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Abstract: To improve the accuracy of atmospheric visibility (V) prediction based on machine learning
in different pollution scenarios, a new atmospheric visibility prediction method based on the stacking
fusion model (VSFM) is established in this paper. The new method uses the stacking strategy to
fuse two base learners—eXtreme gradient boosting (XGBoost) and light gradient boosting machine
(LightGBM)—to optimize prediction accuracy. Furthermore, seasonal feature importance evalua-
tions and feature selection were utilized to optimize prediction accuracy in different seasons with
different pollution sources. The new VSFM was applied to 1-year environmental and meteorological
data measured in Qingdao, China. Compared to other traditional non-stacking models, the new
VSFM improved precision during different seasons, especially in extremely low-visibility scenarios
(V< 2 km). The TS score of the VSFM was significantly better than that of other models. For extremely
low-visibility scenarios, the VSFM had a threat score (TS) of 0.5, while the best performance of other
models was less than 0.27. The new method is promising for atmospheric visibility prediction under
complex urban pollution conditions. The research results can also improve our understanding of the
factors that influence urban visibility.

Keywords: visibility prediction; XGBoost; LightGBM; stacking; fusion model

1. Introduction

As a high-tech method, remote sensing has been applied to all aspects of human life
and production. The transparency of the atmosphere has a significant impact on remote
sensing. Atmospheric visibility (V) is an important indicator of atmospheric transparency.
It is defined as the maximum distance at which a person with normal vision can recognize
an object of a certain size from the background (sky or ground). V is mainly affected by
the aerosols, absorption gases, and meteorological factors in the atmosphere. Research on
visibility prediction is critical for the atmospheric correction of remote sensing images [1–4].

At present, the prediction methods for visibility include numerical model predic-
tion and statistical prediction based on machine learning. Numerical model prediction
is mainly based on aerodynamic theory and physical and chemical processes. It estab-
lishes an environmental meteorological numerical model system to simulate pollutants,
humidity, liquid water content, and other elements in the atmosphere by using various
meteorological data and emission source data. It predicts atmospheric visibility by cal-
culating the contribution of various elements to atmospheric extinction, according to the
theory of atmospheric optics [5,6]. Widely used models include community multi-scale
air quality (CMAQ) [7,8], developed by the U.S. Environmental Protection Agency; the
weather research and forecasting (WRF) model coupled with chemistry (WRF-Chem) [9],
jointly developed by the National Atmospheric Research Center and the National Oceanic
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and Atmospheric Administration [10]; and the haze numerical prediction model (CMA),
developed by Unified Atmospheric Chemistry Environment (CAUCE) [11]. Numerical
model prediction requires an in-depth understanding of the physical and chemical mecha-
nisms of detailed regional emissions. However, it is difficult to accurately quantify each
atmospheric process theoretically, leading to prediction errors and uncertainty [12–14].

In recent years, with the development of machine learning, many scholars have
used XGBoost, LightGBM, random forest (RF), support vector machines (SVMs), and
other machine learning algorithms to conduct visibility prediction research [15–27]. Tang
et al. [15] proposed a model using XGBoost combined with Markov chain to predict
atmospheric visibility in Shenzhen. The experiment was used to train and predict visibility
using meteorological parameters as influencing factors. The experiment achieved a good
prediction effect. Yu et al. [16] predicted visibility in Beijing using LightGBM combined
with meteorological parameters and PM2.5 concentration. The experimental results show
that the prediction effect of LightGBM is good and close to the observed value of visibility.
The work of Zhang et al. [27] shows that XGBoost and LightGBM are the most advanced
regression models.

Studies on visibility prediction usually use a single machine learning model and
historical meteorological data to determine the relationship between visibility and other
observations [15–26]. However, in addition to meteorological conditions, visibility is also
affected by factors such as pollutants and aerosol chemical composition [22]. Especially
in China, the sources of urban pollution are extremely complex [24]. Methods based on a
single model and limited meteorological factors often have difficulty producing accurate
predictions in some scenarios, especially in low-visibility conditions.

The fusion model [25], also known as ensemble learning, is one of the most popular
research directions in the field of machine learning. The basic idea is to combine multiple
learners using different methods to obtain better fitting performance and smaller errors
than a single model through advantage complementation among multiple models. In
machine learning and data mining projects, various classifiers and models have their
own advantages and disadvantages. Ensemble learning balances the advantages and
disadvantages of each classifier to better complete classification and regression assignments.
In recent years, many champions of machine learning competitions have used ensemble
learning. Some mainstream internet companies, such as Tencent and Alibaba, have used
ensemble learning in recommendation, search sorting, user behavior prediction, click-
through rate prediction, product classification, and other businesses. Ensemble learning
algorithms have achieved good results in these businesses. Existing research has used
ensemble learning to predict PM2.5 with reasonably accurate results [25]. However, the
application of ensemble learning to visibility prediction has not been widely studied. As a
result, the research in this paper focuses on developing a visibility prediction algorithm
based on a fusion model to improve visibility prediction accuracy in the case of complex
urban aerosol sources and frequent low-visibility scenes.

