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Abstract: Due to various factors such as urban development, climate change, and tectonic movements,
landslides are a common geological phenomenon in the Qinghai–Tibet Plateau region, especially on
both sides of a road, where large landslide hazards often result in traffic disruptions and casualties.
Identifying the spatial distribution of landslides and monitoring their stability are essential for
predicting landslide occurrence and implementing prevention measures. In this study, taking the
Kangding-Batang section of Shanghai-Nyalam Road as the study area, we adopted a semi-automated
time-series interferometric synthetic aperture radar (InSAR) method to identify landslides and
monitor their activity. A total of 446 Sentinel-1 ascending and descending SAR images from January
2018 to December 2021 were thus collected and processed by using open-source InSAR processing
software. After a series of error corrections, we obtained surface deformation maps covering the
study area, and a total of 236 potential landslides were subsequently identified and classified into
three categories, namely slow-sliding rockslides, debris flows, and debris avalanches, by combining
deformation maps, optical images, and a digital elevation model (DEM). For a typical landslide, we
performed deformation decomposition and analyzed the relationship between its deformation and
rainfall, revealing the contribution of rainfall to the landslide. In addition, we discussed the effect
of SAR geometric distortion on landslide detection, highlighting the importance of joint ascending
and descending observations in mountainous areas. We analyzed the controlling factors of landslide
distribution and found that topographic conditions are still the dominant factor. Our results may
be beneficial for road maintenance and disaster mitigation. Moreover, the entire processing is semi-
automated based on open-source tools or software, which provides a paradigm for landslide-related
studies in other mountainous regions of the world.
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1. Introduction

Landslides are serious natural hazards, usually occurring in mountainous areas. Most
mountainous areas of the world are threatened by landslide hazards [1], such as the Himalayas,
European Alps, Andes, and Japanese Alps [2]. In recent years, many large landslides have been
activated and accelerated due to urban growth and climate change [3–5]. These destructive
landslides cause tremendous loss of life and property around the world every year [6]. To
better prevent and mitigate landslide disasters, it is very important and urgent to map the
distribution of landslides and monitor their stability.

Optical satellite images are most commonly used for landslide detection [7,8], from
which a series of methods have been developed, such as visual interpretation [9,10], change
detection [11–13], and object-oriented image analysis [14–16], as well as deep learning
methods [17–20]. However, optical satellite imagery has several serious deficiencies. For
instance, it is heavily affected by imaging time and cloud, and cloud-free images with
close imaging times before and after the catastrophic event are seldom available [21]. In
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addition, slow-moving landslides are difficult to identify from optical imagery due to their
subtle deformation features [22,23]. Furthermore, it is difficult to determine the activity
of landslides from optical images, making it impossible to predict future failure. These
limitations somewhat hinder landslide detection from optical images.

As active devices, synthetic aperture radar (SAR) sensors have the unique ability to
image at night and in cloud-covered areas, which can be an important complement to
optical sensors [22]. At present, satellite-based interferometric SAR (InSAR) is widely used
in surface deformation monitoring associated with various geophysical processes [24–29].
Advanced InSAR methods such as differential InSAR (DInSAR) [30], persistent scatterer
InSAR (PS InSAR) [31,32], and small baseline subset InSAR (SBAS InSAR) [33,34], with
millimeter-level detection accuracy and large ground coverage, have great advantages
for landslide monitoring and assessment [35–39]. Especially with the successful launch
of the Sentinel-1A SAR constellation, a minimum 12-day repeat acquisition allows us to
perform intensive deformation monitoring [40]. Nevertheless, several issues often limit
InSAR studies of landslides, such as dense vegetation, steep terrain, and decorrelation
noise [40,41]. In addition, large-area landslide detection and classification based on InSAR
techniques is still challenging [42].

