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Abstract: For large-scale 3D building reconstruction, there have been several approaches to utilizing
multi-view satellite imagery to produce a digital surface model (DSM) for height information and
extracting building footprints for contour information. However, limited by satellite resolutions and
viewing angles, the corresponding DSM and building footprints are sometimes of a low accuracy,
thus generating low-accuracy building models. Though some recent studies have added GIS data
to refine the contour of the building footprints, the registration errors between the GIS data and
satellite images are not considered. Since OpenStreetMap (OSM) provides a high level of precision
and complete building polygons in most cities worldwide, this paper proposes an automatic single
building reconstruction method that utilizes a DSM from high-resolution satellite stereos, as well
as building footprints from OSM. The core algorithm accurately registers the building polygons
from OSM with the rasterized height information from the DSM. To achieve this goal, this paper
proposes a two-step “coarse-to-fine registration” algorithm, with both steps being formulated into
the optimization of energy functions. The coarse registration is optimized by separately moving the
OSM polygons at fixed steps with the constraints of a boundary gradient, an interior elevation mean,
and variance. Given the initial solution of the coarse registration, the fine registration is optimized
by a genetic algorithm to compute the accurate translations and rotations between the DSM and
OSM. Experiments performed in the Beijing/Shanghai region show that the proposed method can
significantly improve the IoU (intersection over union) of the registration results by 69.8%/26.2%,
the precision by 41.0%/15.5%, the recall by 41.0%/16.0%, and the F1-score by 42.7%/15.8%. For the
registration, the method can reduce the translation errors by 4.656 m/2.815 m, as well as the rotation
errors by 0.538◦/0.228◦, which indicates its great potential in smart 3D applications.

Keywords: OSM; DSM; single building model; coarse registration; fine registration; genetic algorithm

1. Introduction

CityGML of The Open Geospatial Consortium (OGC) categorizes building models
into five levels of detail (LOD), which are distinguished by the geometric and semantic
complexity of 3D city models [1,2]. When compared with aerial LiDAR data, satellite
images are an economic solution for large-scale building reconstruction, due to their
high-frequency worldwide imaging mode and increasing spatial resolutions [3,4]. LOD
reconstruction from satellite imagery has a great potential in large-scale city modeling,
which has various applications in urban planning [5–8], environmental monitoring [9,10],
virtual city tours [11], and national defense military [12].

For these large-scale reconstruction applications, several approaches have been pro-
posed towards 3D reconstruction with multi-view satellite imagery. In traditional building
reconstruction approaches, the first step is to produce a digital surface model (DSM) by
dense image matching (DIM) [12,13]. Since traditional DIM, especially the DIM with two
views, often meets edge-fattening issues [14], the reconstruction accuracy around the build-
ing contour is not good, which influences the single building reconstruction accuracy, as
well as the reconstruction completeness. For more accurate building reconstruction, most
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methods extract the building contours from satellite images with deep learning techniques,
which can be generally categorized into two major types: building segmentation and
contour line detection approaches. The segmentation-based approaches compute image
segmentation with a deep learning network to extract building masks in a raster format,
and then obtain the building contours via polygonization [4,5,15–21]. The contour line
detection approaches first detect the building edges and then group the line segments to
generate complete building polygons [22–24], where deep learning techniques are used
fully on the extractions of deep edge features, as well as on the optimizations of the line
grouping. After extracting the building contours, single building models are reconstructed
by assigning the height values from the DSM to them. These deep-learning-based methods
can establish 3D building models automatically, while they still meet the challenging issue
of the model transferability. In addition to using deep learning and DSMs, Duan and
Lafarge [3] applied a geometric algorithm that decomposes images into atomic convex
polygons to both stereo images, then retrieved the semantic class and the elevation of two
matching polygonal partitions simultaneously to reconstruct the city model. However,
such a method could not capture small geometries. All of the approaches mentioned above
extract the building contours from satellite imagery. However, the limited quality of satel-
lite images makes it difficult to extract the building contours precisely. The contours may be
partially missing due to shadows, occlusions, complex building structures, the differences
between the training dataset and the testing dataset (e.g., seasonal changes and spatial
resolution differences), and so on [25]. It is also hard to capture small buildings, typically
houses in residential areas, due to the limitation of the spatial resolution of satellites. Since
many map platforms provide accurate building polygons globally, it is efficient to use the
GIS data from these map platforms for robust building contour extraction. Several recent
studies utilized GIS data to refine the results of building extraction. Li et al. [26] focused on
adding GIS data into the validation dataset for training a building segmentation network
and finally improved the F1-score of the network. Gui et al. [27] used OpenStreetMap
(OSM) and graph cut labeling to refine the orientation of 2D building polygons computed
by a deep-learning-based detector. Esch et al. [28] generated a building mask based on
the joint processing of OSM and SAR (synthetic-aperture radar) images. Due to the large
complementarity in the physical characterization between the SAR and the optical data [29],
their joint use for building reconstruction is a promising direction. However, due to posi-
tional errors, there are registration errors between GIS data and satellite images, which are
not considered in the approaches above.

Since OpenStreetMap provides high-precision and complete building polygons for
most cities worldwide [30,31], utilizing the building contours from OSM directly is an
alternative way of performing large-scale building contour extraction. Inspired by the avail-
ability of OSM, this paper proposes an automatic single building reconstruction method
that utilizes high-precision, DIM-derived DSM from high-resolution satellite stereos, as
well as the building footprints from OpenStreetMap. The core algorithm is to accurately
register the polygon information from OSM and the rasterized height information of the
DSM. To achieve this goal, this paper proposes a two-step “coarse-to-fine registration”
algorithm to eliminate the registration errors between OSM and the DSM. Considering
the complex systematic errors in the registration, each building is processed separately.
In the “coarse registration” step, we first sample several boundary points and interior
points from each building, and then compute the optimal translation parameters based
on a score composed of the boundary constraints and interior constraints (e.g., the gra-
dient of the boundary points, the elevation, and its variance of the interior points). In
the “fine registration” step, we formulate the registration problem as the optimization of
an energy function, and compute the optimal translation and rotation parameters based
on a genetic algorithm [32–34]. Our main contribution is to innovatively propose a low
time-cost, scalable, and high-accuracy single building reconstruction method, based on a
DSM and OSM.
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The remainder of this paper is organized as follows: Section 2 presents the details
of the coarse registration and fine registration algorithms, respectively. The experimental
results, discussion, and conclusion are presented in Sections 3–5, respectively.

