. 2009, 43, 5876–5886.
[CrossRef]

8. Xu, Q.; Chen, X.; Yang, S.; Tang, L.; Dong, J. Spatiotemporal relationship between Himawari-8 hourly columnar aerosol optical
depth (AOD) and ground-level PM2.5 mass concentration in mainland China. Sci. Total Environ. 2021, 765, 144241. [CrossRef]

9. Wen, Y.N.; Che, Y.H.; Guang, J.; Xie, Y.Q.; Shi, Z.; Zhang, Y.; Li, Z.Q. Validation of aerosol products from esa/aatsr over china and
aod fusion based on uncertainties. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-3/W9, 181–185. [CrossRef]

10. Bao, Y.; Liuhua, Z.; Guan, Q.; Guan, Y.; Lu, Q.; Che, H.; Ali, G.; Dong, Y.; Tang, Z.; Gu, Y.; et al. Assessing the impact of Chinese
FY-3/MERSI AOD data assimilation on air quality forecasts: Sand dust events in northeast China. Atmos. Environ. 2019, 205,
78–89. [CrossRef]

11. Xu, X.; Zhang, C.; Liang, Y. Review of satellite-driven statistical models PM2.5 concentration estimation with comprehensive
information. Atmos. Environ. 2021, 256, 118302. [CrossRef]

12. Su, T.; Li, J.; Li, C.; Lau, A.K.-H.; Yang, D.; Shen, C. An intercomparison of AOD-converted PM2.5 concentrations using different
approaches for estimating aerosol vertical distribution. Atmos. Environ. 2017, 166, 531–542. [CrossRef]

http://doi.org/10.1007/s13181-011-0203-1
http://www.ncbi.nlm.nih.gov/pubmed/22194192
http://doi.org/10.1016/j.envpol.2019.01.056
http://www.ncbi.nlm.nih.gov/pubmed/30823341
http://doi.org/10.1021/acs.est.1c03748
http://www.ncbi.nlm.nih.gov/pubmed/34694135
http://doi.org/10.1007/s11356-009-0114-8
http://www.ncbi.nlm.nih.gov/pubmed/19263102
http://doi.org/10.1016/j.atmosenv.2018.04.052
http://doi.org/10.1038/s41598-021-91253-9
http://doi.org/10.1016/j.atmosenv.2009.08.026
http://doi.org/10.1016/j.scitotenv.2020.144241
http://doi.org/10.5194/isprs-archives-XLII-3-W9-181-2019
http://doi.org/10.1016/j.atmosenv.2019.02.026
http://doi.org/10.1016/j.atmosenv.2021.118302
http://doi.org/10.1016/j.atmosenv.2017.07.054


Remote Sens. 2023, 15, 1459 18 of 19

13. Chen, Z.-Y.; Zhang, T.-H.; Zhang, R.; Zhu, Z.-M.; Yang, J.; Chen, P.-Y.; Ou, C.-Q.; Guo, Y. Extreme gradient boosting model to
estimate PM2.5 concentrations with missing-filled satellite data in China. Atmos. Environ. 2019, 202, 180–189. [CrossRef]

14. Wei, J.; Li, Z.; Cribb, M.; Huang, W.; Xue, W.; Sun, L.; Guo, J.; Peng, Y.; Li, J.; Lyapustin, A.; et al. Improved 1 km resolution
PM2.5 estimates across China using enhanced space–time extremely randomized trees. Atmos. Chem. Phys. 2020, 20, 3273–3289.
[CrossRef]

15. You, W.; Zang, Z.; Zhang, L.; Zhang, M.; Pan, X.; Li, Y. A nonlinear model for estimating ground-level PM10 concentration in
Xi’an using MODIS aerosol optical depth retrieval. Atmos. Res. 2016, 168, 169–179. [CrossRef]

16. Chu, D.A.; Kaufman, Y.J.; Ichoku, C.; Remer, L.A.; Tanré, D.; Holben, B.N. Validation of MODIS aerosol optical depth retrieval
over land. Geophys. Res. Lett. 2002, 29, MOD2-1–MOD2-4. [CrossRef]

17. Kahn, R.A.; Garay, M.J.; Nelson, D.L.; Yau, K.K.; Bull, M.A.; Gaitley, B.J.; Martonchik, J.V.; Levy, R.C. Satellite-derived aerosol
optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies.
J. Geophys. Res. Atmos. 2007, 112, D18. [CrossRef]