2. Data Source

The Key Laboratory of Atmospheric Optics of the Hefei Institute of Physical Sciences,
Chinese Academy of Sciences, carried out a long-term meteorological and environmental
monitoring test in Qingdao, Shandong Province (Institute of Marine Instrumentation,
Shandong Academy of Sciences, 36.3◦N, 120.18◦E) from August 2019 to August 2020. The
geographical information of the observation position is shown in Figure 1 (the observation
position is denoted by the blue five-pointed star). The color in Figure 1 indicates the altitude
of the observation position. Higher altitude is indicated by a redder color; lower altitude
is indicated by a bluer color. Qingdao is located on the southeastern coast of Shandong
Province. In addition, Qingdao has a typical pollution background, and its visibility is
strongly correlated with pollutant parameters. It is also a typical northern coastal region
of China. Research on visibility prediction in Qingdao can be extended to other northern
coastal areas of China as well.
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The data used in this paper included meteorological parameters, pollutant parameters,
and visibility data measured in Qingdao, as listed in Table 1. Among these, meteorological
data, such as average air pressure, air temperature, relative humidity, wind speed, and
wind direction, were provided by ground weather stations with a time resolution of 5 s;
PM2.5, PM10, SO2, and other pollutant data were provided by air quality detectors with a
time resolution of 1 h; and visibility data were provided by a scattering visibility meter
with a time resolution of 1 min. The 6220 forward scattering visibility meter (Belfort
Instrument, USA) was used to collect the visibility based on the optical parameter method.
The scattering visibility meter uses the optical parameter method, which transmits the light
into the sampler through an infrared LED transmitter, and the receiver collects the forward
scattered light and calculates the extinction to obtain the atmospheric visibility.

Table 1. Description of raw parameters.

Type Parameter Abbreviation Unit Description

Meteorological
factors

Temperature Temp ◦C Hourly average air temperature
Humidity Hum % Hourly average relative humidity
Pressure Pres hPa Hourly average barometric pressure

Wind speed WS m/s Hourly average wind speed
Wind direction WD deg Hourly average wind direction

Pollutant
factors

PM2.5 PM2.5 µg·m−3 Hourly average concentration of PM2.5
PM10 PM10 µg·m−3 Hourly average concentration of PM10
NO2 NO2 µg·m−3 Hourly average concentration of NO2
O3 O3 µg·m−3 Hourly average concentration of O3

SO2 SO2 µg·m−3 Hourly average concentration of SO2
CO CO µg·m−3 Hourly average concentration of CO

Visibility Visibility V km Hourly average visibility distance

Data preprocessing consisted of data cleaning, data resampling, and data normal-
ization on all experimental data. In data resampling, the three types of data above were
resampled to a time resolution of 1 h. The meteorological and pollutant data were used as
input for the model of visibility prediction. Model training and parameter optimization
were carried out after constructing the training data sets to achieve the best model for
visibility prediction.
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3. Method

Previous research on visibility prediction based on machine learning methods has
mostly used single models and has failed to fully consider the seasonal features of visibility
created by differences in seasonal urban pollution sources. This study proposes a new
visibility prediction method based on meteorological and pollutant data. The method
adopts the stacking strategy to fuse the XGBoost and LightGBM models and introduces
seasonal feature selection to improve the visibility prediction accuracy.

In the stacking method, the model output of the first layer is used as the input of the
second layer model, and the result of the output of the second layer model is used as the
final result. See Section 3.1 for details. In Section 3.2, a method and evaluation standard
for the seasonal feature selection of training data set are established after analyzing the
seasonal features of visibility and its possible causes. Evaluation criteria are also introduced
in this section to evaluate the predictive performance of the models.

3.1. Construction of the Fusion Model

Compared with single machine learning models, fusion models can achieve better
fitting performance and smaller error through advantage complementation among multiple
models.

The base learners used in this study were XGBoost and LightGBM models; then, the
stacking strategy was used to fuse the two base learners. Both XGBoost and LightGBM
models are improved algorithms based on the gradient boosting decision tree (GBDT)
algorithm [28–30], and both have the characteristics of insensitivity to input requirements,
low computational complexity, and good prediction effect. However, the two models show
different advantages in different situations. For example, XGBoost performs better in the
case of unbalanced data and less sample data, while LightGBM is faster in application,
takes up less memory, and is less prone to overfitting. The basic learners and stacking
fusion algorithm are detailed below.

3.1.1. XGBoost

The eXtreme gradient boosting (XGBoost) algorithm was proposed by Tianqi Chen
in 2015 [29]. Due to its efficient computation and support for custom loss functions, the
algorithm is widely used in large-scale data processing and has become an important tool
in the field of classification and prediction. The basic principle of XGBoost is the same
as GBDT, but compared with GBDT, it has faster processing speed and higher accuracy,
mainly reflected in the following aspects:

1. Regularization processing—XGBoost introduces regular terms to control the complex-
ity of the tree in order to avoid overfitting and make the trained model simpler. In
this way, its generalization performance is higher than that of GBDT.