The Shanghai-Nyalam Road, also called China National Highway 318 (G318), is an
important highway linking the east and west of China, starting in Shanghai in eastern
China and ending in Nyalam County, Tibet in western China, with a total length of over
5000 km. This highway passes through various terrain areas such as basins, plains, and
plateaus, with a wide variety of natural landscape types. In the western section of the
highway, it traverses the Qinghai–Tibet Plateau, an area with very complex geological
conditions and active tectonic movements [43,44]. Due to the huge elevation changes and
complex geological environment conditions on the Qinghai-Tibet Plateau, landslides are
widely distributed, resulting in serious disasters affecting the G318 in this region. Especially
during the rainy season, the G318 is often damaged by landslides, which often causes traffic
disruptions and impassability. However, landslide detection along this highway is difficult
and challenging. On the one hand, optical-based interpretation is often constrained by
image quality and usually does not determine the activity of each landslide. On the other
hand, the steep terrain makes it difficult for investigators to survey the entire area, so the
detection results are often incomplete. Moreover, InSAR technology is used less in this
area [45,46], such that the activity of landslides in this area remains unknown.

In order to detect the distribution of landslides and monitor their activity, we adopted
a semi-automated InSAR processing method to invert the surface deformation of the
Kangding-Batang section of the G318. We therefore collected and processed a total of
446 ascending and descending Sentinel-1 SAR images from January 2018 to December 2021.
Subsequently, a total of 236 potential landslides were detected and analyzed by using
open-source tools. The structure of the rest of the paper is as follows. Section 2 describes
the study area and the data used, followed by a description of the methodology and the
workflow in Section 3. Results are presented and analyzed in Section 4. Section 5 focuses
on the discussion of results, followed by the conclusions in Section 6.

2. Study Area and Data
2.1. Study Area

From east to west, the G318 passes through Shanghai, Wuhan, Chongqing, Chengdu,
and Lhasa. The Kangding-Batang section of the G318 is mainly located in Sichuan Province,
and it is part of the Chengdu-Lhasa section. This study focuses on an area of 10,843 km2

along the Kangding-Batang section of the G318, which is seriously affected by landslide
hazards, as shown in Figure 1.
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Figure 1. Overview of the study area. (A) Location of the G318 and the study area; (B) topographic
map of the study area. The purple and blue rectangles outline the coverage of the Sentinel-1 SAR
images. The black polygon shows the extent of the study area.

The elevation of the study area varies greatly, being mostly above 2000 m, with the
highest point over 5000 m, characterized by mountains and canyons. The study area
belongs to the plateau climate zone, which is characterized by low temperature and rapid
weather changes. From east to west, the rainfall in the study area gradually decreases, with
an average annual rainfall of 700 mm. The river systems are very well developed, and
several large rivers such as the Yalong River and Jinsha River pass through the study area.
In addition, different types of modern glaciers have also developed in the alpine zone of
the study area. Due to the high altitude, strong river/glacial erosion, and extreme climate
change [44], the rocks in the study area are relatively fragmented and the slopes are steep,
resulting in poor slope stability.

Geologically, the study area is located at the front edge of the Qinghai-Tibet Plateau,
with strong tectonic movements. Some large active faults, such as the Xianshuihe fault and
the Jinshajiang fault, have developed here. Historically, several large earthquakes (Ms > 7.0)
have been recorded around the study area, such as the 1955 Ms 7.5 Kangding earthquake
and the 1870 Ms 7.3 Batang earthquake. The stratigraphic lithology of the study area is very
complex, with sandstone, conglomerate, and slate being the most developed. The Triassic
and Permian are the most widely exposed strata.

Due to various factors, there are many types of landslide hazards in the study area. Ac-
cording to [47,48], we divided the landslides in the study area into the following categories:
(1) slow-sliding rockslide; (2) debris flow, mainly the flow of various water-containing
mixtures, e.g., a mixture of gravel, sand, and clay; (3) debris avalanche, mainly rock, ice,
weathered materials, or a mixture falling, sliding, and accumulating. Since the study area
has a high elevation with seasonal permafrost and glaciers, the flow of moraine cannot
be ignored, and it has the potential to transform into glacial debris flows. Here, for the
sake of simplicity, we classified landslides as debris flow or debris avalanche based on
geomorphological criteria. Figure 2 presents several typical landslide photos from the
Qinghai-Tibet Plateau.

2.2. Data

In this study, C-band Sentinel-1 Single Look Complex (SLC) images with the VV
polarization mode were adopted for landslide mapping. Sentinel-1 data can be obtained
from the Copernicus Open Access Hub or Alaska Satellite Facility for free, and a 12-day
repeat acquisition allows us to conduct intensive ground object monitoring [40]. As shown
in Figure 1, two ascending frames (Path 26, Frame 94 and Path 99, Frame 1280) and two
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descending frames (Path 135, Frame 493 and Path 33, Frame 492) can basically cover the
whole study area. The detailed data used can be found in Table 1.