18. Hsu, N.C.; Tsay, S.-C.; King, M.D.; Herman, J.R. Aerosol Properties Over Bright-Reflecting Source Regions. IEEE Trans. Geosci.
Remote Sens. 2004, 42, 557. [CrossRef]

19. Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.-J. MODIS Collection 6 aerosol products:
Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res.
Atmos. 2014, 119, 13,965–13,989. [CrossRef]

20. Wei, J.; Li, Z.; Sun, L.; Peng, Y.; Zhang, Z.; Li, Z.; Su, T.; Feng, L.; Cai, Z.; Wu, H. Evaluation and uncertainty estimate
of next-generation geostationary meteorological Himawari-8/AHI aerosol products. Sci. Total Environ. 2019, 692, 879–891.
[CrossRef]

21. Shen, H.; Li, T.; Yuan, Q.; Zhang, L. Estimating Regional Ground-Level PM2.5 Directly From Satellite Top-Of-Atmosphere
Reflectance Using Deep Belief Networks. J. Geophys. Res. Atmos. 2018, 123, 13,875–13,886. [CrossRef]

22. Li, T.; Shen, H.; Yuan, Q.; Zhang, X.; Zhang, L. Estimating Ground-Level PM2.5 by Fusing Satellite and Station Observations: A
Geo-Intelligent Deep Learning Approach. Geophys. Res. Lett. 2017, 44, 11,985–11,993. [CrossRef]

23. Yan, X.; Zang, Z.; Jiang, Y.; Shi, W.; Guo, Y.; Li, D.; Zhao, C.; Husi, L. A Spatial-Temporal Interpretable Deep Learning Model
for improving interpretability and predictive accuracy of satellite-based PM2.5. Environ. Pollut. 2021, 273, 116459. [CrossRef]
[PubMed]

24. Wei, J.; Li, Z.; Pinker, R.T.; Wang, J.; Sun, L.; Xue, W.; Li, R.; Cribb, M. Himawari-8-derived diurnal variations in ground-level
PM2.5 pollution across China using the fast space-time Light Gradient Boosting Machine (LightGBM). Atmos. Chem. Phys. 2021,
21, 7863–7880. [CrossRef]

25. Zhou, X.; Cao, Z.; Ma, Y.; Wang, L.; Wu, R.; Wang, W. Concentrations, correlations and chemical species of PM2.5/PM10 based on
published data in China: Potential implications for the revised particulate standard. Chemosphere 2016, 144, 518–526. [CrossRef]

26. Kong, L.; Xin, J.; Zhang, W.; Wang, Y. The empirical correlations between PM2.5, PM10 and AOD in the Beijing metropolitan
region and the PM2.5, PM10 distributions retrieved by MODIS. Environ. Pollut. 2016, 216, 350–360. [CrossRef]

27. Zhang, P.; Zhu, L.; Tang, S.; Gao, L.; Chen, L.; Zheng, W.; Han, X.; Chen, J.; Shao, J. General Comparison of FY-4A/AGRI with
Other GEO/LEO Instruments and Its Potential and Challenges in Non-meteorological Applications. Front. Earth Sci. 2019, 6, 224.
[CrossRef]

28. Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the new generation of Chinese geostationary weather satellites–FengYun 4
(FY-4). Bull. Am. Meteorol. Soc. 2016, 98, 1637–1658. [CrossRef]

29. Xia, X.; Min, J.; Shen, F.; Wang, Y.; Xu, D.; Yang, C.; Zhang, P. Aerosol data assimilation using data from Fengyun-4A, a
next-generation geostationary meteorological satellite. Atmos. Environ. 2020, 237, 117695. [CrossRef]

30. Miao, Y.; Liu, S. Linkages between aerosol pollution and planetary boundary layer structure in China. Sci. Total Environ. 2019,
650, 288–296. [CrossRef]

31. Nyeki, S.; Halios, C.H.; Baum, W.; Eleftheriadis, K.; Flentje, H.; Gröbner, J.; Vuilleumier, L.; Wehrli, C. Ground-based aerosol
optical depth trends at three high-altitude sites in Switzerland and southern Germany from 1995 to 2010. J. Geophys. Res. Atmos.
2012, 117, D18. [CrossRef]

32. Zhengqiang, L.; Yuhuan, Z.; Ying, Z.; Weizhen, H.; Yan, M.; Cheng, C. Remote sensing of atmospheric PM2.5 from high spatial
resolution image of Chinese environmental satellite HJ-1/CCD data. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 012023. [CrossRef]

