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Abstract: The “low, slow, and small” target (LSST) poses a significant threat to the military ground
unit. It is hard to defend against due to its invisibility to numerous detecting devices. With the
onboard deep learning-based object detection methods, the intelligent LSST (ILSST) can find and
detect the ground unit autonomously in a denied environment. This paper proposes an adversarial
patch-based defending method to blind the ILSST by attacking its onboard object detection network.
First, an adversarial influence score was established to indicate the influence of the adversarial noise
on the objects. Then, based on this score, we used the least squares algorithm and Bisectional search
methods to search the patch’s optimal coordinates and size. Using the optimal coordinates and size,
an adaptive patch-generating network was constructed to automatically generate patches on ground
units and hide the ground units from the deep learning-based object detection network. To evaluate
the efficiency of our algorithm, a new LSST view dataset was collected, and extensive attacking
experiments are carried out on this dataset. The results demonstrate that our algorithm can effectively
attack the object detection networks, is better than state-of-the-art adversarial patch-generating
algorithms in hiding the ground units from the object detection networks, and has high transferability
among the object detection networks.

Keywords: “low, slow, and small” target; denied environment; adversarial patch; object detection network

1. Introduction

The “low, slow, and small” target (LSST) is the abbreviation of the low-altitude, slow-
speed, and small target. It refers to the aerial target with a flying height of less than 1000 m,
a flight speed of less than 200 km/h, and a radar reflection cross-sectional of less than
2 m2 [1]. They can be divided into multi-rotor, fixed-wing, and small unmanned helicopters.
Along with the geometric growth of the drone market, the frequency of the incidents such
as “black flight,” border cross, and drone attacks is increasing [2]. Moreover, if these drones
are equipped with an intelligent system, they can operate independently in the denied
environments [3,4].

Currently, the countermeasures against LSST are mainly based on kinetic and non-
kinetic countermeasures.

The kinetic countermeasures mainly utilize small arms to destroy, interceptors to
intercept, or aerial nets to capture LSST. All of these countermeasures depend on LSST
detection. The detection of LSST is mainly based on radar [5,6], audio [7,8], video [9,10],
and radio frequency [11,12].

Radar: The micro-doppler signal received using the doppler radar can help to identify
the LSST [13]. However, because the LSST has a low radar cross-section, the detection of
LSST using the radar faces significant challenges.

Audio: Analyzing the sound waves generated by LSST’s rotor can detect the LSST [14].
Although this can realize 24/7 uninterrupted detection, its detection range is not satisfiable
and vulnerable to background noise.
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Video: Computer vision technology enabled LSST detection [15,16] based on video
images and object detection algorithms. However, it has a limited detection range and is
vulnerable to rainy, foggy, and dusty weather.

Radio frequency: The LSST usually uses some special frequency band to communicate
with their controllers [17]. By using a radio frequency scanning technic, one can monitor
the LSST. However, in a real-world environment, a lot of radio frequency signals will lead
to a high false alarm rate, making this technology unreliable on LSST detection tasks.

The non-kinetic countermeasures mainly use some interrupting technology to disturb
the LSST. It mainly disrupts the control links to make the LSST out of control [18] or sends
a false GPS signal [19] to make the LSST deviate from its route. However, intelligent LSST
(ILSST) navigation mainly depends on a visual navigation system that does not rely on a
GPS signal to navigate itself. It can operate on its own and barely require remote controls.
Therefore, these LSSTs equipped with intelligent systems are nearly free from these kinds
of disturbances.

ILSSTs are usually equipped with an object detection algorithm to locate ground
units. To defend against the ILSST, we propose an adaptive adversarial patch-generating
algorithm to make the ground unit invisible to the ILSST’s object detection algorithm.
Due to its low speed, the ILSST can endure the latency of the object detection network.
In exchange, it will achieve high detection precision. However, to guarantee real-time
operation ability, the complexity of the network cannot be too high. Currently, few object
detection networks can meet the requirement. Among them, due to its high precision, low
complexity, and whole package of the solution to deploy on an embedded system, the
YOLOv5 [20] algorithm is an optimal solution to use on the ILSST.

Therefore, this paper proposes an algorithm to attack the YOLOv5 network, which
can hide the ground units from YOLOv5 and has high transferability among the other
object detection networks. To our knowledge, this is the first time the adversarial patch has
been used to defend against ILSST, which can protect critical ground units or facilities from
being discovered or attacked by ILSST.

The overall structure of our proposed algorithm is shown in Figure 1. Our proposed
algorithm in this paper consists of two parts: (1) the dataset labeling part provides the
optimal coordinate and the size of the adversarial patches to the training dataset, as shown
in the upper part of Figure 1; (2) the adaptive adversarial patch-generating network uses
the labeled training dataset to construct a patch-generating model as shown in the lower
part of Figure 1. Our contributions are as follows:

1. We propose a novel idea for defending against the ILSST. Using the adversarial patch
to defend against the ILSST can hide the ground unit from ILSST’s onboard object
detection network.