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 17 
 

 

 

Figure 2. Photos of several typical landslides taken during field investigation: (A) shallow soil 
sliding; (B) old rockslide; (C) rock fall; (D) debris falling, sliding, and accumulating. 

2.2. Data 
In this study, C-band Sentinel-1 Single Look Complex (SLC) images with the VV 

polarization mode were adopted for landslide mapping. Sentinel-1 data can be obtained 
from the Copernicus Open Access Hub or Alaska Satellite Facility for free, and a 12-day 
repeat acquisition allows us to conduct intensive ground object monitoring [40]. As shown 
in Figure 1, two ascending frames (Path 26, Frame 94 and Path 99, Frame 1280) and two 
descending frames (Path 135, Frame 493 and Path 33, Frame 492) can basically cover the 
whole study area. The detailed data used can be found in Table 1. 

Table 1. Sentinel-1 SAR images used in this study. 

Track Path Frame Number 
Interferometric 

Pairs Time 

Ascending 
26 94 116 326 

7 January 2018 – 29 
December 2021 

99 1280 115 324 12 January 2018 – 10 
December 2021 

Descending 
135 493 97 285 19 June 2018 – 12 

December 2021 

33 492 118 348 7 January 2018 – 29 
December 2021 

  

Figure 2. Photos of several typical landslides taken during field investigation: (A) shallow soil sliding;
(B) old rockslide; (C) rock fall; (D) debris falling, sliding, and accumulating.

Table 1. Sentinel-1 SAR images used in this study.

Track Path Frame Number Interferometric Pairs Time

Ascending 26 94 116 326 7 January 2018–29 December 2021
99 1280 115 324 12 January 2018–10 December 2021

Descending 135 493 97 285 19 June 2018–12 December 2021
33 492 118 348 7 January 2018–29 December 2021

In addition, an SRTM digital elevation model (DEM) with a spatial resolution of
30 m was used in the data processing. Optical images with a resolution higher than
2 m (e.g., Google images and Tianditu images) were also adopted to classify and finalize
landslide boundaries.

3. Time-Series InSAR Method

In this study, the time-series InSAR method was adopted to detect landslides in the
study area. As shown in Figure 3, it consists of three main steps. First, the open-source
InSAR Scientific Computer Environment (ISCE) tool (https://github.com/isce-framework/
isce2, accessed on 25 February 2022) [49] was applied to generate unwrapped differential
interferograms for the study area. We then used open-source Miami InSAR time-series

https://github.com/isce-framework/isce2
https://github.com/isce-framework/isce2
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software in the Python (MintPy) tool (https://github.com/insarlab/MintPy, accessed on
1 March 2022) [50] to correct the corresponding errors and perform the time-series analysis.
Finally, open-source QGIS software was adopted to detect and identify landslides. The
entire workflow is semi-automatic based on open-source tools or software, which provides
a paradigm for landslide-related research in other mountainous regions of the world.
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Specifically, we processed 324/326 differential interferometric pairs on the ascending
track (P26 F94/P99 F1280) and 285/348 differential interferometric pairs on the descending
track (P135 F493/P33 F492), respectively. These differential interferometric pairs were
constructed using the Sentinel-1 stack processing chain [51], which is provided by the ISCE
tool package. At the start of processing, all SLCs were co-registered to a single reference
image. Each SLC was employed to generate interferometric pairs with the next three
SLCs. The 30-m SRTM DEM was used to geocode these interferograms. In addition, the
multi-look factor was set to 9:3, and the SNAPHU algorithm [52] was applied to unwrap
the interferograms.
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Before estimating the velocity, we needed to correct all kinds of errors using the open-
source MintPy tool, mainly including phase unwrapping, tropospheric delay, phase ramps,
and topographic residual [53]. Details about error correction can be found in [50]. In this
study, bridging + phase closure method was applied to correct the phase unwrapping errors
in the interferograms. Noise pixels with coherence of less than 0.4 were masked out. Generic
Atmospheric Correction Online Service (GACOS) products were downloaded and adopted
to correct the tropospheric delay [54,55]. We applied the quadratic polynomial to estimate
and remove phase ramps that may be caused by residual tropospheric or ionospheric delays
and orbital errors [50]. Since our aim is to carry out a semi-automatic InSAR processing
strategy, we did not compare and analyze the effects of different processing algorithms and
parameter settings.