2. Loss function optimization—second-order Taylor expansion is performed on the loss
function, and the first-order derivative and second-order derivative information is
used to determine the output result, which speeds up the training.

3. Strong flexibility—in addition to CART as a base learner, XGBoost also supports linear
classifiers. Furthermore, XGBoost can customize the evaluation function, which is
conducive to evaluating results from multiple performance metrics.

4. Improvement in the node division method—when seeking the optimal splitting
point, XGBoost abandons traditional greedy algorithm segmentation and adopts the
approximate greedy strategy algorithm to accelerate the leaf node splitting process
and reduce the consumption of computing resources.

Compared with GBDT, XGBoost is superior in both accuracy and efficiency. This algo-
rithm has been used for the prediction of visibility and PM2.5, showing better performance
than some other statistical and machine learning models [15,31,32].
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3.1.2. LightGBM

The light gradient boosting machine (LightGBM) was proposed by Microsoft in 2017.
On the basis of GBDT, this algorithm uses a histogram-based segmentation algorithm to
replace the traditional pre-sort traversal algorithm [30]. The histogram algorithm discretizes
continuous features into k discrete features and constructs a histogram with a width of k
for statistical information. Using the histogram algorithm, we do not need to traverse the
data, but only need to traverse k discrete feature nodes to find the best split node. Using
histogram algorithm optimization not only reduces memory usage, but also reduces the
computational cost.

In addition, LightGBM also adopts a leaf-wise algorithm with limited depth instead
of the traditional level-wise decision tree growth algorithm. The traditional level-wise
growth algorithm is convenient for calculating the split nodes of each layer in parallel,
which improves the training speed. However, it also results in many unnecessary splits,
because the node gain is too small. The leaf-wise growth strategy with limited maximum
depth reduces unnecessary splits and improves prediction accuracy while avoiding the
danger of overfitting.

Therefore, the LightGBM algorithm is superior to GBDT in terms of training speed and
space efficiency. It can effectively prevent overfitting, making it more suitable for training
with massive high-dimensional data. The algorithm has also been shown to be credible
and efficient in PM2.5 and visibility studies [16,33].

3.1.3. Stacking Fusion Model

The current mainstream ensemble learning methods are boosting, bagging, and stack-
ing. Among them, bagging and boosting methods usually consider homogeneous weak
learners. The former trains these weak learners in parallel independently and combines
them according to an averaging method, while the latter is a highly automatic adaptive
method that trains these weak learners sequentially and combines them according to a de-
terministic strategy. The stacking method in this research usually considers heterogeneous
weak learners and combines them using a fusion model after training them in parallel.
Then, the fusion model outputs a final prediction result according to the prediction results
of different weak models [34]. The structure of this strategy is shown in Figure 2. The first
stacking layer shows the working process of the base learners and the second stacking
layer shows the working process of the fusion model. The stacking strategy uses five-fold
cross-validation to avoid overfitting. The k of k-fold cross-validation is 2–10; k in this study
is 5. The smaller the value of k, the smaller the amount of data available for modeling; the
larger the value of k, the greater the training cost (training time). The specific steps are as
follows:

1. Data set generation—firstly, the strategy generates a training set and a test set and
divides the training set into five parts: train1, train2, train3, train4, and train5.

2. Base learner training—for each base learner (the first layer of stacking), train1, train2,
train3, train4, and train5 are used in turn as the validation set, and the remaining four
parts are used as the training set. Five-fold cross-validation is performed for model
training and validation, and five copies of the validation (“predictions”) are obtained.
Then, predictions are made on the test set to obtain five predicted values.

3. Fusion model training—in this paper, a linear regression (LR) model was chosen
as the fusion model (the second layer of stacking). The validations of the two base
models are vertically overlapped (A1 and A2) as the train_x of the LR model and the
corresponding true values are used as train_y of the LR model.

4. Fusion model prediction—the prediction values on the five test sets of base learners
are averaged (B1 and B2) as the test_x of the LR model; then, using the trained
LR model in Step 3 and test_x to make predictions, test_y is obtained as the final
prediction result.
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3.2. Feature Engineering

In the work of visibility prediction, along with using the fusion model to improve
visibility prediction accuracy, the proper use of feature engineering can also simplify the
model, improve the training speed, and reduce errors in visibility prediction. In this section,
monthly and hourly changes in visibility and the possible reasons for seasonal differences
in visibility changes are analyzed. Then, two criteria for seasonal feature selection are
proposed, and the results of seasonal feature selection are presented and discussed.

3.2.1. Seasonal Characteristics of Visibility in Qingdao

The visibility observation data in Qingdao were divided into four categories: spring
(from March to May), summer (from June to August), autumn (from September to Novem-
ber), and winter (from December to February).

