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Abstract: In the construction of large‑scale water conservancy and hydropower transportation
projects, the rockmass structural information is often used to evaluate and analyze various engineer‑
ing geological problems such as high and steep slope stability, dam abutment stability, and natural
rock landslide geological disasters. The complex shape and extremely irregular distribution of the
structural planes make it challenging to identify and extract automatically. This study proposes a
method for extracting structural planes from UAV images based on Geo‑AINet ensemble learning.
The UAV images of the slope are first used to generate a dense point cloud through a pipeline of SfM
and PMVS; then, the multiple geological semantics, including color and texture from the image and
local geological occurrence and surface roughness from the dense point cloud, are integrated with
Geo‑AINet for ensemble learning to obtain a set of semantic blocks; finally, the accurate extraction of
structural planes is achieved through a multi‑semantic hierarchical clustering strategy. Experimen‑
tal results show that the structural planes extracted by the proposedmethod perform better integrity
and edge adherence than that extracted by the AINet algorithm. In comparisonwith the results from
the laser point cloud, the geological occurrence differences are less than three degrees, which proves
the reliability of the results. This study widens the scope for surveying and mapping using remote
sensing in engineering geological applications.

Keywords: UAV; digital images; slope; rock mass; structural planes; ensemble learning

1. Introduction
In significant engineering projects in hydropower, transportation, mining, etc., the ge‑

ological environment is complex, and there may be various engineering geological prob‑
lems, such as high and steep slope stability and dam stability. Therefore, it is necessary to
obtain the rockmass structural information in time to evaluate and analyze these problems.
The accurate acquisition of structural planes is an essential basis for rock mass structural
information analysis. The rock mass structural plane is a planar geological interface pro‑
duced in the rock mass under tectonic stress, and its physical and mechanical properties
determine the nature of the rock mass. Many regular geometric characteristics exist in
the artificial environment, including regular planes, straight lines, circles, curved surfaces,
and other manifold structures, which provide available features for object recognition and
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extraction. By contrast, the rock mass structural planes perform extremely complex forma‑
tions, and experience tectonic movements of different natures in different periods. There‑
fore, various natural forms and complicated distribution make it difficult to extract the
structural planes automatically. The high‑level and low‑level features from images and
point clouds can be accurately extracted by deep learning technology, which has signifi‑
cant advantages in structural plane recognition and extraction. In addition, hydropower,
transportation, and other engineering projects are primarily located in highmountains and
valleys, which are highly dangerous and inaccessible, making it difficult to achieve compre‑
hensive on‑site geological surveys. UAV image acquisition can quickly reach full coverage
of complex terrain, and this non‑contact photogrammetry technology has better applica‑
bility to geological surveys. Therefore, this paper provides research on the slope structural
plane extraction from UAV images based on the ensemble deep learning strategy.

Photogrammetry and 3D laser scanning techniques provide non‑contactmeasurement
methods for extracting rockmass structural information. Photogrammetry can extract rock
mass structural information through image interpretation or 3D model measurement and
analysis [1–3]. The 3Dmodel of the rockmass surface is generated frommulti‑view images
based on photogrammetry or computer vision methods [4–6]. The 3D laser scanning tech‑
nology can efficiently and quickly acquire massive 3D point clouds of the target surface in
high precision and high spatial resolution. It has been widely applied in geological engi‑
neering fields [7]. Currently, many studies focus on the planar geometric feature extraction
of rock mass [8–11].

In the 1970s, Ross‑Brown et al. first used calibrated images to interpret the direction
and trace length of structural planes, pioneering the application of photogrammetry tech‑
nology to engineering geology [1]. Lee et al. trained a classifier based on the DeepLabV3+
network to detect joint traces from digital images and to calculate their length using point
cloud data generated by the stereo photogrammetry technique [12]. Xu et al. proposed a
fast‑fuzzy clustering method for discontinuity sets using a point cloud model generated
by close‑range photogrammetry technology [13]. Kong et al. researched rock mass dis‑
continuity identification and clustering using 3D point clouds, and proposed a method for
calculating normal vectors, made by clustering a density peaks algorithm, and obtained
several discontinuity parameters [14]. Li et al. also proposed a method for measuring
the occurrence of structural planes based on the principle of a central projection vanishing
line and vanishing point [15]. Leu et al. presented a rock mass structural feature extrac‑
tion method based on image processing technology. The faults, joints and fissures of a
tunnel’s surface can be extracted to assist geologists in analyzing and evaluating the tun‑
nel’s excavation face [16]. Wang andLiu established the object‑image relationshipmodel of
the slope through the digital photogrammetry system and combined it with the structural
plane trace visualizationmodel to obtain the trace length and occurrence information of the
structural planes [17,18]. Bi et al. used aerial images to obtain the geometric morphology
of formation faults in the local area of the Altyn fault area and the micro‑fault geomorpho‑
logical features near the faults based on the Structure from Motion technique [19]. Xiao
et al. extracted the contour information of cracks in a dangerous rock mass based on the
grayscale and spatial features presented on UAV images [20].