Subsequently, we estimated the average deformation rates of the ascending and
descending tracks, respectively, and obtained the corresponding line-of-sight (LOS) velocity
maps and their standard deviation maps. Note that the standard deviation of velocity
measures the uncertainty of the velocity field. The uncertainty of velocity needs to be
considered in the analysis process. To reduce the uncertainty of the analysis, we therefore
focused our analysis on those regions where the velocity was at least two times larger
than its standard deviation [40]. In addition, considering that landslides do not occur in
flat areas, we focused mainly on areas with a slope angle greater than 5 degrees. Based
on average velocity maps, we adopted open-source QGIS software to visually interpret
landslides in the study area. In the process of interpretation, high-resolution optical images
and DEM data were also used to accurately classify and delineate the landslide boundaries.

The estimated average velocity is in the LOS direction, which is not conducive to ana-
lyzing the real sliding state of the slope. Thus, for typical landslides, velocity decomposition
was performed in this study. Under the assumption that there is no deformation in the
north–south (N–S) direction, we decomposed the vertical and horizontal (i.e., the east–west
(E–W) direction) deformation components by combining the ascending and descending
deformation information [56,57]. Assuming that the deformations in the vertical and
horizontal directions are dv and dh, they can be deduced by the following equation [57,58].

dlos = dv cos λ − dh cos θ sin λ (1)

where dlos, λ, and θ denote the deformation, radar incidence angle, and azimuth angle.

4. Results
4.1. Annual Deformation Results

Figure 4 presents the annual LOS deformation results for the study area derived from
the Sentinel-1 data (including ascending and descending). It should be noted that the
positive value indicates the movement close to the satellite sensor and vice versa for the
negative value. The average LOS deformation rate of the ascending track ranges from −97
to 72 mm/year, with a mean value of 3.74 mm/year. The average LOS deformation rate of
the descending track ranges from −113 to 82 mm/year, with a mean value of 3.30 mm/year.
The deformation trends derived from ascending and descending data are basically consis-
tent. Although we adopted some error corrections during the estimation of the deformation
rate, it can be seen that there are still some errors (e.g., topographic, atmospheric, and
unwrapping errors) in the study area that have not been completely removed. Considering
that our goal is to implement a semi-automatic InSAR processing strategy, we did not use
additional methods for further removal of these residuals. Additionally, mountainous areas
with high vegetation cover and steep terrain can lead to severe decorrelation (e.g., the Yajing
section), and some regions with actual deformation may be masked and obscured due to
the coherence mask processing (the threshold was set to 0.4). The deformation results in
such areas may be noisy and uncertain. In this case, the interpretation of landslides in these
areas requires great care to avoid misidentification.
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In mountainous and vegetated areas, if the absolute value of LOS velocity is below
6–7 mm/year, the scatterers are corrupted by strong noise [59]. We, therefore, mainly
analyzed the coherent target points with a deformation rate greater than 10 mm/year in
this study. According to the ascending and descending deformation maps, we visually
interpreted 236 potential landslides in total. Among them, 16 potential landslides (about
7%) were interpreted by both the ascending and descending results, and 86 (about 36%) and
134 (about 57%) potential landslides were interpreted by only the ascending or descending
results, respectively. As shown in Figure 4, the spatial distribution of landslides is uneven,
being mainly distributed in the Kangding section and the Litang to Batang section, while
the middle Kangding to Litang section is relatively stable, with fewer landslides.

4.2. Landslide Detection and Classification

Based on the topographic features, optical image characteristics, and deformation
rates, the identified potential landslides in the study area were manually classified into
three categories, including 24 slow-sliding rockslides (10%), 30 debris flows (13%), and
182 debris avalanches (77%). Several typical potential landslides are shown in Figure 5.