2. Methodology
2.1. Workflow

This paper proposes an efficient approach for single building model reconstruction
with OSM constraints. The core idea is to optimize the registration between the rasterized
DSM and the building footprints from OSM. The overall framework of the proposed method
is demonstrated in Figure 1, which formulates the registration into two-step optimizations,
first with coarse registration, and then with fine registration.
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Figure 1. An overview of our proposed method. In (a) “coarse registration” step, taking DSM, OSM,
and the gradient map as input, this paper computed coarse translation parameters by optimization.
In (b) “fine registration” step, the optimal translation and rotation parameters are computed based
on an energy function and genetic algorithm. Single building model was reconstructed by clipping
DSM with registered OSM.

The inputs of the coarse registration are OSM, the DSM, and its gradient map, using a
Gaussian blur and the Sobel operator, where OSM building points are sampled into a series
of boundary points and interior points for efficiency purposes. Since the satellite stereo-
derived DSM has little rotation differences to OSM, the coarse registration only considers
the translations between the DSM and OSM, and defines an optimization function as a
summation of three scores: the boundary gradients from the boundary points, the elevation
means, and the variances from the interior points. A brute solution with fixed moving
paces is utilized to iteratively compute the optimal coarse translation parameters. In the
fine registration step, both the boundary and interior points are translated by the coarse
registration results, which will provide a good initial solution to the nonlinear optimization
of the fine registration. To acquire high-accuracy registration results, this paper adopts
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the rotation and translation parameters as independent arguments, and formulates the
fine registration into the optimization of an energy function, whose optimal solution is
computed by a genetic algorithm [35,36]. The energy function of the fine registration is
implicit with a summation of the three scores of the boundary gradients, elevation means,
and variances. Both the DSM and its corresponding gradient map are normalized for the
purpose of limiting the weights of the three scores in the range of 0 to 1, which is beneficial
for finding the optimal weight parameters in the energy function during the experiments.
After the two-step “coarse-to-fine registration” algorithm, a single building model can be
built by clipping the DSM with the registered OSM.

2.2. Coarse Registration

Coarse registration separately moves the OSM polygons at fixed steps to bind the
buildings in the DSM. Assuming that the surrounding buildings with short space distances
(e.g., less than 5 m) have similar registration errors, this paper therefore groups the OSM
polygons with the short space distances, and assigns the same registration parameters
(including the coarse and fine registrations) to the polygons within the same group during
the registration process.

The core idea of the coarse registration is to move the OSM polygons until they find
the location in the DSM with the most significant elevation gradients. However, it is
possible that the object with the highest elevation gradients may not be buildings, e.g.,
the grounds between the adjacent buildings. To further improve the registration accuracy,
this paper additionally considers the elevations within the OSM polygons, so that these
non-building objects can be excluded. Since most buildings have high-elevation roofs
and vertical facades, this paper considers that the correct building location is where the
boundary gradient gm is large, the interior elevation mean em is large, and the interior
elevation variance ev is small. The computation of the three parameters (gm, em, ev) in each
building group and the optimization in the coarse registration are shown below.

In general, the inputs of the coarse registration are OSM, the DSM, and its gradient
map. For the purpose of efficient computation, this paper first samples a series of boundary
points and interior points from OSM before the optimization of the coarse registration. The
boundary points are evenly generated along the OSM boundaries at fixed intervals of four
times the GSD (ground sample distance), as shown in Figure 2a. The interior points are
randomly generated inside the building polygons of OSM, where a polygon could contain
100 points at most, and the minimum allowed distance between these random points is
2 times the GSD, as shown in Figure 2b. Figure 2c,d show the DSM and its corresponding
gradient map, respectively.

Considering the noises in the DSM, a low-pass filtering with a 5 × 5 gaussian kernel is
needed before the coarse registration. Since the building boundaries often cause significant
elevation gradients, this paper therefore computes the gradient map Ig using the Sobel
gradient operator [37–39] on the blurred DSM IS.

Since the satellite images could be geo-coded from the corresponding RFM (rational
function model) parameters, the satellite stereo-derived DSM has little rotation differences
to OSM. Thus, the coarse registration only considers the translations between the DSM
and OSM for computation purposes. To achieve the optimal coarse translation parameters,
each building group is moved in x and y directions, respectively, where the moving step
sc is six times the GSD. Since the maximum translation error in the horizontal or vertical
directions is determined with the satellite position error, which varies a lot with different
satellite imagery, the maximum moving distance δc of x and y is user-defined. For example,
the ground location accuracy without the GCPs of the World View-3 and Pléiades imagery
is 3.5 m and 10 m, respectively. The moving step is set as six times the GSD for two reasons:
(1) high-resolution satellite images have sub-meter resolutions (e.g., GSD: 0.5 m), so that
the moving step (e.g., 3 m) is able to assure the accuracy in the coarse registration when the
maximum translation error between OSM and the DSM reaches 10 m; and (2) if the moving
step is smaller than six times the GSD, the computation efficiency of the coarse registration
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will be reduced, causing a higher time cost. Thus, the moving step is set as 6 times the GSD
in the paper, considering the registration accuracy and time cost.
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During moving, the boundary and interior points of a building group are translated
according to the moving steps in the x and y directions, where the boundary points are avail-
able for the elevation gradient computations and the interior points are used to compute
the elevation means and variances of the building groups. In general, the best translation
is the solution with the maximum boundary gradients, the maximum interior elevations,
and the minimum interior variances. The mean gradient gm(x, y) of the boundary points at
step (x, y) for a building group is computed on Ig. On the other hand, the elevation means
and variances are formulated as the weighted averages of all the buildings in the same
group. Since the areas of the buildings in the same group are different, this paper assumes
that the larger-area buildings should contribute more in the coarse registration, and defines
these contributions as weights in the computation of the elevation means em and elevation
variances ev for a certain building group. Each building b in a building group has its own
elevation mean eb

m(x, y) and variance eb
v(x, y) of the interior points at step (x, y) on IS, and

the weight of b (i.e., wb) is determined by the proportion of its area ab in the group, which is
calculated according to Equation (1), where m is the total number of buildings in the group.
Thus, the area-weighted averages em(x, y) and ev(x, y) for the building group at step (x, y)
are computed according to Equation (2).

wb =
ab

∑m
b=1 ab

(1)

em(x, y) =
m

∑
b=1

wb × eb
m(x, y) , ev(x, y) =

m

∑
b=1

wb × eb
v(x, y) (2)