The TLS technologywas first used byKocak et al. in the outcrop exploration of seabed
rock formations [21]. Feng et al. successively applied TLS technology to the measurement
of an exposed rockmass surface and the roughness and tracemeasurement of the structural
planes [22]. Slob et al. carried out triangulation reconstruction on the point cloud, and then
the structural planes were automatically extracted through fuzzy K‑means clustering [23].
Riquelme et al. determined the plane equation of the structural plane through the copla‑
nar test of adjacent points and identified the exposed rock mass’ structural planes [24]. DK
et al. proposed a structural plane extraction method. In this method, the normal vector
is first calculated by iterative weighted plane fitting, and structural planes clustering is
performed by combining it with fast search and density peaks. Then, the structural plane
fitting is finished using random sampling consistency [25]. Battulwar et al. compared the
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automatic extraction methods of rock discontinuity features based on 3D surface models.
They concluded that the region growth method is faster and more accurate for joint detec‑
tion [8].

In summary, the existing non‑contact rock mass structural information extraction
methods mainly use point clouds or images as the data source, and different methods
have pros and cons. For example, the three‑dimensional measurement method based on a
laser point cloudmainly determines the plane by selecting coplanar points to extract struc‑
tural planes [26–28]. Due to the significant difference in the exposure range of the rock
mass’ structural planes, and some structural surfaces are curved, undulating, and rough,
it is difficult to determine the optimal parameters for the plane fitting method, which may
lead to incorrect extraction results. The method based on a single image considering a
vanishing point is more suitable for outcrops with enough thickness and extension length.
The photogrammetrymethod based on stereopairsmostly depends on a human–computer
interaction mode [6,29,30].

Empirically, image processing methods have greater advantages when extracting the
two‑dimensional geometric features of rock masses, and the rich and intuitive color and
texture play an important role for image segmentation. Superpixel segmentation provides
an efficient solution for image segmentation and has been extensively studied [31,32]. Tra‑
ditional superpixel segmentation methods can be roughly divided into two categories,
i.e., gradient‑based segmentation and graph‑based segmentation [33]. Simple Linear Iter‑
ative Clustering (SLIC) is a classic superpixel segmentation algorithm, in which a k‑means
iterative clustering is performed to achieve superpixel segmentation. The iterative process
mainly includes two steps: (i) pixel–superpixel hard association; (ii) superpixel center up‑
date. In recent years, the research and application of deep learning technology in computer
vision and other fields has proliferated, and related research on combining deep neural net‑
works and superpixels has gradually emerged. However, since the definition of standard
convolution operations is performed under regular grids in most deep network architec‑
tures, the processing efficiency of irregular grid units will be greatly affected. Moreover,
most of the current superpixel algorithms are not differentiable. Therefore, it is necessary
to add nondifferentiable modules to combine superpixels with neural networks, such as
end‑to‑end trainable networks.

Superpixel segmentation with fully convolutional networks (FCN) provide a solu‑
tion [34]. However, there is a skip‑connect operation in the full convolutional network.
Moreover, the low‑level pixel–pixel relationship is introduced into the superpixel segmen‑
tation algorithm. Therefore, they both have bad effects on the segmentation results. Wang
et al. proposed an AINet superpixel segmentation algorithm, which integrated the Asso‑
ciation Implantation (AI) Module into the fully convolutional network to directly predict
the relationship of pixel–superpixel [35]. This algorithm effectively improves the segmen‑
tation efficiency. In addition, a new loss function considering the boundary‑perceiving
loss is proposed in the algorithm, and this helps to improve the edge consistency of super‑
pixels [35]; however, AINet superpixel segmentation only considers the 2D features of the
image. In this study, an improved Geo‑AINet method for slope structural plane extraction
fromUAV images is proposed. Both 2D and 3D semantics are used to divide the rock slope
into a series of small blocks with multi‑dimensional feature perception capabilities. Then,
structural planes can be extracted through multi‑dimensional semantic hierarchical clus‑
tering. The proposed method fully integrates both the 2D and 3D multiple features of the
rock slope to measure the similarity of small blocks, which can effectively improve the ac‑
curacy of structural plane extraction. Moreover, compared with a single feature, multiple
features have more significant impacts on the identification of the structural plane.
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2. Methodology
The flow chart of the Geo‑AINet rock mass structural plane extraction method pro‑

posed in this study is shown in Figure 1.

Figure 1. The flowchart of the proposed Geo‑AINet rock mass structural plane extraction method.

Themethod is comprised of five parts: (1)Multi‑view Stereo Reconstruction: the UAV
multi‑view images of the slope are collected and used to estimate the camera parameters
and generate a sparse point cloud by the Structure from Motion technique, and the Patch‑
basedMulti‑view Stereo (PMVS) method is then used for dense reconstruction to generate
a dense point cloud of the slope; (2) 3D Semantic Features Calculation: in this study, 3D
geological semantics including dip, dip direction, and roughness are selected for structural
plane extraction. For each point, the dip and dip direction can be calculated according to
the normal vector of the local best fitting plane obtained by its nearest neighbors, and the
roughness can be obtained by the open source software CloudCompare; (3) Multi‑features
Projection: a projection plane is defined according to the spatial orientation of the dense
point cloud of the slope, and the 2D RGB and 3D geological semantics of the dense point
cloud are, respectively, projected onto the 2D plane to obtain 2D projection correlation
images (Details will be introduced in Section 2.2); (4) Semantic Block Segmentation: using
AINet as the basis function to establish a Geo‑AINet model for ensemble learning, then
the slope is divided into a set of semantic blocks; (5) Semantic Block Clustering: both the
Region Adjacent Graph (RAG) and the Nearest Neighbor Graph (NNG) involving multi‑
dimensional geological semantics, including RGB, dip, dip direction, and roughness, are
established according to the 2D projection association images to complete the structural
surface clustering.