4.2.1. Slow-Sliding Rockslides

As shown in Figure 6, the LOS deformation rate of most slow-sliding rockslides is
10~30 mm/year, and the maximum value of some coherent target points even reaches
39 mm/year. The deformation mainly occurs in the middle and top of the slope. It can
be observed that these landslides have shape features such as chair or pear shape in the
optical images, and some of them even clearly show crown cracks and minor scarp.
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Of the 24 identified slow-sliding rockslides, the smallest landslide has an area of
about 44,837 m2, the largest has 898,114 m2, and the average area reaches 351,139 m2.
The identified landslides are generally large. The types of landslides mainly include old
landslides and new ones triggered by human activities and natural factors. Geographically,
they are mainly distributed on both sides of roads and rivers, and most may be affected
by river erosion and road excavation. They are mainly composed of sandstone, limestone,
and phyllite. Although the number of slow-sliding rockslides we identified is relatively
small, their impact on the safety of the G318 should not be underestimated. Corresponding
monitoring and prevention measures should be implemented to prevent future failure.

4.2.2. Debris Flows and Debris Avalanches

Due to the freezing weathering effect, high-altitude rocks are weathered, fractured,
and disintegrated, thus forming loose debris accumulation in situ or nearby, which is
characterized by large thickness, poor stability, and continuous distribution. Materially, the
debris accumulation may be a mixture of various materials, such as rock, soil, and moraine
deposits. From the optical images, we can also see obvious granular accumulation with
rough texture features.

In the study area, we artificially classified such accumulations as debris flows and
debris avalanches based on the hydrodynamic and topographic conditions, as they are
important factors in triggering debris flow [60,61]. It should be noted that the identified
debris flow is mainly the source of debris flow, not the entire debris flow area. As shown in
Figure 4, debris flows and debris avalanches are quite common in the study area. The debris
flows are mainly glacial debris flows recharged by glacial meltwater and rainy debris flows
recharged by heavy rainfall. Their material sources are mostly located in high mountains,
away from river valleys and roads. As shown in Figure 7, most of the coherent target
points have deformation rates exceeding 30 mm/year, with the largest even exceeding
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90 mm/year. The steep slope and long flow path make such debris flows very dangerous
and difficult to monitor manually. Therefore, monitoring changes in the weather is essential
for early warning of debris flows.
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resolution of 1 m. The blue line represents the boundary of debris flows.

A total of 249 debris avalanches were identified in the study area, exceeding 70%
of the total number of identifications. As shown in Figure 8, most of the coherent target
points have deformation rates exceeding 30 mm/year, with the largest even exceeding
110 mm/year. Theoretically, the affected area of a debris avalanche is smaller than that of
a debris flow. This is because it lacks sufficient hydrodynamic conditions or flow areas,
although it has sufficient material sources. Normally, glacier meltwater is not enough to
stimulate it, but it may evolve into slope debris flow under heavy rainfall.
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Figure 8. LOS velocity of typical debris avalanches. The base map is the Tianditu images with a
spatial resolution of 1 m. The purple line represents the boundary of debris avalanches.

4.3. Analysis of a Typical Landslide

Due to the topography, most landslides in the study area can only be observed from
a single satellite track (ascending or descending track). To quantitatively analyze the real
deformation characteristics of the slope, we performed a deformation rate decomposition
of one of the identified landslides, which can be observed from both the ascending and
descending tracks. Results are shown in Figure 9.
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For the vertical deformation rate, positive values indicate rising, while negative values
indicate sinking. For the horizontal deformation rate, positive values indicate eastward
movement, while negative values indicate westward movement. As shown in Figure 9A,B,
both the vertical and horizontal deformation values of this slope are negative, indicating
that this slope is subsiding in the vertical direction and moving westward in the horizontal
direction. The deformation rates of this slope in the vertical and horizontal directions are
comparable, with the maximum deformation rate reaching 20 mm/year. Considering that
this slope is oriented to the southwest, it means that it may be a deep-seated gravitational
landslide with very slow sliding. This landslide has a plane area of over 900,000 m2 and
a vertical elevation difference of nearly 600 m. The G318 passes through the landslide
in the form of a tunnel (the black dotted line in Figure 9A–C); however, some buildings
can be found on the landslide from the optical images (Figure 9C). Thus, the threat of this
landslide cannot be ignored. Moreover, some roads have been artificially excavated on
the landslide, and these roads may have an impact on the stability of the landslide, which
requires further attention in the future.