After moving, each step (x, y) has three corresponding scores: gm(x, y), em(x, y), and
ev(x, y). To balance the contributions of these three scores in the coarse registration, the
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minimum and maximum values of each score among all the steps are utilized to normalize
gm(x, y), em(x, y), and ev(x, y), and the normalized scores can be described as g′m(x, y),
e′m(x, y), and e′v(x, y). The optimization function consisting of the three normalized scores
is then defined to compute the optimal translation parameters (x, y) for each building
group, which is shown in Equation (3), where w1, w2, and w3 are the weights of g′m, e′m, and
e′v respectively, and δc is the maximum moving distance of x and y. As mentioned in this
section before, this paper assumes that the optimal building location should be the one with
high boundary gradients, a high interior elevation mean, and a low elevation variance; thus,
the sign of the variance part in Equation (3) is different from the other two parts. The steps
(x, y) with the maximum S(x, y) are the optimal translation parameters for each building
group. The details of selecting the optimal weights wi, i = 1, 2, 3 are shown in Section 3.
The effect of the coarse registration is shown in Figure 3, where Figure 3a,b displays the
original OSM and the translated OSM after the coarse registration, respectively.

max
−δc ≤ x ≤ δc
−δc ≤ y ≤ δc

S(x, y) = max
−δc ≤ x ≤ δc
−δc ≤ y ≤ δc

(
w1 × g′m(x, y) + w2 × e′m(x, y)− w3 × e′v(x, y)

)
(3)

where, S is the energy function of the coarse registration; x, y are the translations in the
ground space; and δc is the pre-defined range of the translations.
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2.3. Fine Registration
2.3.1. Formulation

Based on the good initial solution provided by the coarse registration, the fine reg-
istration is developed to compute the optimal fine translation parameters x, y and the
fine rotation parameter ϕ for each building group with a genetic algorithm. Similar to
the coarse registration, the core idea of the fine registration is to iteratively move and
rotate the OSM polygons to an appropriate location in the DSM, with the constraints of the
elevation gradients gm, interior elevation means em, and elevation variances ev. In general,
the fine registration is formulated into the optimization of an energy function, with the
independent variables being the translations and rotations between the DSM and OSM
buildings, as shown in Equation (4). The basic assumption of the energy function is that
the optimal building location should be the one with the high boundary gradients, high
interior elevation means, and low elevation variances. Thus, the above three constraints
are formulated as the three scores in the energy function. For the purpose of balancing
the contributions of these three scores, the DSM and its corresponding gradient map are
pre-processed to get the normalized digital height model In

H and the normalized gradient
map In

g . Therefore, the inputs of the energy function of the fine registration include the
mean gradients g′′m(x, y, ϕ) of the boundary points on In

g , the elevation means e′′m(x, y, ϕ) of
the interior points on In

H , and the elevation variances e′′v (x, y, ϕ) of the interior points on In
H
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under the transformation parameters (x, y, ϕ), where x, y are the translation parameters
and ϕ is the rotation parameter. Since the local ground of the building groups in both
OSM and the DSM is approximate to a plane, the single rotation parameter ϕ is enough to
correct the rotations between the OSM and DSM buildings. w′1, w′2, and w′3 are defined as
the weights of the three scores, which influence the fine registration results. The optimal
weights w′i , i = 1, 2, 3 will be discussed in Section 3.

minE(x, y, ϕ) = min
[
−
(
w′1 × g′′m(x, y, ϕ) + w′2 × e′′m(x, y, ϕ)− w′3 × e′′v (x, y, ϕ)

)]
(4)

where, E is the energy function of the fine registration; x, y are the translation parameters
between the DSM and OSM buildings; and ϕ is the rotation parameters between the DSM
and OSM buildings.

The structure of the energy function in Equation (4) is similar to the optimization
function of the coarse registration. However, the fine registration considers the rotation
between DSM and OSM buildings as well as more accurate translations, thus resulting
in more accurate registration results. The transformation parameters (x, y, ϕ), with the
minimum E(x, y, ϕ), are the optimal fine translation and rotation parameters for each
building group. The energy function is designed to find the minimum E(x, y, ϕ), since a
genetic algorithm is used to find the global minimum.

2.3.2. Solution

The DSM and its gradient map are normalized for the purpose of limiting w′1, w′2, and
w′3 in the range of 0–1, and of balancing the contributions of the three scores in Equation (4).
However, few extremely high buildings and noises would suppress the normalizations
of the relatively lower buildings, which makes it difficult to distinguish the normalized
elevations of the relatively lower buildings and the grounds. Thus, this paper suppresses
those extremely high or low elevations through a series of pre-processing for a better
normalization result.

This paper assumes that the ground elevations are similar in a certain local region,
for example, in a region within 1 km2. For a whole city, it is suggested that the city be
divided into different parts according to the relief of the ground surface and that the
ground elevation in each part be separately calculated. The method of calculating the
ground elevation (GE) in a local region is introduced below.

In the pre-process step, this paper first evaluates the ground elevations from the DSM,
and regards the grounds as datum to suppress those extremely high or low elevations. To
achieve this goal, an elevation histogram hS with the bin interval as 3 m is defined, and GE
is selected from the elevation histogram hS. Since the ground areas are significant when
compared with the areas of other off-ground objects, the elevation label of the highest bar in
hS has a high possibility to be the ground elevation. However, considering that some urban
areas may have a lot of vegetation, it is possible that the vegetation area is larger than the
ground area. To comprehensively select the ground elevations in different scenarios, this
paper selects the highest two bars in hS, and defines the ground elevation from any one of
them according to the following principle: if the count of the lower bar reaches 70% of the
one of the higher bar, and the corresponding elevation label of the lower bar is smaller than
the one of the higher bar, GE is the center value of the lower bar; otherwise, GE is the center
value of the higher bar. In most cases, the ground areas in cities are larger than 70% of the
vegetation areas [40]; hence, the ratio between the highest two bars is decided to be 70%
in the principle. The elevation histogram hS and the corresponding GE are found in two
experimental regions (Beijing and Shanghai), as shown in Figure 4, where the GE of Beijing
is 47.55 m and the GE of Shanghai is 11 m. Detailed descriptions about the Beijing and
Shanghai dataset are added in Section 3. To verify the validation of the GE evaluations, this
paper evenly selects 25 ground points in both regions, and calculates their elevation means
as the true values of GE. The testing results show that the true GE values are 46.73 m in
Beijing and 10.31 m in Shanghai, respectively. The differences between the evaluated GE
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and the true values in the two regions are both less than 1m, which will not influence the
result of the experiments.
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Given the ground elevations, the digital height model (DHM) IH is then computed
by the map algebra expression IS − GE = IH , which provides the heights of off-ground
objects. For a better normalization, the upper bound and the lower bound of the height
ranges of IH should be limited to suppress the extremely high and low points. Due to
the moving cars, repetitive textures, and so on, it is possible to find noises with extremely
low heights in the DHM. To reduce the influence of these extremely low heights on the
normalization, this paper sets the lower bound of the heights as −10 m on IH , which also
considers small ground height variances. The setting of the lower bound (i.e., −10 m) could
cover the height variances of most local plain regions. For example, in a region of nearly
32 km2 in Jacksonville, USA, the variance of the ground elevation is only over 7 m. To
further improve the normalization accuracy, this paper refines the lower bound through
the height histogram of IH with the bin interval as 1m, and removes the negative height
label bins that had counts smaller than 0.01 times the maximum count in the negative
height histogram.