2.1. Multiple Geological Semantic Features of the Structural Plane
1. The color and texture features from the 2D pixel: the color and texture can be used

to identify geological and non‑geological bodies (such as vegetation, buildings, etc.).
Generally, the color and texture are diverse for structural planes. For example, black
organic films are attached to some rock mass structural surfaces; yellow and red
muddy fillings may exist in weak interlayers; calcareous and siliceous fillings are
generally white; some friction marks may adhere to the surface of the structural face,
which form various textures; some rocks, such as granite, have different colors and
textures. Therefore, the color and texture are essential semantic elements for segmen‑
tation and classification. In this study, the color and texture features will be used for
projection, segmentation and vegetation filtering from the clustering results.

2. The geological occurrence features from the 3D space: the occurrence of structural
planes can reflect the spatial distribution of structural planes and is an important pa‑
rameter for rockmass stability analysis. Generally, the occurrence is characterized by
three parameters; i.e., dip, dip direction, and strike. The dip direction and strike are
related, and there is a 90 degree difference between them. Therefore, in this study,
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only dip and dip direction are selected as the two important geological semantic fea‑
tures. There is a spatial relationship between the occurrence and the normal vector of
a structural plane. The open source software CloudCompare provides several meth‑
ods to obtain the normal vectors of a point cloud that can be converted to dip and
dip direction. In this study, the dip and dip direction are mainly used for projection,
segmentation and clustering.

3. The roughness from the 3Dmorphological features: the surface of a rockmassmay be
smooth, rough, or slightly rough. Taking roughness as a geological semantic feature
may play an important role in the identification of structural planes. In this study,
the roughness can be obtained by the open source software CloudCompare. For each
point in a point cloud, the roughness value refers to the distance between this point
and the best fitting plane computed on its nearest neighbors. In this study, the rough‑
ness is mainly used for non‑structural planes recognition from merging results.

2.2. Multi‑Features Semantic Association Projection Images Generation
The characteristics of structural planes depend on 2D and 3D multiple semantic fea‑

tures, while traditional image segmentation methods do not fully consider the compre‑
hensive influence of multi‑dimensional information. In this study, a dense point cloud is
projected onto a 2D plane to generate a group of multi‑feature semantic association pro‑
jection images; i.e., the RGB projection image and the geological occurrence images (the
dip projection image and the dip direction projection image). Multiple semantic features
between images are associated pixel by pixel, which can provide input data with multi‑
features for multi‑task learning based on Geo‑AINet. The generation of the association
projection images is as follows:
1. Definition of a 2D projection plane of a rock mass slope

A 2D projection plane is established according to the spatial orientation and distribu‑
tion of the slope. For the dense point cloud of a slope, the object space coordinates of a 3D
point P in the O − XYZ coordinate system are denoted as (X, Y, Z). A 2D projection plane
is obtained by plane fitting of the dense point cloud of the rock slope along an approximate
XOY coordinate plane. The geometric relationship between the three‑dimensional coordi‑
nate system of the dense point cloud and the 2D coordinate system of the projected plane
is shown in Figure 2. From Figure 2 it can be seen that the 2D projection plane is parallel
to the fitting plane of the point cloud of the slope, and it is apparently that the plane is not
unique. It is worth mentioning that for the irregular shape of the rock slope, the occlusion
problem should be avoided during projection as much as possible.

Figure 2. The schematic diagram of the geometric relationship between the 3D space coordinate
system of the dense point cloud and the 2D projected plane coordinate system.

2. Determination of the size of the projection plane

The size of the 2D projection plane should be appropriate in order to obtain good
projection resolution. Generally, the width and the height are determined by the spatial
resolution of the point cloud as well as the size of the slope. Define a coordinate system
o − xy in the 2D projected plane, which is shown in Figure 2. Let the spatial resolution of
the dense point cloud be δ, and the maximum and minimum values of the X‑coordinate
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and Y‑coordinate of the dense point cloud be Xmax, Xmin, Ymax, and Ymin, respectively.
Therefore, the projection coordinates can be calculated by Equation (1):[

x
y

]
=

[
(Xmax − X)/δ

(Y − Ymin)/δ

]
, W = ∆X/δ; H = ∆Y/δ (1)

where ∆X = |Xmax − Xmin|, ∆Y = |Ymax − Ymin|. W and H refer to the width and the
height of the projection plane.