33. Wu, J.; Liang, J.; Zhou, L.; Yao, F.; Peng, J. Impacts of AOD Correction and Spatial Scale on the Correlation between High-
Resolution AOD from Gaofen-1 Satellite and In Situ PM2.5 Measurements in Shenzhen City, China. Remote Sens. 2019, 11, 2223.
[CrossRef]

34. Gupta, P.; Christopher, S.A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological
products: Multiple regression approach. J. Geophys. Res. Atmos. 2009, 114, D14. [CrossRef]

35. Gupta, P.; Christopher, S.A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological
products: 2. A neural network approach. J. Geophys. Res. Atmos. 2009, 114, D20. [CrossRef]

36. Nabavi, S.O.; Haimberger, L.; Abbasi, E. Assessing PM2.5 concentrations in Tehran, Iran, from space using MAIAC, deep blue,
and dark target AOD and machine learning algorithms. Atmos. Pollut. Res. 2019, 10, 889–903. [CrossRef]

http://doi.org/10.1016/j.atmosenv.2019.01.027
http://doi.org/10.5194/acp-20-3273-2020
http://doi.org/10.1016/j.atmosres.2015.09.008
http://doi.org/10.1029/2001GL013205
http://doi.org/10.1029/2006JD008175
http://doi.org/10.1109/TGRS.2004.824067
http://doi.org/10.1002/2014JD022453
http://doi.org/10.1016/j.scitotenv.2019.07.326
http://doi.org/10.1029/2018JD028759
http://doi.org/10.1002/2017GL075710
http://doi.org/10.1016/j.envpol.2021.116459
http://www.ncbi.nlm.nih.gov/pubmed/33465651
http://doi.org/10.5194/acp-21-7863-2021
http://doi.org/10.1016/j.chemosphere.2015.09.003
http://doi.org/10.1016/j.envpol.2016.05.085
http://doi.org/10.3389/feart.2018.00224
http://doi.org/10.1175/BAMS-D-16-0065.1
http://doi.org/10.1016/j.atmosenv.2020.117695
http://doi.org/10.1016/j.scitotenv.2018.09.032
http://doi.org/10.1029/2012JD017493
http://doi.org/10.1088/1755-1315/17/1/012023
http://doi.org/10.3390/rs11192223
http://doi.org/10.1029/2008JD011496
http://doi.org/10.1029/2008JD011497
http://doi.org/10.1016/j.apr.2018.12.017


Remote Sens. 2023, 15, 1459 19 of 19

37. Schaaf, C.B.; Liu, J.; Gao, F.; Strahler, A.H. Aqua and Terra MODIS Albedo and Reflectance Anisotropy Products. In Land Remote
Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS; Ramachandran, B.,
Justice, C.O., Abrams, M.J., Eds.; Springer: New York, NY, USA, 2011; pp. 549–561.

38. Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First
operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [CrossRef]

39. Schaaf, C.; Martonchik, J.; Pinty, B.; Govaerts, Y.; Gao, F.; Lattanzio, A.; Liu, J.; Strahler, A.; Taberner, M. Retrieval of Surface
Albedo from Satellite Sensors. In Advances in Land Remote Sensing: System, Modeling, Inversion and Application; Liang, S., Ed.;
Springer Netherlands: Dordrecht, The Netherlands, 2008; pp. 219–243.

40. Jin, Y.; Schaaf, C.B.; Woodcock, C.E.; Gao, F.; Li, X.; Strahler, A.H.; Lucht, W.; Liang, S. Consistency of MODIS surface bidirectional
reflectance distribution function and albedo retrievals: 2. Validation. J. Geophys. Res. Atmos. 2003, 108, D5. [CrossRef]

41. Liang, S.; Fang, H.; Chen, M.; Shuey, C.J.; Walthall, C.; Daughtry, C.; Morisette, J.; Schaaf, C.; Strahler, A. Validating MODIS land
surface reflectance and albedo products: Methods and preliminary results. Remote Sens. Environ. 2002, 83, 149–162. [CrossRef]

42. Liu, J.; Schaaf, C.; Strahler, A.; Jiao, Z.; Shuai, Y.; Zhang, Q.; Roman, M.; Augustine, J.A.; Dutton, E.G. Validation of Moderate
Resolution Imaging Spectroradiometer (MODIS) albedo retrieval algorithm: Dependence of albedo on solar zenith angle. J.
Geophys. Res. Atmos. 2009, 114, D1. [CrossRef]

43. Román, M.O.; Schaaf, C.B.; Lewis, P.; Gao, F.; Anderson, G.P.; Privette, J.L.; Strahler, A.H.; Woodcock, C.E.; Barnsley, M. Assessing
the coupling between surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized
landscapes. Remote Sens. Environ. 2010, 114, 738–760. [CrossRef]

44. Lewis, P.; Barnsley, M. Influence of the sky radiance distribution on various formulations of the Earth surface albedo. Proc. Conf.
Phys. Meas. Sign. Remote Sens. 1994, 707–715.