Furthermore, high-rise buildings often refer to buildings with heights greater than
30 to 40 m [41], therefore, this paper sets the upper bound as 40 m, so that the values greater
than the upper bound in IH are set as 40 m to prevent high-rise buildings affecting the
normalization result. Figure 5 shows the normalization results before and after limiting the
lower and upper bound, in which the result with the bounds is superior in distinguishing
the grounds and buildings, with a higher lightness contrast. To quantitatively evaluate the
normalization results with and without the bounding strategy, 3 points on the buildings
and 3 points on the ground are selected, as shown in Figure 5, where the points with
numbers 1–3 are on the buildings, and the ones with numbers 4–6 are on the ground. The
values of the two normalization results are shown in a table on the right. It shows that the
normalization without the bounding strategy has weak abilities to distinguish the ground
and the buildings, and that some building points have similar values to the ground ones,
e.g., point 3 and point 4. However, the normalization with the bounding strategy could
enhance the values of the buildings and reduce the values of the ground, thus resulting in
more discriminating values.

In addition, the gradient map Ig is then obtained from IH using the Sobel operator,
and the gradient values are limited to no more than 4 m before the normalization, since
the 4 m limitation has already been able to describe the boundary gradients. After the
definite upper and lower bounds, both the height map IH and the corresponding gradient
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map Ig are normalized, and the corresponding normalization results are defined as In
H and

In
g , respectively.
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After the normalization, the optimal solutions of the energy function in the fine
registration are computed by a genetic algorithm (GA). A continuous GA is appropriate for
the optimization problem with the parameters (x, y, ϕ) that have continuous and floating
values, which satisfies the requirement of a high-precision solution. The GA encodes a
potential solution on a simple chromosome-like data structure and applies three operators,
i.e., reproduction, crossover, and mutation, to these structures, in order to preserve the
critical solution information [34]. The GA is initiated by selecting a population of randomly
generated solutions, then the three operators are utilized to evaluate the individuals in
the population and generate successive populations that improve over time [32]. Over
successive generations, the population “evolves” towards the optimal solution.

Though the GA is not dependent on the initial solutions, the good initial solution is able
to limit the ranges of the population and greatly reduce the time cost of the optimization.
Due to the good initial solution provided by the coarse registration, the initial population of
x and y are randomly generated in the range of−3sc ≤ x, y ≤ 3sc, with sc being the moving
step of the coarse registration, while the initial population of ϕ is generated in the range
of −3◦ ≤ ϕ ≤ 3◦. Considering that the coarse registration results may have errors larger
than the range of −sc ≤ x, y ≤ sc when there are tall trees distributed around the buildings,
the initial population of x and y in the GA is generated in the range of −3sc ≤ x, y ≤ 3sc,
which ensures that the fine registration can correct the translation errors in the coarse
registration. This paper counts the angles between OSM and the true building polygons in
the two experimental regions of Beijing and Shanghai, and finds that the angle differences
are mainly concentrated in the range of −3–3 degrees. Therefore, the range of ϕ is defined
as −3–3 degrees. The fixed maximum number of the iterations in the GA is 200, because
the optimization can always be terminated within 200 iterations due to the average change
in the fitness value being less than the GA function tolerance.

Considering the randomness of the initial populations in the GA, this paper runs the
GA for 5 times when computing the optimal fine registration parameters for each building
group, and finally takes the optimal parameters with the minimum E(x, y, ϕ). The effect
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of the fine registration is shown in Figure 6, where the OSM in gold is the result after the
coarse registration and the OSM in pink is the result after the fine registration.
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2.4. Single Building Model Reconstruction

After the registration between OSM and the DSM, the height information from the fine
registration result is obtained by clipping the DSM with the registered OSM. The rasterized
building height information in the Beijing experimental region is shown in Figure 7a, where
the lighter gray color refers to a higher elevation. Ultimately, the 3D building shape is
generated by stretching the building height raster vertically, and then the DOM is added as
texture in the generation of the single building model. The single building model in the
Beijing experimental region is shown in Figure 7b.
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3. Experiments
3.1. Study Regions and Datasets

In this research, the paper used the DSM datasets provided by the SSR (satellite
stereo reconstruction) software [42,43] and the building polygons from the OpenStreetMap
datasets, which are all converted into a UTM projected coordinate system. The study
regions of these datasets include three cities: Jacksonville in the USA, and Beijing and
Shanghai in China. The areas and the numbers of the buildings in each study region are
shown in Table 1.
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Table 1. The area and the number of buildings in each study region.

Jacksonville Beijing Shanghai

Area (km2) 0.87 0.45 0.21
Number of buildings 187 84 88

The corresponding DSM and OSM in the three experimental areas are shown in
Figure 8, where the DSMs in the three cities are generated from a WorldView-3 stereo
with the GSD as 0.31 m, a GFDM-1 stereo with the GSD as 0.48 m, and a Pléiades stereo
with the GSD as 0.50 m, respectively. For the Jacksonville data, the corresponding satellite
stereo has been rectified by high-accuracy ground control points (GCPs) [44,45] so that
there is little bias between the DSM and OSM. Thus, the original positions of OSM are
regarded as true values, and various systematic registration errors (including translations
and rotations) have been manually added for adjusting the parameters of the proposed
method and finding the optimal ones. For the Beijing and Shanghai data, the true building
polygons are manually drawn based on the corresponding digital orthophoto map (DOM),
which was also derived from the SSR, as shown in Figure 8b,c. The blue polygons represent
the OSM buildings and the red ones represent the true values. Due to the interim area of
the building and non-building parts in the DOM, the errors of 1–2 pixels, i.e., 0.5–1 m, may
occur when drawing the contours of the true building polygons. Since both the Beijing and
Shanghai datasets were freely rectified without GCPs, there are various registration errors
between the building polygons in OSM and the DSM when compared with the true values.
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3.2. Accuracy Evaluation Metrics

The Jacksonville dataset was used to adjust the weight parameters in the coarse
registration and fine registration, and to find the optimal ones. Since the WorldView-3
satellite imagery over Jacksonville provided by SpaceNet has already been adjusted with
GCPs, the DSM from the imagery of such a high-accuracy position can fit well with the
OSM. However, most commercial satellite imagery may not have available GCPs, thus
the registration between the DSM and OSM is still needed. After the adjusting process,
all the parameters of the proposed method were fixed, and then the experiments on the
datasets of Beijing and Shanghai utilized these fixed parameters to assess the registration
and reconstruction accuracy of the proposed method.