The hourly averaged visibility was calculated from 0:00 to 23:00 to derive its diurnal
variations in each season. As shown in Figure 3, the visibility of the four seasons all showed
a downward trend in the early morning, followed by an upward trend. The daily minimum
values of the four seasons appeared at 6:00, 10:00, 6:00, and 7:00, respectively. This was
mainly due to the increase in automobile exhaust emissions and air pollution accompanied
by the early peak of people’s travel. Among four seasons, the daily minimum of 2019_Win-
ter was not significant compared to other seasons, and occurred later than other seasons.
This may be related to the reduction in human activities during the city’s closure because
of COVID-19, resulting in a reduction in air pollution emissions, weakening the decreasing
trend of V due to early peak travel. Generally, with the increase in temperature after
sunrise and the decrease in relative humidity, thermal convection tended to be vigorous
and visibility gradually improved. The daily maximum values of the four seasons appeared
at 18:00, 15:00, 19:00–21:00, and 20:00, respectively. In the evening, as thermal convection
conditions weakened and relative humidity increased, visibility deteriorated again.

In general, visibility in Qingdao in the four seasons was clearly differentiated. The
visibility range was higher in the spring and autumn than in the winter and summer. The
visibility in winter had the smallest change among seasons, ranging between 11 km and
15 km. This is due to heating in winter in Qingdao, and the overall air pollution was
relatively serious. CO is mainly produced by automobile exhaust and heating. In Qingdao,
the mean concentration of CO in winter was 0.92 µg·m−3, while in other seasons, it was
0.66 µg·m−3 (2019_Autumn), 0.59 µg·m−3 (2020_Spring), and 0.54 µg·m−3 (2020_Summer).
In addition, CO concentrations in Qingdao during the winter were negatively correlated
with visibility. Visibility in spring and autumn was relatively high. The analysis of influenc-
ing factors shows that the mean PM2.5/PM10 in spring and autumn was 15.32/68.21 µg·m−3

and 22.77/75.76 µg·m−3, while the mean PM2.5/PM10 in winter was 42.08/94.83 µg·m−3;
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the mean relative humidity values in spring and autumn were 58.25% and 57.85%. This
demonstrates that Qingdao has lower pollution levels in the spring and autumn, and the air
is rather dry, resulting in quite good visibility. In summer, the concentration of pollutants
is quite low (the mean PM2.5/PM10 is 14.63/29.45 µg·m−3). However, the mean relative
humidity is rather high (81.86%), and June and July are the most frequent months for sea
fog in Qingdao [35], which has a great impact on the visibility. It is evident that there are
seasonal differences in pollution sources and affecting factors in northern cities of China,
which further supports the need for seasonal feature selection for visibility prediction in
Qingdao.
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Figure 3. Diurnal variation of visibility in different seasons in Qingdao.

3.2.2. Seasonal Feature Selection

Feature engineering includes data cleaning, data resampling, data normalization,
data transformation, and other data preprocessing and feature selection. In order to
ensure prediction accuracy and simplify the model, it is necessary to select the most
relevant features from the preprocessed features. Feature selection can identify and remove
irrelevant and redundant features to prevent overfitting, and can also help reduce the
feature dimensions and training time of the model.

From the previous section, we can see that there were seasonal differences in the
visibility features in Qingdao, which resulted from differences in pollution sources in
different seasons. Therefore, in the feature selection, we carried out a seasonal feature
selection to clarify the different factors influencing visibility in different seasons. Similar
work has been lacking in previous studies.

In this study, we used two criteria for feature selection. The first criterion used the
“Filter” method to analyze the importance of each feature. The “Filter” method first
assigned weights to the features of each dimension. Such weights represent the importance
of the features in that dimension; then, they were ranked according to weight. To assign
weights, we used the correlation coefficient (Corr):

Corr = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2 ∑n

i=1(yi − y)2
(1)

According to the first criterion, the correlation coefficient between visibility and
meteorological and environmental parameters by season was scored. The results are shown
in Table 2.
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Table 2. Correlation coefficients between seasonal average visibility and various types of features in
Qingdao.

Season Temp Hum Pres WS WD PM2.5 PM10 O3 NO2 SO2 CO

2019_Autumn 0.07 −0.36 0.13 0.03 −0.19 −0.66 −0.51 −0.35 0.05 −0.30 −0.59
2019_Winter −0.20 −0.45 0.37 0.18 −0.15 −0.60 −0.56 −0.43 0.19 −0.27 −0.65
2020_Spring −0.12 −0.60 0.45 0.01 0.09 −0.62 −0.35 −0.29 −0.04 −0.21 −0.62

2020_Summer 0.10 −0.39 0.00 0.04 0.05 −0.44 −0.40 −0.15 −0.07 −0.10 −0.34

The second criterion used a feature ranking based on the learning model. The feature
ranking model was established for features screened by the first criterion. After the
meteorological knowledge analysis and verification, the features were brought into the
model verification, starting with the feature with the worst score. If it had a negative effect
on the model training results, the feature was removed. The learning models used for
feature ranking in this research were XGBoost and LightGBM. When calculating feature
importance, the score was based on the number of times the feature appeared in the
boosting tree, i.e., the times a certain feature was used as a split node in all generation trees.

Based on the calculation of the second criterion, the ranking results of the features of
the two models are shown in Figure 4.