3. Multi‑features semantics projection

The dense point cloud generated by themulti‑view stereo reconstruction pipeline car‑
ries RGB features, and the local geological occurrence semantic features can also be calcu‑
lated from the normal vector of each 3D space point. The multi‑dimensional semantics of
the dense point cloud are, respectively, projected onto the 2D plane. Therefore, the multi‑
feature semantic association projection images of the slope façade are generated. Themulti‑
dimensional semantic features, e.g., RGB, dip, anddip direction, are, respectively, assigned
to the corresponding pixels of the 2D projection image to obtain multi‑feature semantic as‑
sociation projection images of the rock slope. Therefore, themapping relationship between
the RGB and the spatial semantic features is established, which provides crucial data for
semantic block segmentation by ensemble learning based on Geo‑AINet.

2.3. Semantic Block Segmentation Based on Geo‑AINet Ensemble Learning
Superpixel segmentation has apparent advantages over traditional pixel‑based seg‑

mentation algorithms, and superpixel segmentation considers the correlation betweenpixel
features, which can improve segmentation accuracy [36]. Generally, superpixel segmenta‑
tion is achieved by dividing the image into a series of regular grid cells and estimating the
relationship between each pixel and its adjacent grid cells, the accuracy ofwhich has a great
effect on the segmentation results. Similar to a superpixel, a semantic block with multi‑
dimensional feature perception capability is defined in this study, which is composed of a
set of pixels with similar semantics features for the structural plane or the non‑structural
plane. The semantics of pixels are similar inside each semantic block and different between
semantic blocks.

2.3.1. The Traditional Superpixel Segmentation Algorithms Based on Deep Learning
An innovative FCNsuperpixel segmentation algorithmwasfirst proposed in 2020 [34].

In this method, the FCN is adopted for deep learning under regular grids. In the initial‑
ization step, the traditional superpixel strategy is applied to associate pixels with regular
grid units. Superpixel segmentation is completed by finding the association score between
image pixels and regular grid units. A simple and standard FCN structure is used for
superpixel segmentation under regular grid cells. In the network, the traditional down‑
sampling and up‑sampling convolution calculation are replaced by the scheme based on
a superpixel, which can more effectively retain the target edge details and efficiently im‑
prove the segmentation efficiency.

In a word, the superpixel segmentation based on the FCN refers to obtaining a soft
association matrix with a dimension of H × W × 9 through a U‑Net. Here, H andW are
the height and width of the input image, respectively. This matrix quantitatively reflects
the relationship between the pixel and its surrounding nine superpixels. It can also be
regarded as a probability that the current pixel belongs to each surrounding superpixel.

First, the attribute h(s) of each superpixel is estimated according to the colors and the
positions of the pixels inside it.
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h(s) =
∑p:s∈Np l(p) · q(p, s)

∑p:s∈Np q(p, s)
(2)

where l(p) refers to the attribute of a pixel, Np denotes a superpixel set around a pixel p,
and q(p, s) denotes the probability that the pixel p is assigned to its surrounding
superpixels s.

Then, the reconstructed attribute l′(p) of this pixel is calculated as Equation (3).

l′(p) = ∑
s∈Np

h(s) · q(p, s) (3)

The training loss is expressed as the distance between the ground‑truth attribute and
the reconstructed attribute, and it can be described as Equation (4).

L(Q) = ∑
p
dist

(
l(p), l′(p)

)
(4)

On the basis of the above algorithm, the AINet superpixel segmentation algorithm
was proposed [35], and its basic principal framework is shown in Figure 3. The input
of the network is an image, and the output is an association map Q. First, convolution
operations are performed to extract the pixel embedding and the superpixel embedding,
which are then fed into the AI module. Then, the corresponding neighborhood superpixel
features are implanted around each pixel embedding for expansion. Finally, a convolution
with a kernel size of 3 × 3 is performed to achieve knowledge propagation and obtain the
pixel–superpixel associations.

Figure 3. The basic principal framework of the AINet superpixel segmentation algorithm [35].

2.3.2. The Geo‑AINet Ensemble Learning Superpixel Segmentation Algorithm
The semantic segmentation process is an important prerequisite for the subsequent

accurate clustering of structural planes. The network architecture of the Geo‑AINet en‑
semble learning is shown in Figure 4.
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Figure 4. The network architecture of Geo‑AINet ensemble learning.

In the proposed algorithm, three groups of pixel embeddings, respectively, corre‑
sponding to multiple semantic features (i.e., color and texture, dip, and dip direction)
are obtained through a deep neural network, which are denoted as Ergb ∈ RH×W×D

rgb ,
Edip ∈ RH×W×D

dip , and Edir ∈ RH×W×D
dir , respectively. For a pixel p, its embeddings in‑

volving the above semantic features can be represented by ergb
p ∈ RD

rgb, edip
p ∈ Rdip

dip, and
edir

p ∈ Rdir
dir, which is shown in Figure 4. Let the sampling interval be S, and the input im‑

age compressed by multiple operations with convolutions and max poolings to generate
three feature maps of grid cells with multi‑dimensional semantics; i.e., Mrgb ∈ Rh×w×D

rgb ,
Mdip ∈ Rh×w×D

dip , and Mdir ∈ Rh×w×D
dir , where h = H/S, ω = W/S.