To comprehensively evaluate the performance of the proposed method, this paper
utilized area-related metrics with the basic assumption that more accurate registration
results should have larger overlaps between the true polygons and the registered OSM.
Given the set of the true building polygons T and the set of the OSM building polygons F
after the registration, the registration accuracy is then formulated in five aspects: (1) IoU, the
intersection over the union, which is the intersection area of F and T divided by their union
area; (2) precision, the intersection over the registration results, which is the intersection
area of F and T divided by the area of F; (3) recall, the intersection over the true values,
which is the intersection area of F and T divided by the area of T; (4) F1-score, the harmonic
mean of the precision and recall; (5) Pa, the proportion of the buildings that have an IoU
larger than 0.75, which indicates the successful registration rate of the proposed method.
The IoU, precision, recall, and F1-score were designed according to Equations (5)–(8).

IoU =
Area(F ∩ T)
Area(F ∪ T)

(5)

Precision =
Area(F ∩ T)

Area(F)
=

TP
TP + FP

(6)

Recall =
Area(F ∩ T)

Area(T)
=

TP
TP + FN

(7)

F1-score =
2× Precision× Recall

Precision + Recall
(8)

where, Area(·) is a function to compute the area of its independent variables; TP, i.e., true
positive, is the area of the overlap between the registration result and the true building
polygons; FP, i.e., false positive, is the area of the parts that are within the registered OSM
but beyond the true values; and FN, i.e., false negative, is the area of the parts that are
within the true values but beyond the registered OSM.

On the other hand, in order to quantitatively evaluate the registration accuracy in a
more intuitive way, this paper additionally considers the distance ∆c between the centroids
of the corresponding buildings in T and F, as well as the angle ∆θ between the buildings in
T and F.

There are two common methods for calculating the angle between two polygons:
(1) the MBB method: find the minimum bounding boxes (MBB) of two polygons, respec-
tively, and calculate the angle between the long sides of the two boxes; and (2) the TPMD
method: find the two boundary points with the maximum distance (TPMD) in two poly-
gons, respectively, and calculate the angle between the two lines connecting the boundary
points. However, the calculated angle will be much larger than the real one if only one
method is used, especially in the cases of square-like buildings or irregular buildings. In the
square-like cases, whose MBBs have a similar length of all sides, the relative long side of the
corresponding polygons in the registered OSM and the true values may be different, due to
some errors in OSM, the DSM, and the DOM. Thus, the MBB method may mistakenly give
perpendicular angles, even though the real angle between them is close to zero, as shown
in Figure 9a, where the real angle between the MBBs of the true building are in red and
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the OSM after registration is in pink, and is close to 0◦, while the ∆θ calculated by MBB
method is 89.7◦. In Figure 9a,c, the arrows are the normal vectors of the long sides in the
MBBs with the same color. On the other hand, the TPMD method may fail if the shapes of
the two polygons are distinct. In such a case, different boundary points with the maximum
distance may be found, and ∆θ may be abnormally large. As shown in Figure 9d, the true
building contour is distinct from OSM, and the ∆θ calculated by the TPMD method is 13.9◦.
In most cases, the two methods are complementary, which means that the angle closest to
the true value can always be found by the two methods. For example, ∆θ calculated by the
TPMD method in Figure 9b is 0.9◦, and ∆θ calculated by the MMB method in Figure 9c is
0.2◦. Therefore, this paper takes the minimum angle in the two methods as the final ∆θ .
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MBBs and the shapes of the true building polygons in red and the OSM after registration in pink,
while the arrows are the normal vectors of the long sides in the MBBs with the same color. In (b,d),
there are the shapes of the true building polygons and the OSM after registration, and the lines
connecting the boundary points with the maximum distance.

3.3. Parameters Optimization

The registration performances of the coarse and the fine registrations depend on the
weights of the energy functions in Equations (3) and (4). In order to find the optimal
weights in the energy functions, this paper utilized the Jacksonville dataset in the weight
adjustment of the coarse registration and the fine registration, respectively. Since the DSM
in Jacksonville has already been registered with OSM through the use of high-accuracy
GCPs, this paper first added several random translations into each group of the OSM
buildings within 10 m for the optimal weight adjustment of the coarse registration, and
defined these translations as true values (dx, dy). The proposed coarse registration method
is then utilized in these translated building groups with various weights, and the weights
with the registration results closest to the true values will be defined as the optimal ones.
After the coarse registration, the systematic translations between OSM and the DSM are
small. This paper therefore added small translations within 3sc and random rotations
within −3–3 degrees for the optimal weight adjustment of the fine registration, where sc
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is the moving step of the coarse registration. The best fine registration results are then
found through comparison with the true translations (dx, dy) and rotations (ϕ), and their
corresponding weights are defined as the optimal ones.

In both the coarse and fine registrations, the optimal weights were found through
grid search, which is an exhaustive search method based on the defined hyper-parameter
space [46]. The grid parameters in the coarse registration and the fine registration are both
the three weights in their optimization functions.

When adjusting the weights in the coarse registration, the ranges of the three weight
parameters were set as 0 ≤ w1, w2, w3 ≤ 1, and the exploring step was set as 0.05, while
the sum of the three weights was kept to 1. In total, there were 231 corresponding grids
of w1, w2, and w3 generated from the setting above. The different grids of the weight
parameters were input into the coarse registration algorithm, and the translation error ∆t
for each grid was then calculated. ∆t is the sum of the absolute differences between the
translation parameters computed by the coarse registration results and their corresponding
true values, as shown in Equation (9).

∆t(w1, w2, w3) =
∑n

i=1

∣∣∣di
x − di

x

∣∣∣+ ∣∣∣di
y − di

y

∣∣∣
n

(9)

where, ∆t is the translation error; w1, w2, and w3 are the three weights of the coarse registra-
tion; n is the total number of building groups; i refers to a certain building group; di

x and di
y

are the translation parameters computed by the coarse registration; and di
x and di

y are the
corresponding true translation parameters.

In a certain adjusting process, this paper calculated ∆t of the 231 groups of weights
and then sorted them in ascending order to obtain the rankings of each group of weights,
and finally, the group of weights with the minimum ∆t would be ranked first. Since the
OSM buildings were translated randomly, the weights ranked first with the minimum ∆t
might be different in each adjusting process. Therefore, this paper ran the adjusting process
10 times to get the mean ranks of each group of weights, and the group of weights with
the minimum mean rank were selected as the optimal weights. The mean ranks and the
mean ∆t of each group of weights in the 10 processes are shown in Figure 10, where a circle
has its corresponding coordinate (w1, w2, and w3) and the color of it represents the value
of the corresponding parameter. Since the sum of the three parameters is kept to 1, all
of the circles are located on an inclined plane in the coordinate system. If the color of a
circle is bluer, its mean rank and the mean error are smaller, which corresponds to a higher
registration accuracy.