Comparing Figure 4a–d with Figure 4e–h, we found that the feature selection results
of the two models were generally consistent, which is because both are based on gradient
boosting tree algorithms. The factors affecting visibility in spring and summer are mainly
humidity, PM10, PM2.5, and CO. Autumn and winter have more factors affecting visibility
(NO2 and SO2) compared to spring and summer. Autumn has more factors affecting
visibility (wind speed and wind direction) compared to winter.

In terms of factors affecting visibility common to the four seasons, there were several
factors that always affected visibility in the ranking results of the two models, namely
humidity, PM10, PM2.5, and CO. The aerosols in a coastal city such as Qingdao were
found to have strong hygroscopicity, absorbing water vapor in humid conditions and
decreasing V. Furthermore, high humidity causes moisture in the air to condense into tiny
suspended water droplets, forming fog and strongly affecting visibility. PM2.5 and PM10
are important components of atmospheric particulate matter. The absorption and scattering
effects of atmospheric particulate matter on sunlight can reduce visibility and haze. CO is
mainly produced by heating and automobile exhausts. In heating and automobile exhaust
emissions, CO is produced along with suspended solids, which is an important factor
leading to reduced visibility in cities.
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respectively. (e–h) show the feature selection results of LightGBM in 2019_Autumn, 2019_Winter,
2020_Spring, and 2020_Summer, respectively.
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By comparing the differences in the factors affecting visibility in the four seasons,
we found that the NO2 and SO2 concentrations were included in the features of autumn
and winter, but excluded in those of spring and summer. After analyzing the source
data, we found that the mean SO2 concentrations in autumn and winter (7.5 µg·m−3 and
8.9 µg·m−3, respectively) were higher than those in spring and summer (6.1 µg·m−3 and
5.0 µg·m−3, respectively). The NO2 concentration has a similar result. The higher SO2 and
NO2 concentrations in autumn and winter are closely related to urban heating in north
China. Large amounts of atmospheric pollutants, such as NOx and SO2, are produced
during coal-burning for heating. NOx and SO2 are the main pollutants, and NOx and
hydrocarbons can easily generate secondary pollutants such as smog, affecting visibility
under strong sunlight. Moreover, it can also be seen that the importance of wind speed
and wind direction is higher in the autumn than in the winter. This may be because the
heating time in the northern regions of China is earlier than in Qingdao, and pollution is
transported to Qingdao by the north wind in the autumn. In winter, the local emissions
from heating dominate and the weather is calm in Qingdao. Therefore, the impact of wind
speed and wind direction on visibility is weak in the winter.

Furthermore, there were some differences in the specific feature rankings between
the two models. This was because XGBoost adopted a level-wise splitting method, while
LightGBM adopted a leaf-wise splitting method, resulting in differences in the ordering of
features. This will be discussed in Section 5 in combination with the prediction results.

3.3. Performance Metrics

To quantitatively evaluate predictive effect, the root mean square error (RMSE), mean
absolute error (MAE), and correlation coefficient (CC) were used for evaluation purposes.
The RMSE and MAE were used to evaluate the degree of error, which can reflect the
predicted extreme value and error range, and the CC was used to evaluate the degree of
correlation between the predicted value and the observation value.

RMSE =

√√√√ 1
N

N

∑
i=1

(Pi − Ri)
2 (2)

MAE =
1
N

N

∑
i=1
|Pi − Ri| (3)

CC =
∑N

i=1
(

Pi − P
)(

Ri − R
)√

∑N
i=1(Pi − P)2 ∑N

i=1
(

Ri − R
)2

(4)

Here, “N“ is the total number of predicted samples, ”P“ is the prediction result of the
ith sample, and ”R“ is the actual value of the ith sample.

4. Results

Hourly meteorological and environmental parameter observation data in Qingdao
from August 2019 to August 2020 were used to train, validate, and test the models. The
performance of the VSFM was evaluated and compared with several existing numerical
prediction methods, including XGBoost, LightGBM, SVM, MLR, and RF. For each set of
seasonal data, we used the data set of the last 10 days as the test set and the data of the last
10–20 days as the validation set, while the rest of the data were used as the training set. This
data division was performed to facilitate the presentation of the results. We also conducted
experiments with randomly selected training, validation, and test sets; the experimental
results did not differ significantly.

4.1. Comparison and Analysis of the Performance Metrics of Each Model

The performance metrics of the prediction results of each model were analyzed. The
calculation results of the MAE, RMSE, and CC are shown in Table 3. In Table 3, the results
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with and without feature selection are also presented to highlight the effect of the feature
selection method proposed in this paper. The effect of feature selections was similar for the
four seasons. In this paper, 2020_Summer was taken as an example to analyze the effect of
feature selection. The experiments with feature selection used the common feature factors
extracted in Figure 4 as training data for seasonal visibility prediction. The experiments
without feature selection used all data as training data, including all meteorological and
pollutant parameters.

Table 3. Error comparison of models in different seasons, where the MAE and RMSE are in km.