The three feature maps Mrgb ∈ Rh×w×D
rgb , Mdip ∈ Rh×w×D

dip , and Mdir ∈ Rh×w×D
dir are

transformed into further, new feature maps through the 3 × 3 convolution operation, and
are represented by M̂rgb ∈ RH×W×D

rgb , M̂dip ∈ RH×W×D
dip , and M̂dir ∈ RH×W×D

dir , respectively.
Therefore, the embedding of the nine grid cells around pixel p are defined according to
Equation (5), which directly associates the pixel with the semantic block.

SP =

m̂tl m̂t m̂tr
m̂l m̂c + ep m̂r
m̂bl m̂b m̂br

 (5)

where, SP =
[
SPrgb SPdip SPdir

]
, m̂|·| =

[
m̂rgb

|·| m̂dip
|·| m̂dir

|·|

]
.

The association map can be predicted using a 3×3 convolution and Equation (6).
ergbp = ∑ij SP

ij
rgb × ωij + b

edipp = ∑ij SP
ij
dip × ωij + b

edirp = ∑ij SP
ij
dir × ωij + b

(6)
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The proposed method adopts the same loss function as the AINet superpixel segmen‑
tation method, which includes three items of the cross‑entropy loss, the reconstruction
losses of pixels (Equation (4)) and the boundary‑perceiving loss. The loss function for the
Geo‑AINet is expressed as Equation (7).

L = ∑
p

CE(ls(p), ls(p)) + λ∥p − p′∥2
2 + αLB (7)

where, λ and α are weight factors for a tradeoff of the loss items; LB represents a classifica‑
tion loss term used to enhance feature discrimination, which can effectively improve the
edge accuracy of the semantic block.

A new set of embedded pixels E′ =
{

Ergb, Edip, Edir

}
can be calculated by

Equations (5) and (6), which directly reflects the pixel–superpixel associations on color
and texture, dip, and dip direction. In the proposed method, the AINet is used as the base
learner, and multi‑feature semantic association projection images are used as multiple in‑
puts of Geo‑AINet. Therefore, the association mapsQrgb,Qdip, andQdir can be predicted,
which are further integrated according to Equation (8). Then, a soft associationmapQfusion
considering multi‑feature semantics is obtained. Finally, a group of semantic blocks can
be extracted from Qfusion.

QFusion = λ1Qrgb + λ2Qdip + λ3Qdir (8)

where λ1, λ2, and λ3 denote the weight factors for the three association maps Qrgb, Qdip,
andQdir, respectively, and they satisfy λ1 + λ2 + λ3 = 1.

The detailed calculation process of the soft association map QFusion is shown in Fig‑
ure 5. In Figure 5, r1–r9, d1–d9, and v1–v9, respectively, refer to three probability distribu‑
tions, which reflect the similarities in the RGB, dip, and dip direction semantics between
the pixel p in the i‑th row and j‑th column and its surrounding nine neighboring semantic
blocks. f1– f9 represents the probability distribution of the pixel p(i, j) on multi‑feature se‑
mantics. The initial semantic block centers are defined by regular pixel blocks, and the cen‑
ters will be optimized according to the association between each pixel and its surrounding
pixel blocks. The optimization is achieved iteratively [34]. Label mapping can be obtained
by taking the maximum values of nine probabilities for each pixel, which corresponds to
the result of the semantic block segmentation.

Figure 5. The detailed calculation process of the soft association mapQFusion on the pixel p(i, j).

2.4. Semantic Block Clustering and Structural Plane Extraction
The semantic blocks generated from Section 2.3 are over‑segmented results, which

should be further clustered to obtain the extraction results of the rock slope’s structural
planes. In this study, the topological adjacency of all semantic blocks is firstly expressed
by a RAG proposed by [37]. Then, the multi‑dimensional geological semantics are used to
define a region dissimilarity, which measures the similarity of adjacent semantic blocks in
the RAG. The RAG is further transformed into an NNG, where efficient and fast clustering
of semantic blocks is achieved by merging connected bidirectional edges.
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Figure 6a–d, respectively, shows the schematic diagram of the segmented semantic
blocks, the corresponding RAG and NNG, and the merging results. Figure 6a shows a
superimposed display of segmented semantic blocks (blue and red curves) and an im‑
age. The numbers
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blocks; (b) RAG; (c) NNG; (d) the merging results.

Semantic blocks are comprised of valid and invalid structural planes, and the latter
may include vegetation and non‑structural plane rock masses. Therefore, it is necessary to
perform a further filtering process on the merging results to eliminate these invalid struc‑
tural planes. For example, the RGB semantic can be used to identify green vegetation areas,
and the roughness semantic can be used to recognize non‑structural planes. Finally, the
structural planes can be extracted successfully.