In addition, we analyzed the response of the accumulated deformation of several
points on the landslide to the daily rainfall (Figure 9D). The rainy season in this area is
from April to October. We observed a distinct pattern between landslide deformation and
rainfall. Specifically, the landslide was relatively stable before July 2018, while during
the period from July 2018 to October 2018 (rainy season), the middle and bottom of the
landslide were in an accelerated sliding state. During the period from October 2018 to
April 2019, the landslide was again in a relatively stable state due to little rainfall. Then, the
landslide experienced significant accelerated sliding again in the 2019 rainy season. During
this period, the LOS cumulative deformation at the middle and bottom of the landslide was
significantly greater than that at the top of the landslide. The landslide was in a relatively
stable state once again from October 2019 to April 2020, then significantly accelerated
during the 2020 rainy season. The sliding parts are mainly the middle and bottom of the
landslide, and the top of the landslide is relatively stable. Apparently, the rainfall has a
significant triggering effect on the activity of the landslide. In general, the deformation
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state in the middle of the landslide needs to be closely monitored, as it is most likely to
cause the failure of the entire landslide, especially during the rainy season.

5. Discussion
5.1. Analysis of Terrain Visibility

The study area has rugged terrain and large elevation changes, so it is necessary to
analyze the visibility of SAR satellites. In this study, we adopted the R-index to measure
the effect of topography [62]. The R-index measures the ratio between the radar slant range
and the true ground range, and the detailed calculation formula and calculation steps can
be found in [62,63].

As shown in Figure 10, we calculated the Sentinel-1 satellite geometric distortions over
the entire study area and divided the study area into three categories: layover and shadow
(bad visibility), foreshortening (medium visibility), and good visibility. The whole study
area is severely affected by SAR geometric distortions. Quantitative statistical analysis
shows that the good visibility areas of the ascending and descending tracks account for
about 49.8% and 50.1% of the total area, respectively. Only 6% of the area is classified as a
good visual area for both the ascending and descending tracks. This also explains the fact
that most landslides (about 93%) were interpreted from a single orbit observation.
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In addition, we found that for the ascending track (as shown in Figure 10A,C), the
slopes facing west are mostly located in the satellite geometric distortion region, while
the slopes facing east are located in the good visibility region, while the opposite is true
for the descending track (as shown in Figure 10B,D). This is closely related to the SAR
side-view imaging characteristics, as well as the incident direction of the SAR satellites. We
further statistically found that about 99% of the study area can be observed by combining
the ascending and descending data. Obviously, in mountainous areas, the combination
of ascending and descending observation data can effectively reduce the effects of SAR
geometric distortion and increase the observation area of satellite data.
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5.2. Factors Controlling Landslide Distribution

A landslide is a complex geographical phenomenon, closely related to various fac-
tors [64]. In this study, we briefly analyzed the relationship between landslides and several
common controlling factors. The landslide controlling factors are shown in Figure 11.
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As shown in Figure 12, it can be seen that most slow-moving rockslides occurred in
relatively low-elevation areas (less than 4500 m), with slope angle mainly between 20◦

and 40◦. In contrast, debris accumulations occurred in areas with higher elevation (greater
than 3900 m) but gentler slope angle (less than 40◦). In addition, we calculated the relief
amplitude of the study area, which is defined as the difference between the maximum and
minimum elevation values in the area (the 5 × 5 rectangle area was used in this study).
We found that debris accumulations mainly occurred in areas with relief amplitude of less
than 60 m, while slow-moving rockslides were sporadically distributed in areas with relief
amplitude of greater than 60 m. This is generally in line with our understanding, as the
gentle slope angle and topography ensure the rapid accumulation of this debris. In terms of
the aspect, we found that most landslides occurred towards the north, northeast, and west
directions, with few towards the south direction. Regarding the river factor, we found that
slow-moving rockslides mainly occurred within 1000 m of rivers, and debris accumulations
also had a relationship with rivers, i.e., the further away from rivers, the lower the number
of debris accumulations. However, for faults, no obvious interrelationships were observed,
and most landslides occurred 3000 m away from faults. In general, the topography of this
area has a clear role in controlling the distribution of landslides.