Feature Selection All Features

2019_Autumn 2019_Winter 2020_Spring 2020_Summer 2020_Summer

VSFM
(ours)

MAE 3.18 2.26 4.74 3.45 4.43

RMSE 4.64 3.82 6.67 5.84 6.58

CC 0.93 0.93 0.90 0.88 0.85

XGB

MAE 3.19 3.64 6.04 3.57 4.58

RMSE 4.93 4.85 8.43 6.17 6.86

CC 0.92 0.91 0.86 0.87 0.82

LGBM

MAE 3.65 2.52 5.50 3.73 4.93

RMSE 5.01 4.11 7.48 6.43 7.17

CC 0.91 0.91 0.87 0.84 0.83

RF

MAE 3.94 2.59 7.39 3.81 5.39

RMSE 5.52 4.00 9.77 6.51 7.66

CC 0.89 0.91 0.80 0.85 0.81

SVM

MAE 5.07 3.57 7.61 5.06 5.26

RMSE 6.94 5.05 10.13 7.19 7.17

CC 0.84 0.88 0.82 0.83 0.81

MLR

MAE 7.69 4.91 10.76 5.78 7.02

RMSE 9.81 6.03 13.15 8.48 9.01

CC 0.84 0.83 0.85 0.73 0.71

Comparing the prediction effects of the first three models and the latter three models,
it can be seen that the VSFM, XGBoost, and LightGBM had better prediction effects in
all seasons than RF, SVM, and MLR. In 2020_Spring, the prediction results of the VSFM,
XGBoost, and LightGBM generally had significant advantages over the prediction results
of RF, SVM, and MLR. This shows that the improved XGBoost and LightGBM based on
GBDT are more suitable for visibility prediction than RF, SVM, and MLR, which is also the
reason that XGBoost and LightGBM were chosen as the base learners in our VSFM.

Compared with XGBoost and LightGBM, the VSFM decreased RMSE by 0.0089–1.3795 km
and decreased the MAE by 0.2819–1.7646 km, and increased the CC by 0.91–4.28% and the
TS score by 0.0269–0.4573. This shows that the VSFM can effectively improve the accuracy
of visibility prediction when the basic learner itself has a good prediction effect.

Comparing the prediction results with and without feature selection for 2020_Summer,
it can be seen that the prediction effect of each model was improved to varying degrees
after feature selection. The RMSE of the VSFM was decreased by 0.9834 km, the MAE was
decreased by 0.7459 km, and the CC was increased by 2.99% after feature selection. In the
performance metrics of those five models, the CC improvement in the XGBoost model was
the most obvious, increasing from 82.46% to 86.95%.
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Table 3 shows that the VSFM has superior performance to the other models in all
four seasons, especially in 2020_Spring. Figure 5 shows the trend of the hourly visibility
prediction curve for the six models in 2020_Spring. As shown in Figure 5, all the models
underestimated the V under very clear conditions (V > 40 km). Some possible reasons are
as follows. (1) Machine learning requires a large amount of historical data for accurate
visibility prediction, and the amount of data with V > 40 km in the training set is small,
meaning that it cannot meet the needs of model training and accurate prediction in machine
learning. (2) The visibility observations in this study were obtained from a scattering visibil-
ity meter based on the optical parameter method. The optical parameter method (scattering
method) is mainly used to calculate visibility by inverting the relationship between the
atmospheric aerosol extinction coefficient and atmospheric visibility. This means that the
higher the visibility, the weaker the scatterings and the larger the measurement error will
be, thereby reducing the credibility of the data. Therefore, the accuracy of the prediction
may be reduced. However, when V < 40 km, the prediction performance of the models was
generally consistent and the prediction curve of the fusion model proposed in this paper
was closest to the observation curve among models.
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4.2. Visibility Classification Performance

Performance was further evaluated under different haze level conditions. The TS
score commonly used in weather forecast studies [17] was adopted to evaluate the forecast
accuracy of the models, defined as follows:

TS =
na

na + nb + nc
(5)

where na is the number of correct predictions (when the prediction results are in the classifi-
cation and the actual results are also in the classification, a correct prediction is recorded),
nb is the number of empty reports (when the prediction results are in the classification and
the actual results are not in the classification, an empty report is recorded), and nc is the
number of missing reports (when the forecast results are not in the classification and the
actual results are in the classification, a missing report is recorded). In the calculation of the
TS score, visibility is classified into the following four levels by reference to the haze level
standard [21], as shown in Table 4.

Table 4. Description of visibility classification.

Observations Class Rating

0 < V < 2 I Visibility is poor.
2 < V < 5 II Visibility is relatively bad.

5 < V < 10 III Visibility is relatively good.
V > 10 IV Visibility is excellent.

The TS scores of models under different haze levels in different seasons are shown in
Figure 6. Note that there were no Class I TS scores in 2019_Autumn and 2020_Spring due to
relatively clean conditions in these two seasons. It can be seen from Figure 6 that the VSFM
proposed in this paper performed better (a higher TS score) than the other models in the
visibility classification test, especially under the extremely low-visibility conditions (Class I
in 2019_Winter and 2020_Summer). In order to further study the cause of the low visibility
in these two seasons, the mean meteorological parameters and pollutant parameters for
Class I visibility in 2019_Winter and 2020_Summer were calculated and are presented in
Table 5. As shown in Table 5, the extremely low visibility in 2019_Winter was mainly caused
by PM2.5 and PM10, while the extremely low visibility in 2020_Summer was mainly caused
by fog, as indicated by the very high humidity.