45. Yang, L.; Meng, X.; Zhang, X. SRTM DEM and its application advances. Int. J. Remote Sens. 2011, 32, 3875–3896. [CrossRef]
46. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. arXiv 2016, arXiv:1603.02754.
47. Gui, K.; Che, H.; Zeng, Z.; Wang, Y.; Zhai, S.; Wang, Z.; Luo, M.; Zhang, L.; Liao, T.; Zhao, H.; et al. Construction of a virtual

PM2.5 observation network in China based on high-density surface meteorological observations using the Extreme Gradient
Boosting model. Environ. Int. 2020, 141, 105801. [CrossRef] [PubMed]

48. Dai, H.; Huang, G.; Zeng, H.; Yang, F. PM2.5 Concentration Prediction Based on Spatiotemporal Feature Selection Using
XGBoost-MSCNN-GA-LSTM. Sustainability 2021, 13, 12071. [CrossRef]

49. Sun, Y.; Xue, Y.; Jiang, X.; Jin, C.; Wu, S.; Zhou, X. Estimation of the PM2.5 and PM10 Mass Concentration over Land from FY-4A
Aerosol Optical Depth Data. Remote Sens. 2021, 13, 14276. [CrossRef]

50. Sun, L.; Wei, J.; Bilal, M.; Tian, X.; Jia, C.; Guo, Y.; Mi, X. Aerosol Optical Depth Retrieval over Bright Areas Using Landsat 8 OLI
Images. Remote Sens. 2016, 8, 23. [CrossRef]

51. Si, Y.; Chen, L.; Zheng, Z.; Yang, L.; Wang, F.; Xu, N.; Zhang, X. A Novel Algorithm of Haze Identification Based on FY3D/MERSI-II
Remote Sensing Data. Remote Sens. 2023, 15, 438. [CrossRef]

52. Sun, X.; Yin, Y.; Sun, Y.; Sun, Y.; Liu, W.; Han, Y. Seasonal and vertical variations in aerosol distribution over Shijiazhuang, China.
Atmos. Environ. 2013, 81, 245–252. [CrossRef]

53. Liu, H.; Wang, X.; Talifu, D.; Ding, X.; Abulizi, A.; Tursun, Y.; An, J.; Li, K.; Luo, P.; Xie, X. Distribution and sources of PM2.5-bound
free silica in the atmosphere of hyper-arid regions in Hotan, North-West China. Sci. Total Environ. 2022, 810, 152368. [CrossRef]
[PubMed]

54. Mao, F.; Hong, J.; Min, Q.; Gong, W.; Zang, L.; Yin, J. Estimating hourly full-coverage PM2.5 over China based on TOA reflectance
data from the Fengyun-4A satellite. Environ. Pollut. 2021, 270, 116119. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/S0034-4257(02)00091-3
http://doi.org/10.1029/2002JD002804
http://doi.org/10.1016/S0034-4257(02)00092-5
http://doi.org/10.1029/2008JD009969
http://doi.org/10.1016/j.rse.2009.11.014
http://doi.org/10.1080/01431161003786016
http://doi.org/10.1016/j.envint.2020.105801
http://www.ncbi.nlm.nih.gov/pubmed/32480141
http://doi.org/10.3390/su132112071
http://doi.org/10.3390/rs13214276
http://doi.org/10.3390/rs8010023
http://doi.org/10.3390/rs15020438
http://doi.org/10.1016/j.atmosenv.2013.08.009
http://doi.org/10.1016/j.scitotenv.2021.152368
http://www.ncbi.nlm.nih.gov/pubmed/34914986
http://doi.org/10.1016/j.envpol.2020.116119
http://www.ncbi.nlm.nih.gov/pubmed/33261970

	Introduction 
	Data 
	FY-4A Data 
	The Ground Level PM2.5 and PM10 Concentration Monitoring Data 
	Meteorological Data 
	Land Surface Parameters Data 

	Methods 
	The PM2.5 and PM10 Concentration Estimation Model 
	Results Verification Method 

	Results 
	Evaluation of the Estimation Model 
	Estimation of PM2.5 and PM10 Concentration during Haze and Dust Storm Weather 

	Discussion 
	Conclusions 
	References