3. Experiment and Analysis
In this study, the slope of a dismissed quarry in Australia was used for the exper‑

iments. The multi‑view image sequence was collected by DJI UAV. The primary optical
axes of the imageswere perpendicular to the rock slope surface. A total of 98 digital images
of the rock slope were acquired, which have enough overlap (more than 80%) to guarantee
multi‑view stereo reconstruction. The cameramodel was an FC300X, and the image resolu‑
tionwas 2000× 1500 pixels. The focal length f and ISOwere set to 2.8 and 100, respectively.
A total of 18 coded and 13 natural features were used as control points, and their coordi‑
nates weremeasured using two Leica TS11 reflectorless total stations. Therefore, the dense
point cloud generated bymulti‑view images could be scaled. A laser scanning point cloud
was acquired using a Leica ScanStation C10 TLS, and the accuracy was in the range of
±4 mm. It was used to provide the ground truth for a comparison of the geological occur‑
rence extracted by the proposedmethod. Thewidth and height of the whole rockwall was,
respectively, 80 m and 6 m. Figure 7 shows two parts of the study area of the slope, which
were used for our experiments. The considered area of the wall was about 20 m long and
5 m high.

A sparse reconstruction was performed using Agisoft Photoscan software. First, fea‑
ture extraction and matching were performed on multi‑view images, and the essential ma‑
trixwas calculated via bundle adjustment. Therefore, both interior and exterior orientation
elements of the camerawere estimated, and a sparse point cloudwas generatedwith a total
of 28,933 points. The sparse point cloud and camera positions are shown in Figure 8.
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Figure 7. The experimental areas of the quarry slope in Australia.

Figure 8. The visualization of the sparse point cloud and cameras.

Based on the sparse reconstruction results, a PMVS dense reconstruction method was
performed. A group of depth maps corresponding to the original multi‑view images were
generated and optimized by propagation; an example is shown in Figure 9. The grey scale
values of the depth image was in the range from 0 to 255. The values 0 and 255 represent
black and white, respectively.

Figure 9. An example of the original image and the corresponding depth map: (a) the RGB image;
(b) the depth image.

After the patch growing and expanding process, a textured dense point cloud of the
rock slope was obtained. The number of points in the dense point cloud was 4,754,284; the
visualization of the dense point clouds is shown in Figure 10.
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Figure 10. The visualization of the dense point cloud.

For any point in the dense point cloud, its local geological semantics involving dip,
dip direction, and roughness were, respectively, calculated according to the spatial rela‑
tionship between the 3D point and its surrounding local neighbor spatial points. The
front view of the dense point cloud of the slope was selected for plane fitting, and then
a 2D projection plane was determined. According to the projection method proposed in
Section 2.2, multiple geological semantic features were projected onto a two‑dimensional
plane to obtainmulti‑feature semantic association projection images; as shown in Figure 11.
Figure 11a–c showprojection images of RGB, dip, anddip direction semantics, respectively.

Figure 11. Multi‑feature semantic association projection images: (a) the RGB projection image; (b)
the dip projection image; (c) the dip direction projection image.

The multi‑feature semantic association projection images were taken as inputs, and
a semantic block set with similar geological features was generated using the Geo‑AINet
semantic block segmentation method proposed in Section 2.3. Figure 12a–c show the vi‑
sualizations of the semantic block segmentation results from the proposed method on the
multi‑feature semantic projection images, respectively. The color range in Figure 12b,c re‑
flect the dip (0–90 degrees) and dip direction (0–360 degrees), respectively. The color scales
correspond to Figure 11b,c.
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Figure 12. Visualizations of the semantic block segmentation results with the Geo‑AINet method
proposed in this study: (a) the segmented semantic block overlays on the RGB projection image,
and five regions marked by red dashed boxes (numbered I‑V) perform relative evident differences
of geological features; (b) the segmented semantic block overlays on the dip projection image; (c) the
segmented semantic block overlays on the dip direction projection image.

Figure 13 shows the segmentation results generated using the AINet method pro‑
posed in [35]. The segmentation results fromfive regions numbered I–V (red boxesmarked
in Figure 13) are compared with the corresponding results obtained by the proposed Geo‑
AINet method (red boxes marked in Figure 12a). Figure 14 shows the details of
the comparison.

Figure 13. A visualization of the AINet‑based segmentation results.
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Figure 14. The local detail comparisons of the segmentation results from the two methods: the first
row shows the segmentation results from the AINet‑based method overlaying the RGB projection
image. The last three rows show the segmentation results from the Geo‑AINet‑based method over‑
laying on RGB, dip, and dip direction projection images, respectively. The black curves represent
the ground truth of the structural plane boundaries. The red solid curves marked in the first row,
and the red dotted line marked in the second row, represent the segmented labels obtained by the
two methods, respectively.

In Figure 14, five examples of the local detail comparisons of the segmentation results
are listed in columns. The two structural planes in region I have noticeable brightness dif‑
ferences caused by illumination, and both methods achieved ideal results. For region II,
III, and V, the boundaries of the structural planes in the dip direction projection images
are more distinctive. Similarly, for region IV, the boundaries of the structural planes in
the dip projection image are easier to distinguish. In comparison with the 2D color and
textures features, the 3D geological semantic features contribute to improve the segmen‑
tation accuracy of Geo‑AINet. In regions II, III, and V, the structural planes have similar
RGB and dip characteristics, but significantly different dip directions. It is difficult for the
traditional AINet method to distinguish different structural planes accurately. Geo‑AINet
obtains better segmentation results because it considers the three semantics. In region
IV, different structural planes can only be distinguished by the dip semantic instead of
similar texture and dip direction. Therefore, the semantic blocks segmented by the Geo‑
AINet‑based method perform better edge adherence. These experimental comparisons
demonstrate, fully, that the proposed method integrates multiple geological semantics for
structural plane extraction, which can effectively improve accuracy and reliability.