Table 5. Statistics on the mean values of meteorological parameters and pollutant parameters for
Class I visibility in 2019_Winter and 2020_Summer.

Season Vis Temp Hum Pres WS WD PM2.5 PM10 NO2 O3 SO2 CO

2019_Winter 1.30 4.54 77.70 1022.26 2.89 242.87 85.41 185.87 55.59 40.76 9.48 1.59
2020_Summer 1.07 21.85 89.15 1006.48 2.83 140.13 31.20 51.45 21.56 113.28 4.84 0.77

Table 6 summarizes the mean TS scores in all seasons for different models. As shown
in Table 6, the VSFM performed better than the other models for four classifications in the
total test set, especially the low-visibility classification. As can be seen from the Class I
results, the highest TS score achieved by the single models was 0.2692, smaller than that of
the VSFM. This is due to the fact that the VSFM utilizes the complementary advantages of
multiple models, as described in Section 3.1. Therefore, the VSFM can reduce the number
of empty reports nb (the nb values of the VSFM, XGBoost, and LightGBM for Class I were 4,
16, and 30) and missing reports nc (the nc values of the VSFM, XGBoost, and LightGBM
for Class I were 2, 3, and 2) while maintaining the number of correct predictions na (the na
values of VSFM, XGBoost, and LightGBM for Class I were 6, 5, and 6).
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Figure 6. TS scores of several models. (a–d) are the TS score histograms of 2019_Autumn, 2019_Winter,
2020_Spring, and 2020_Summer, respectively.

Table 6. TS score performance in all seasons for different models.

I II III IV

VSFM (ours) 0.5000 0.5691 0.4286 0.8969
XGB 0.0781 0.3488 0.3055 0.8132

LGBM 0.2400 0.3373 0.3237 0.8700
RF 0.2692 0.4373 0.3000 0.8345

SVM 0.0427 0.2207 0.3007 0.8070
MLR 0.2261 0.1991 0.2552 0.7890

4.3. Prediction Effect of the VSFM in Each Season

Combining the above performance metrics, it can be seen that the VSFM proposed in
this paper was superior to the other models in each performance metric. Figure 7 shows
the predictive effect of the VSFM in each season. The VSFM had the best predictive effect
in 2019_Winter, consistent with the results in Table 3. This may be because the visibility in
Qingdao in winter is generally lower than 40 km due to heavy pollution as compared to
other seasons. The test sets for other seasons all contained visibility data above 40 km to
varying degrees. As mentioned in Section 4.1, due to the insufficient amount of data and
the lack of confidence in the measurement instruments, it was difficult for the model to
predict the peaks of V when the visibility was greater than 40 km. While it was challenging
for the VSFM to predict the peak of V in very clean conditions (V > 40 km), the model could
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predict the trends of V (e.g., 72–96 h in (a) and 168–192 h in (d) in Figure 7). Furthermore,
there was no significant difference in visibility between 40 km and 60 km, and the effect of
the very clean conditions made little difference to most people. Compared with the very
clean conditions, extremely low-visibility conditions (Class I) were found to have a greater
impact on people, and this paper achieved greatly improved prediction accuracy under
extremely low-visibility conditions.
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5. Discussion

Previous studies on visibility prediction have often used a single machine learning
model and historical meteorological data to determine the relationship between visibility
and other observations, and have produced relatively good results [15–27]. However, there
is still room for improvement in the prediction of low-visibility events that strongly affect
the production and life of urban residents. This paper was mainly devoted to improving
the accuracy of visibility prediction in terms of the model, visibility-influencing factors,
and feature engineering.

In terms of the model, a stacking strategy was used to fuse two base learners based
on machine learning to improve the visibility prediction effect. In terms of the selection of
base learners, according to the study of Zhang et al. [27], Tang et al. [15], and Yu et al. [16],
the XGBoost and LightGBM models were the most advanced regression algorithms and
had excellent performance in predicting visibility. Therefore, XGBoost and LightGBM were
selected as the base learners of the fusion model to carry out the visibility prediction task.
In terms of factors affecting visibility, in addition to meteorological parameters, visibility
is also affected by pollutants, aerosol chemical components, and other factors. Especially
in China, the sources of urban pollution are extremely complex. Therefore, in this study,
pollutant parameters were also used as training data for visibility prediction research
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to improve visibility prediction accuracy. In feature engineering, this study found that
there was a strong correlation between visibility changes and seasons, so we innovatively
selected seasonal features for visibility. The prediction results of the model were compared
with those of a single model. Results show that the VSFM’s prediction performance
was significantly better than that of any single machine learning method. The CC of the
VSFM seasonal prediction results reached 92.96%, which is better than previous visibility
prediction studies [15–24].