Remote Sens. 2023, 15, 1443 15 of 25 
 

 

parameters were input into the coarse registration algorithm, and the translation error ∆𝑡 
for each grid was then calculated. ∆𝑡 is the sum of the absolute differences between the 
translation parameters computed by the coarse registration results and their correspond-
ing true values, as shown in Equation (9). 

∆𝑡(𝑤ଵ, 𝑤ଶ, 𝑤ଷ) = ∑ ቚ𝑑௫௜ − 𝑑௫௜ ቚ + ቚ𝑑௬௜ − 𝑑௬௜ ቚ௡௜ୀଵ 𝑛  (9) 

where, ∆𝑡 is the translation error; 𝑤ଵ, 𝑤ଶ, and 𝑤ଷ are the three weights of the coarse reg-
istration; 𝑛 is the total number of building groups; 𝑖 refers to a certain building group; 𝑑௫௜  and 𝑑௬௜  are the translation parameters computed by the coarse registration; and 𝑑௫௜  and 𝑑௬௜  are the corresponding true translation parameters. 

In a certain adjusting process, this paper calculated ∆𝑡 of the 231 groups of weights 
and then sorted them in ascending order to obtain the rankings of each group of weights, 
and finally, the group of weights with the minimum ∆𝑡 would be ranked first. Since the 
OSM buildings were translated randomly, the weights ranked first with the minimum ∆𝑡 
might be different in each adjusting process. Therefore, this paper ran the adjusting pro-
cess 10 times to get the mean ranks of each group of weights, and the group of weights 
with the minimum mean rank were selected as the optimal weights. The mean ranks and 
the mean ∆𝑡 of each group of weights in the 10 processes are shown in Figure 10, where 
a circle has its corresponding coordinate (𝑤ଵ, 𝑤ଶ, and 𝑤ଷ) and the color of it represents the 
value of the corresponding parameter. Since the sum of the three parameters is kept to 1, 
all of the circles are located on an inclined plane in the coordinate system. If the color of a 
circle is bluer, its mean rank and the mean error are smaller, which corresponds to a higher 
registration accuracy. 

 
Figure 10. The registration result of all groups of weights in the coarse registration. 

It is evident that Figure 10a is consistent with Figure 10b, with the circles with the 
low rankings in blue and the ones with the small translation errors in blue aggregated in 
the same place in the weight parameters space. The optimal weights in the coarse regis-
tration are: 𝑤ଵ = 0.15, 𝑤ଶ = 0.4, and 𝑤ଷ = 0.45, and the mean translation error of these 
three weights is 3.187 m. 

When adjusting the weights in the fine registration, the setting of the grids was the 
same as in the coarse registration, i.e., there were also 231 grids of 𝑤ଵᇱ, 𝑤ଶᇱ , and 𝑤ଷᇱ  for the 
weights of the fine registration. Similar to the adjusting process in the coarse registration, 
the different grids of the weight parameters were input into the fine registration algo-
rithm, and the translation error ∆𝑡 and the rotation error ∆𝑟 for each grid were calcu-
lated. Here, the 𝑑௫௜  and  𝑑௬௜  in the calculation of ∆𝑡  are the translation parameters 

Figure 10. The registration result of all groups of weights in the coarse registration.



Remote Sens. 2023, 15, 1443 15 of 24

It is evident that Figure 10a is consistent with Figure 10b, with the circles with the low
rankings in blue and the ones with the small translation errors in blue aggregated in the
same place in the weight parameters space. The optimal weights in the coarse registration
are: w1 = 0.15, w2 = 0.4, and w3 = 0.45, and the mean translation error of these three
weights is 3.187 m.

When adjusting the weights in the fine registration, the setting of the grids was the
same as in the coarse registration, i.e., there were also 231 grids of w′1, w′2, and w′3 for the
weights of the fine registration. Similar to the adjusting process in the coarse registration,
the different grids of the weight parameters were input into the fine registration algo-
rithm, and the translation error ∆t and the rotation error ∆r for each grid were calculated.
Here, the di

x and di
y in the calculation of ∆t are the translation parameters computed by

the fine registration. ∆r is the sum of the absolute differences between the rotation param-
eters computed by the fine registration and the corresponding true values, as shown in
Equation (10).

∆r
(
w′1, w′2, w′3

)
=

∑n
i=1|ϕi − ϕi|

n
(10)

where, ∆r is the rotation error; w′1, w′2, and w′3 are the three weights of the fine registration;
n is the total number of building groups; i refers to a certain building group; ϕi is the
computed rotation parameters for building group i; and ϕi is the corresponding true
rotation parameter.

In a certain adjusting process, this paper calculated ∆t and ∆r of the 231 groups of
weights. For the purpose of combining ∆t and ∆r to obtain the optimal weights, both ∆t
and ∆r were normalized, and the corresponding normalization results were defined as ∆tn

and ∆rn, respectively. Since the satellite position error is mainly the translation error, this
paper defined the larger weight of ∆tn as 0.6 and the smaller weight of ∆rn as 0.4, and the
final error s in the fine registration was defined in Equation (11). This paper sorted s in
ascending order to obtain the rankings of each group of weights, and the group of weights
with the minimum s was ranked first. Due to the randomness in the generation of the true
translation and rotation parameters, this paper ran the adjusting process 10 times to get the
mean ranks of each group of weights, and the group of weights with the minimum mean
rank were the optimal weights. The mean rank and the mean ∆t and ∆r of each group in
the processes completed 10 times are shown in Figure 11.

s
(
w′1, w′2, w′3

)
= 0.6∆tn + 0.4∆rn (11)

where, s represents the error in the fine registration; and w′1, w′2, and w′3 are the three weights
of the fine registration.

The same as the result of the coarse registration, the region in the darkest blue in
Figure 11a is the same as Figure 11b, which demonstrates that the mean ranks are mainly
decided by the translation errors. From Figure 11c, it can be seen that there are plenty of
groups with a mean rotation error of less than 1◦, and that the differences among them are
small. Therefore, the rotation error has little effect on the final rankings. Finally, the optimal
weights of the fine registration are: w′1 = 0.35, w′2 = 0.25, and w′3 = 0.4, with their mean
translation error being 2.077 m and the corresponding mean rotation error being 0.866◦.