The semantic blocks were first merged using the clustering method described in
Section 2.4. The RAG and NNG were generated by semantic blocks with a number of
4327. Each edge connected by two adjacent semantic blocks represents a distancemeasure‑
ment, which was calculated by the values of the dip and the dip direction of the semantic
blocks [37]. For a semantic block, its occurrence was obtained according to the normal vec‑
tor of the plane fitted by the 3D points corresponding to all the pixels in it. Therefore, the
length of the edge reflects the similarity of the geological occurrence of the two semantic
blocks, i.e., the smaller the distance was, the more similar the two sematic blocks. The
clustering criteria is that each semantic block will be merged with the one with the closest
distance to itself. Finally, those semantic blocks with themost similarity should bemerged.
The accuracy of the clustering results has an effect on the integrities of the extracted struc‑
tural planes. Figure 15a,b show the merging results of semantic blocks under different
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perspectives. In Figure 15, the multi‑feature semantic blocks have been merged success‑
fully, and the merging results include geological structural planes and invalid surfaces,
which are represented by different colors.

Figure 15. The results from semantic block merging under different perspectives: (a) the left view;
(b) the right view.

For themerging results, the color and roughness were used to filter out the vegetation
and invalid structural planes regions, respectively. Finally, twenty‑seven valid structural
planes were successfully recognized, which are shown in Figure 16a–c, providing a com‑
parison of some of the structural planes displayed in the images.

Figure 16. Visualization of the structural plane extraction results: (a) the whole results; (b) and (c):
distributions of some structural planes in images.

4. Evaluation and Discussion
To verify the accuracy of the segmentation, four classic accuracy metrics, including

Under‑segmentation Error (UE), Boundary Recall (BR), Achievable Segmentation Accu‑
racy (ASA), and Mean Distance to Edge (MDE), were used to evaluate the performance
of the semantic blocks [38–42]. UE represents the ratio between pixels inside the seman‑
tic block but outside the ground truth and all pixels in the ground truth. BR reflects the
consistency of the boundaries of superpixels with the ground truth boundaries. A higher
BR score indicates that the superpixel has better edge adherence. ASA quantifies the seg‑
mentation performance of areas that are semantic block‑based instead of pixel‑based, and
a higher ASA score corresponds to the more accurate segmentation of semantic blocks.
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MDE refers to the average distance between pixels in a semantic block and the nearest
boundary pixels in ground truth segmentation. The smaller the MDE score, the better the
segmentation results.

The semantic block segmentation results from regions I‑V, marked in Figures 12a
and 13, were used to evaluate the improvement in semantic block segmentation using the
proposed Geo‑AINet method versus the AINet method. The comparison results are listed
in Table 1. The under‑segmentation error rate in all regionswas reduced bymore than 15%.
The average boundary recall rate of the five regions was improved by approximately 16%,
and the highest BR rate reached 85.66%. The mean distance to edge in the five regions
improved vastly, roughly ranging from 19% to 37%. Compared to the other three met‑
rics, although the achievable segmentation accuracy demonstrates a relatively moderate
increase, it also reflects the superiority of the proposed Geo‑AINet‑based method.

Table 1. Comparison of four accuracy metrics for evaluating semantic block segmentation with
AINet and Geo‑AINet.

Region Method UE BR ASA MDE

I
AINet 0.0478 0.6791 0.9523 1.2128

Geo‑AINet 0.0383 0.7930 0.9617 0.9728

II
AINet 0.0940 0.7126 0.9060 1.2361

Geo‑AINet 0.0736 0.8312 0.9263 0.8290

III
AINet 0.0644 0.6475 0.9356 1.4652

Geo‑AINet 0.0481 0.7860 0.9519 0.9126

IV
AINet 0.1291 0.6692 0.8709 1.3503

Geo‑AINet 0.1096 0.7465 0.8904 1.0875

V
AINet 0.0533 0.7433 0.9467 1.1308

Geo‑AINet 0.0363 0.8566 0.9637 0.7211

Some conclusions can be obtained through the above evaluation. Since the AINet su‑
perpixel segmentation method only uses RGB for segmentation, it is difficult to accurately
distinguish different structural planes with similar colors but obviously different geologi‑
cal occurrences. The integration of 2D and 3D geological semantic features makes the Geo‑
AINet method perform with apparent advantages in segmentation accuracy. For those
complex geological environments, there may be various complex structural planes with
obvious 2D differences in color texture and 3D geological occurrences, or a mixture of the
two (some examples include the regions I–V in Figure 14). The proposed method compre‑
hensively considers a variety of different features, which is more conducive to the accurate
extraction of these structural planes. The Geo‑AINet algorithm introduces the geological
occurrence semantics and integrates them with the color and roughness semantics. From
Table 1 it can be concluded that semantic block segmentation is achieved through multi‑
feature semantic projection and ensemble learning with Geo‑AINet, which can more accu‑
rately adhere to the boundaries of complex rockmass structural planes, and performswith
greater robustness. Compared with a single feature, the multiple features used for similar
semantic block segmentation may improve the accuracy of structural plane extraction.