5.3. Limitations and Future Recommendations

In this study, we adopted a semi-automated InSAR processing method to identify
wide-area landslides. This method is implemented based on open-source tools or software
and is highly efficient. Although there are still some unexplained errors in InSAR-derived
deformation, the impact on large-area landslide detection is negligible. However, if this
method is used to monitor an individual landslide, further adjustment of the inversion
parameters and elimination of corresponding errors are required.
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Although we identified a total of 236 landslides in this study, this is likely to be
an underestimation. This is because a SAR satellite is insensitive to the deformation
parallel to the satellite’s flight direction (near north–south), implying that landslides in this
direction may have been omitted. Moreover, fast landslide movement can result in InSAR
decorrelation (loss of coherence) and thus omission. Some factors such as SAR geometry
distortions, vegetation cover, and steep terrain can also affect landslide identification.
From this perspective, combining with other methods (such as LiDAR-based and field-
based) to compensate and validate landslide results should be the focus of future work. In
addition, we are not able to classify landslide types directly from the InSAR-derived surface
deformation. Thus, optical images and a DEM are required to classify these landslides. In
this study, the identified landslides were classified into only three categories, according
to [47]. Due to the complexity of landslides, it is difficult to guarantee that each landslide
has been correctly classified. However, from an application point of view, occasional
misclassifications have little impact on engineering applications because each identified
landslide needs to be carefully verified and checked in practice. From this point of view,
field work is essential, and our identification results can effectively narrow the scope
of field work. Therefore, the next step is to conduct field work to further validate the
classification results.

InSAR observations are a combination of Earth surface motion, atmospheric changes,
and measurement and processing errors [53]. In the Qinghai–Tibet Plateau region, per-
mafrost freeze–thaw processes have been identified as an important source of surface
deformation [27], especially under climate warming. In addition, tectonic processes also
contribute to the deformation observed by InSAR. However, it is difficult to isolate such
deformation sources from the InSAR-derived surface deformation. To be more specific, the
deformation map used to detect landslides in this study may, to some extent, encompass
other sources of deformation in addition to slope movement, implying that the landslide
deformations we mapped may be biased. However, it is worth noting that most of the
permafrost in the study area is seasonal, and the magnitudes of such deformations are
ordinarily small. Moreover, seasonal permafrost deformation usually occurs in flat areas
with a slope angle of less than 5 degrees, and decreases dramatically with increasing slope
angle [27]. Obviously, the slope angle of our identification area is greater than 5 degrees,
effectively avoiding the areas most affected by seasonal permafrost. In addition, surface
deformation from tectonic movements is usually on the millimeter scale and therefore
negligible in this study. In other words, large-scale surface deformation due to permafrost
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freeze–thaw processes and tectonic movement has essentially no effect on landslide identi-
fication in this study.

6. Conclusions

In this study, a semi-automated InSAR processing method was adopted to detect
and analyze landslides along the Kangding-Batang section of Shanghai-Nyalam Road. A
total of 446 ascending and descending Sentinel-1 images acquired from January 2018 to
December 2021 were used, and 1283 interferograms were thus processed by using the open-
source ISCE tool. In order to obtain relatively pure surface deformation rates, we used the
open-source MintPy tool to perform a series of error corrections, such as tropospheric delay
correction using GACOS data. Finally, 236 potential landslides were visually interpreted
by combining deformation maps, optical images, and DEM data. According to topographic
features, we manually classified these landslides into three categories, including 24 slow-
sliding rockslides, 30 debris flows, and 182 debris avalanches. Among them, most landslides
were only identified from a single satellite track, and only about 7% of landslides were
identified from both the ascending and descending tracks. Considering the effect of SAR
satellite geometric distortions, joint observations of ascending and descending tracks in
mountainous areas are recommended, which can effectively reduce omissions. In addition,
we performed deformation rate decomposition on a typical landslide to quantify its actual
deformation characteristics, and we analyzed the relationship between its deformation and
rainfall. Results showed that rainfall has a significant triggering effect on the landslide
activity, and the deformation in the middle of the landslide needs close attention.

Understanding the distribution of landslides is essential for assessing the potential
risk of landslides. Although InSAR technology can monitor the subtle deformation of
slopes, due to the complexity of slopes, the true stability state of slopes still needs to be
determined in combination with site investigation and on-site monitoring instruments.
From this perspective, InSAR technology can effectively narrow the study area and provide
targets for field investigation. Therefore, in the future, we will carry out field investigation
to evaluate the identified landslides on a case-by-case basis.
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