The experimental results also show that the translation error in the fine registration
is more than 1 m less than that of the coarse registration. In all the following experi-
ments, the weight parameters in both the coarse and fine registration were fixed with
w1 = 0.15, w2 = 0.4, and w3 = 0.45 in the coarse registration, and w′1 = 0.35, w′2 = 0.25,
and w′3 = 0.4 in the fine registration.



Remote Sens. 2023, 15, 1443 16 of 24Remote Sens. 2023, 15, 1443 17 of 25 
 

 

 
Figure 11. The registration result of all groups of weights in the fine registration. 

3.4. Experimental Result Analysis 
In order to comprehensively test the performance of the proposed method in single 

building reconstruction, the registration results in the Beijing and Shanghai datasets were 
evaluated qualitatively and quantitatively. In general, this paper compared the registra-
tion results with the true values, and evaluated the results within the metrics of IoU, pre-
cision, recall, F1-Score, 𝑃௔, ∆ఏ, and ∆௖. 

For the qualitative evaluation, Figure 12 directly shows the differences of OSM before 
and after the registration, where the original OSM is in blue, the registration result of the 
proposed method is in green, and the true building polygons are in red. The pictures on 
the left are the original OSM and the true values on the DOM, while pictures on the right 
are the registration results and true values on the DOM. According to Figure 12a,b, it is 
obvious that, in both regions, the original OSM has various systematic errors compared 
with the true value, while the registration result basically coincides with the true value. 
The transformation of OSM after the registration indicates that our proposed method has 
brought OSM closer to the true building polygons, which offers a high-quality reconstruc-
tion. 

Figure 11. The registration result of all groups of weights in the fine registration.

3.4. Experimental Result Analysis

In order to comprehensively test the performance of the proposed method in single
building reconstruction, the registration results in the Beijing and Shanghai datasets were
evaluated qualitatively and quantitatively. In general, this paper compared the registration
results with the true values, and evaluated the results within the metrics of IoU, precision,
recall, F1-Score, Pa, ∆θ , and ∆c.

For the qualitative evaluation, Figure 12 directly shows the differences of OSM before
and after the registration, where the original OSM is in blue, the registration result of the
proposed method is in green, and the true building polygons are in red. The pictures on the
left are the original OSM and the true values on the DOM, while pictures on the right are
the registration results and true values on the DOM. According to Figure 12a,b, it is obvious
that, in both regions, the original OSM has various systematic errors compared with the
true value, while the registration result basically coincides with the true value. The trans-
formation of OSM after the registration indicates that our proposed method has brought
OSM closer to the true building polygons, which offers a high-quality reconstruction.

For the quantitative evaluation, since the OSM and true building polygons were
stored as a shapefile format, all the metrics mentioned in Section 3.2, except for Pa, are
first computed for each single building, and then the accuracy metrics of all the buildings
are averaged to evaluate the registration results. The testing results with the different
metrics in the Beijing and Shanghai regions can be found in Table 2, which demonstrates
that our proposed method produces a high-precision single building model. Among the
area-related metrics in the two regions, after the registration of the proposed method, the
IoU was increased by 69.8%/26.2%, the precision was increased by 41.0%/15.5%, the recall
was increased by 41.0%/16.0%, and the F1-score was increased by 42.7%/15.8%, compared
with the situation of using the original OSM before the registration, which indicates that the
proposed method effectively improves the overlap rate between the OSM and true values
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from different aspects. Since the registration error in the Shanghai region is smaller than
the one in the Beijing region, i.e., the accuracy of the original OSM is higher, the percentage
of improvement is lower than the one in Beijing.
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Table 2. Accuracy metrics before and after registration in Beijing and Shanghai regions.

Region IoU Precision Recall F1-Score Pa ∆C/m ∆θ/◦

Beijing Before 0.454 0.627 0.605 0.613 0.012 6.900 1.654
After 0.771 0.884 0.853 0.875 0.655 2.244 1.116

Shanghai Before 0.618 0.794 0.724 0.754 0.148 4.388 1.340
After 0.780 0.917 0.840 0.873 0.659 1.573 1.112

Pa, the percentage of the buildings with an IoU higher than 0.75 in the region, directly
shows the proportion of the buildings with a high overlap rate. After the registration, Pa
increased from 0.012 to 0.655 in the Beijing region, and from 0.148 to 0.659 in the Shanghai
region, which indicates that, in both regions, more than half of the buildings were not
registered well before being accurately overlapped with the true values via the registration.

In addition, the registration accuracy can be evaluated intuitively from the metrics ∆C
and ∆θ . The ∆C of OSM before the registration in the Beijing/Shanghai regions were 6.900 m
/4.388 m, and they were decreased by 4.656 m/2.815 m through the registration of the
proposed method, which demonstrates that the proposed method can successfully reduce
the translation error in OSM. After the registration, the ∆C in Shanghai was 1.573 m, which is
smaller than the mean translation error in the fine registration (2.077 m) in Section 3.3, while
the ∆C in Beijing was 2.244 m, a little bit larger than 2.077 m. ∆C is not only determined
by the registration result, but also by whether the shapes of OSM and the true building
polygons are similar. If the shapes of them are different, their centroids are generally in
different locations and the calculated ∆C will be large. There are more buildings that have
different shapes between OSM and the true building polygons in the Beijing region, as
shown in Figure 12, which is the reason why the average ∆C after the registration in Beijing
is larger than that in Shanghai. In fact, the reduction of the ∆C in the Beijing region (4.656 m)
is much larger than the one in the Shanghai region (2.815 m).

The ∆θ , after the registration in the Beijing and Shanghai regions, were 1.116◦ and
1.112◦, which were decreased by 0.538◦ and 0.228◦, respectively, compared with the ∆θ

of the original OSM, which were 1.654◦ and 1.340◦. Though the improvement of ∆θ is
not as substantial as the area-related metrics, it still indicates that the proposed method
corrects the rotation error in OSM to a certain extent. In addition, the differences between
the shapes of OSM and the true building polygons may cause abnormally large angles in
some cases, which is mentioned in the introduction to the two methods of calculating ∆θ ;
hence, the practical ∆θ should be smaller than the calculated value. Even though this paper
takes the minimum angle of the two methods, there are still a few cases where the ∆θ is
larger than the real angle. Figure 13 shows some buildings in the Beijing region having
irregular shapes, with the ∆θ larger than 3◦.
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3D single building models in the Beijing and Shanghai regions are visualized in
Figure 14, which indicates that our proposed method can reconstruct single building
models with high-accuracy contours.
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With regards to the aspect of computation efficiency, the program run time in the three
experimental regions on MATLAB, without using parallel pool, was calculated on a device
with a CPU of AMD Ryzen 9 7950X 16-Core Processor. In the Jacksonville region, with
area of 0.87 km2, the program ran for 57 s; in the Beijing region, with area of 0.45 km2, the
program ran for 33 s; and in the Shanghai region, with area of 0.21 km2, the program ran for
36 s. It is evident that the proposed method has a low time-cost in a single-core process. At
present, the proposed method is realized on a single-core program. In the future, this study
intends to improve the algorithm to a multi-core parallel framework, which is expected to
further lower the time cost.