A quantitative comparison was provided to evaluate the accuracy of structural plane
extraction. The dip and dip direction of the ten flat structural planes extracted by the pro‑
posed method were, respectively, calculated and compared with those correspondingly
measured on the 3D laser point cloud. Firstly, an interpretation of structural planes was
performed by the professional geologists according to the image and laser point cloud;
then, enough laser points on the structural planes were manually selected for plane fit‑
ting; the occurrence of the structural plane was calculated according to the normal vector
of the fitted plane and taken as the ground truth. It is to be mentioned that these points
should be evenly distributed inside the structural surface, to try and express the spatial
geometry of the structural surface. The results are listed in Table 2. It can be seen that
both the average dip difference and the average dip direction difference of the structural
planes are less than three degrees, and their maximum differences are no more than four
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degrees. The experimental results show that the slope rock mass structural planes can be
wholly and accurately identified and extracted using the proposed method. The accuracy
of the results meets the relevant requirements for geology and design. Moreover, the 2D
segmented results retain a mapping relationship with the 3D dense point cloud, by which
the 2D results can be transmitted to the 3D structure. Deep learning can better explore
the relationship between features, but it is difficult to directly perform multi‑feature deep
learning in 3D space due to the tremendous amount and variable dimensions of the data.
Therefore, this study conducts deep learning by projecting various features into 2D space,
which can effectively improve the efficiency and feasibility of the algorithm.

Table 2. The geological occurrence comparison calculated by the proposed method and measured
on the 3D laser point cloud.

Label
Measured on the 3D
Laser Point Cloud

Calculated by the
Proposed Method ∆θ

(|θ1−θ2|)
∆α

(|α1−α2|)
Dip (θ1) Dir (α1) Dip (θ2) Dir (α2)

L1 86.9 243.2 87.8 239.9 0.9 3.3
L2 46.7 272.6 48.6 275.6 1.9 3
L3 40.5 288.2 42.7 287.1 2.2 1.1
L4 81.6 235.5 82.3 237.5 0.7 2
L5 85.2 238.9 84.4 240.2 0.8 1.3
L6 87.7 273.1 86.5 270.0 1.2 3.1
L7 79.8 306.1 79.0 308.6 0.8 2.5
L8 61.0 264.4 61.5 267.7 0.5 3.3
L9 80.4 289.7 81.0 293.6 0.6 3.9
L10 72.6 328.0 73.2 330.2 0.6 2.2

∆(θ), ∆(α) 1.0 2.6

5. Conclusions
This study proposes a slope structural plane extraction method based on Geo‑AINet

ensemble learning, which provides primary data for the stability analysis and evaluation
of rock slopes. This method uses the UAV images of the slope as the data source, and es‑
tablishes multi‑feature semantic association projection images through the geometric pro‑
jection relationship between the 3D point cloud and the 2D plane; on this basis, Geo‑AINet
ensemble learning is applied for semantic block segmentation; then, the geological occur‑
rence and roughness are adopted to perform semantic block clustering; finally the struc‑
tural planes are successfully extracted. The following conclusions can be drawn from the
experimental results:
1. It is difficult to guarantee sufficient precision for the sole extraction of structural

planes when depending on a single semantic. Considering, fully, the joint influence
of 2D and 3D features on the extraction of rock mass structural planes, RGB, geo‑
logical occurrence, and roughness are integrated as the basic semantics in this study
to generate multi‑dimensional semantic association projection images. The 2D pro‑
jection plane is defined according to the spatial distribution of the slope. The pro‑
posed method more effectively realizes the pixel‑level feature association of multi‑
dimensional geological semantics and provides input data for multi‑feature semantic
association for Geo‑AINet ensemble learning.

2. The Geo‑AINet model is proposed to obtain a soft association map involving multi‑
dimensional semantics; then, the original image is divided into semantic blocks with
multiple similar features. The quantitative evaluation results in Table 1 show that the
extracted semantic blocks are completely and accurately attached to the true bound‑
aries of the structural planes. The comparison of four metrics (UE, BR, ASA, and
MDE) for the five regions concludes that the proposed Geo‑AINet method outper‑
forms the traditional AINet method concerning the accuracy of block
semantics segmentation.
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3. In this study, an RAG is established based on the topological adjacency relationship
of semantic blocks. The RAG is simplified to an NNG according to the dissimilarities
of the multi‑dimensional features between adjacent semantic blocks. The semantic
blocks are merged, and the structural planes are successfully extracted further fol‑
lowing a filtering process aimed at identifying invalid structural surfaces.
In summary, the accuracy and completeness of the structural planes extracted from

the quarry slope in the experimental area by the proposed method are satisfactory. In
future work, more geological semantics will be considered to further improve the accuracy
of slope structural plane extraction.
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