Although this study successfully applied the fusion model method to predict visibility
in Qingdao, certain limitations should be considered. First, as described in Section 4.1, data
with low reliability due to measurements by the visibility meter for visibilities greater than
40 km affected the final prediction accuracy. Another issue is that model fusion based on
machine learning showed different prediction effects when applied to different seasons
in Qingdao. One possible reason for the different seasonal behaviors of the VSFM is the
predictive ability of base learners. Due to the different splitting methods of XGBoost and
LightGBM, there were some differences between their feature sorting results and prediction
results. As shown in the 2019_Winter prediction results, the predictive effect of LightGBM
was slightly better than that of XGBoost (the CC of LightGBM is 0.9108 and that of XGBoost
is 0.9065). Visibility in winter was mainly affected by coarse particulate (PM10), while in
the other three seasons, it was mainly affected by fine particles (PM2.5). According to the
feature selection results, the importance of PM2.5 was generally higher than that of PM10
in the feature ranking of XGBoost, while the importance of PM10 was generally higher
than that of PM2.5 in the feature ranking of LightGBM. Therefore, the different sensitivities
to PM2.5 and PM10 of the two models resulted in different prediction performances in
winter. From the overall results of the three seasons, the prediction results of XGBoost were
slightly better than those of LightGBM. Moreover, the importance of pressure and wind
direction in XGBoost feature ranking was higher than that of PM10 in 2019_Autumn, while
the importance of PM10 in LightGBM feature ranking was higher than that of air pressure
and wind direction for the same period. This may indicate that XGBoost is more sensitive to
the influence of air pressure and wind direction than LightGBM. Visibility in autumn was
affected by externally transmissible pollutants, which may be related to pressure and wind
direction. This may be why XGBoost has a better predictive effect than LightGBM. The
difference between the prediction results of XGBoost and LightGBM in spring and summer
may be related to their sensitivity to different hyperparameters. Although the VSFM model
fused the results of the two base learners and improved the final prediction results, it can
still have limitations. It is possible to further improve the accuracy of visibility prediction
by introducing other deep learning algorithms, constructing new ensemble models for
prediction, and introducing more factors affecting visibility.

6. Conclusions

A VSFM model for visibility prediction based on meteorological and pollutant param-
eter data was established through the fusion of two machine learning methods (XGBoost
and LightGBM). In feature engineering, we established two feature selection criteria and
extracted the feature factors of each season for visibility training and prediction after several
effective data pre-processing steps, including data resampling, data normalization, missing
value processing, etc. In addition, we compared performance metrics, which included the
MAE, RMSE, CC, and TS scores, between the VSFM and single models to verify the im-
provement in the prediction accuracy of the VSFM. Single models for comparison included
XGBoost, LightGBM, RF, SVM, and MLR. The following conclusions were drawn:

1. The range of seasonal visibility changes in Qingdao and possible causes were analyzed
in relation to meteorological and pollutant parameters. It was evident that there were
seasonal differences in pollution sources and affecting factors in northern cities of
China. Visibility was mainly affected by heating in the winter. In the summer, high
humidity and frequent sea fog had a major impact on visibility. In the autumn,
visibility was mainly affected by transported pollutants. Visibility was quite good in
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the spring due to the rather dry and clean air. The seasonal differences in pollution
sources and factors affecting visibility support the need for seasonal feature selection
and visibility prediction in Qingdao.

2. Based on the seasonal characteristics of visibility in Qingdao, seasonal feature selection
for visibility prediction was designed and implemented. Feature importance criteria
based on the “Filter” method and feature ranking were constructed for seasonal
feature selection, and different feature factors were found that strongly correlated
with the different pollution sources in different seasons. Evaluation results showed
that applying feature selection reduced the RMSE by 0.9834 km and the MAE by
0.7459 km, and increased the CC by 2.99%;

3. Performance metrics of the VSFM, such as the RMSE, MAE, and CC, were evaluated.
The results showed that the VSFM could effectively improve the accuracy of visibility
prediction when the basic learners performed well. The VSFM reduced the RMSE by
0.0089–1.3795 km and MAE by 0.2819–1.7646 km, and improved the CC by 0.91–4.28%
and the TS score by 0.0269–0.4573 when compared to XGBoost and LightGBM;

4. The TS scores of the VSFM and other single models were compared. The results
showed that the VSFM significantly improved prediction accuracy under different
classifications of visibility. Its advantage was especially obvious in extremely low
visibility (V < 2 km, Class I). Under class I conditions, the VSFM had a TS score of 0.5,
while the other models had scores less than ~0.27.

Overall, using meteorological and pollutant parameters as factors affecting visibility
for seasonal feature selection, the VSFM model proposed in this study was found to
effectively improve visibility prediction accuracy, especially in low-visibility scenarios. The
VSFM outperformed other single models in visibility prediction due to its complementary
advantages. Seasonal feature selection and excellent basic learners played an important role
in obtaining high accuracy in visibility prediction. Furthermore, in addition to XGBoost
and LightGBM, other models may be introduced in follow-up work, and more influential
factors can be considered to improve the prediction accuracy of the VSFM. The model can
also be extended to other regions by utilizing more data from these regions to form a more
generalized visibility prediction model.
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