3.5. Comparison

In this section, the paper compared the OSM registration results obtained from the
proposed method with the building extraction results from several convolutional neural
networks (CNN) using satellite imagery, including HRNet + OCR + SegFix [47], Deeplab
v3+ [48], and UNet [49]. Since the results from the CNNs were in raster format, this paper
rasterized the registration results in the Beijing and Shanghai experimental regions for
comparison, and the pixel-based metrics of IoU, precision, recall, and the F1-score were
utilized in the accuracy comparisons, where T refers to all the pixels in the true values and
F refers to all the pixels in the results of the different methods.

Table 3 demonstrates the significant advantage of our proposed method in single
building reconstruction when compared with the traditional CNN methods. In both of
the experimental regions with different building distributions, our proposed method had
the best IoU, which were 0.775 and 0.774, respectively, while the performances of the
CNN were obviously inferior and unstable, with the IoU values all lower than 0.6 and
differences in the IoU values evident in the two regions. For UNet, the difference reached
0.228, indicating that it performed unevenly in a semantic segmentation of the two regions;
for HRNet + OCR + SegFix/Deeplab v3+, the difference was 0.131/0.142, reflecting the
networks’ deficiencies in their generalization ability. Among all the metrics, our proposed
method achieved the highest score for the IoU, precision, and F1-score, but had the lowest
score for recall. Recall is the intersection area of F and T divided by the area of T, and this is
proportional to the intersection area due to the area of T being fixed. The rasterized result
of this paper, as well as the building extraction results of different CNNs, are visualized
in Figure 15, where the extraction results of the CNN contained a lot of non-building
areas. Since the CNN results included the true building area and other non-building
areas, the intersection area of F and T should be closer to the area of T, which raised their
corresponding values of recall.
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Table 3. Pixel-based evaluation on our proposed method and different CNNs.

Region Metric Ours HRNet + OCR +
SegFix Deeplab v3+ UNet

Beijing

IoU 0.775 0.331 0.457 0.290
Precision 0.895 0.335 0.495 0.295

Recall 0.852 0.964 0.857 0.948
F1-score 0.873 0.498 0.628 0.450

Shanghai

IoU 0.774 0.462 0.599 0.518
Precision 0.924 0.476 0.672 0.561

Recall 0.827 0.943 0.847 0.870
F1-score 0.873 0.633 0.749 0.682
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Additionally, Figure 15 indicates that the building model produced by the proposed
method in this paper had relatively clear building contours, as well as less noises, while
the CNN results contained non-building areas caused by misclassification, which is useless
for building reconstruction. In general, our proposed method outperformed the traditional
CNN works in the qualitative and quantitative evaluations.

4. Discussion

The experimental results of this study indicate that the proposed method can greatly
reduce the systematic error between OSM and the DSM in regions with different building
types and distributions. The OSM results before and after the registration in the Beijing and
Shanghai regions are shown in Figure 12, which indicates that OSM after the registration
basically coincides with the true values. The quantitative evaluation of both regions is
shown in Table 2. Compared with the original OSM, the IoU was increased by 69.8%/26.2%,
the precision was increased by 41.0%/15.5%, the recall was increased by 41.0%/16.0%, and
the F1-score was increased by 42.7%/15.8%, which demonstrates that the proposed method
effectively improves the overlap rate between OSM and the true values from different
aspects. Additionally, the ∆C and ∆θ in both regions were decreased by 4.656 m/2.815 m
and 0.538◦/0.228◦, respectively, indicating that the proposed method successfully reduced
the translation error and the rotation error in OSM. The experimental comparisons were
also tested on the datasets of the Beijing and Shanghai regions. Compared with the
building segmentation results from the CNNs mentioned in Section 3.5, the proposed
method achieved the highest IoU, precision, and F1-score, which indicates that the building
footprints produced by the proposed method had the highest overlap rate with the true
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values. In addition to the overlap rate, the single building model in the proposed method
also had the most accurate building contours, since OSM provides high-precision and
complete building polygons, which is shown in Figure 15, where the CNN results had
unclear contours and non-building areas.

This study innovatively proposed a two-step “coarse-to-fine registration” algorithm
to reduce the systematic error of OSM, and can effectively produce a high-precision single
building model with OSM after the registration and DSM. The proposed method can
produce large-scale building models globally, and has a great potential to be applied in
some urban and 3D applications, e.g., urban planning, environmental monitoring, virtual
city tours, and national defense military.

The proposed method has some limitations to be considered. First, there are several
manually selected parameters in the fine registration, which can be further simplified.
For example, in the ground elevation selection and bounding strategy of the DHM before
the normalization in the fine registration, some parameters are manually set. We plan
to optimize the algorithm with fewer manually set parameters in the future. Second,
the study has not solved the problem of shape distortion. A DIM-derived DSM often
meets edge-fattening issues, that is, the building shape in the DSM has slight differences
compared to that in OSM. If the shape distortion in this case is considered, the registration
and reconstruction accuracy may decrease, since the OSM is adjusted based on the DSM
in the proposed method. Considering this existing issue, we plan to use deep learning
technology that combines a DOM and OSM to predict high-precision building contours in
future work. Third, the registration accuracy of the proposed method may be relatively low
in areas with many trees. Man-made structures (e.g., buildings) can generally represent
good persistent scatterers [50,51], which are distinguished to vegetation. In future work,
we plan to utilize the different scattering characteristics of buildings and other objects such
as vegetation to improve the registration and modeling accuracy.

5. Conclusions

This paper proposed a novel registration method between OSM and the DSM from
satellite stereos by formulating the two-step “coarse-to-fine registration” into the opti-
mization of their energy functions. The main contribution of the proposed method is to
address the mis-registrations between the DSM and OSM and innovatively propose a low
time-cost, scalable, and high-accuracy single building model reconstruction method based
on the DSM and OSM. Experiments on Beijing/Shanghai datasets show that the proposed
method significantly improves the overlap rate of the registration results and the true
values, and reduces the OSM translation error by 4.656 m/2.815 m, and the rotation error by
0.538◦/0.228◦. When compared with CNN building segmentation methods, the proposed
method could achieve the highest overlap rate with the true values, and generate a single
building model with the most accurate building contour. However, the reconstruction
accuracy of the proposed method is influenced by whether the shapes of OSM are consistent
with the DSM. In future work, the OSM vertices movement method will be developed.
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