2. We design a patch-generating network that can generate patches on the optimal
location of the object with optimal size without the ground truth of the objects.

3. We propose a novel patch coordinate labeling method that fits a curve to an object
using a set of sampling points and use this curve to find the point that affects the
detection results most.

4. We use the Bisectional search method to calculate the optimal size of the patch on
objects, which enable our algorithm to generate different sized patch on different
objects and increase the efficiency of the patch-generating algorithm.

Our paper is arranged as follows. In Section 2, we describe some of the related work
on adversarial attacks and provide a detailed description of our algorithm. In Section 3, we
experimentally evaluate our algorithm. Finally, we give the discussion and conclusion in
Section 4.
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Figure 1. The structure of our algorithm. The upper part is the data labeling process which labels
the objects in the dataset with the optimal location and size of the patch. The lower part is the patch-
generating network which uses the labeled dataset to train a model that can generate a patching
image and a mask for an input image. The mask is used to select the areas from the patching image
and patch the selected areas to the objects.
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2. Materials and Methods
2.1. Related Work

Recently, adversarial attacks have become an important concern in the field of com-
puter vision and pose a significant threat to the remote sensing field as well. Consequently,
adversarial attacks in remote sensing have become a growing concern in recent years [21].
Researchers have proposed various methods to generate adversarial examples that can
deceive deep neural networks in remote sensing applications. Firstly, we summarize the ad-
versarial attack algorithms, including adversarial perturbations and adversarial patches in
classification and object detection tasks. Secondly, we review the application of adversarial
attacks in remote sensing.

Adversarial perturbation: This type of attack misleads the network to give a wrong pre-
diction by adding the imperceptible micro-noise to a normal sample. For the classification,
there is much research. Szegedy [22] first discovered the adversarial phenomenon on image
classification tasks and proposed an adversarial sample generating method L-BFGS. Based
on this research, the fast gradient sign method (FGSM) has been proposed by Goodfel-
low [23]. FGSM adds perturbation along with the direction of the gradient. Its simplicity
and efficiency have stimulated several pieces of research based on it [24,25]. These methods
did not have much difference from the original FGSM algorithm. DeepFool algorithm [26]
generates noise by comparing the distance between the points in sample spaces and the
classification boundaries. The Jacobian-based saliency map attacks (JSMA) algorithm [27]
calculates the salient scores on inputting images and adds perturbations according to the
importance of the pixel to the output result, which can deceive the classification algorithm
by merely changing a few pixels. C&W algorithm [28] uses the improved norms as the
loss function to optimize the perturbation. Afterward, Rony et al. [29] improve the C&W
algorithm to increase adversarial ability while still obtaining samples that approximate the
visual perceptibility of the original algorithm. Croce et al. [30] proposed two algorithms,
the auto-projected gradient descent, and the AutoAttacks, based on analysis of the subop-
timal solutions phenomenon. Xiao et al. [31] proposes a generative adversarial network
(GAN)-based method to efficiently generate stronger and more diverse examples for deep
neural networks. Bai et al. [32] leverage both gradient-based and gradient-free optimiza-
tion techniques to generate adversarial examples that are effective and transferable across
multiple deep-learning models. Liu et al. [32] highly considers human perception and
improves the inconspicuousness and transferability of generated patches. These described
algorithms are typical classification attack algorithms; in this work, we concentrate on
attacking the object detection algorithms.

For object detection algorithms, the research are not as much for attacking classifi-
cation algorithms. Xie et al. [33] proposed an adversarial sample generation method for
object detection algorithms. They proposed a dense adversarial generation algorithm that
considers all objects simultaneously and optimizes the overall loss function to increase the
transferability between object detection models. To attack a region proposal-based object
detection algorithm, Li et al. [34] proposed the Robust Adversarial Perturbation (RAP).
They construct two loss functions, one for the label and the other one for the shape. They
implement an attack on region proposal-based object detection algorithms by optimizing
these two loss functions. In order to speed up the attacking method and deal with the
problem that the method used to attack region proposal-based object detection algorithm
cannot attack regression-based object detection algorithm, Wei et al. [35] proposed the
Unified and Efficient Adversary (UEA). The UEA is based on Generative Adversarial Net-
work (GAN) [36] and combines high-level classification and low-level feature loss to jointly
train an adversarial sample generator. Athalye et al. [37] generated three-dimensional
adversarial samples to mislead the neural network by using the concept of “Expectation
over Transformation” (EoT). Wang et al. [38] proposed a method that can attack the object
detection algorithm that uses the Non-Maximum Suppression (NMS) method to filter
out the redundant bounding box. Compressing the dimension of detection boxes, they
paralyzed the NMS to make the detection result full of false positives. Although these



Remote Sens. 2023, 15, 1439 5 of 21

object detection algorithms attacking methods can attack the object detection methods, they
cannot be implemented in real-world circumstances because the perturbations added to
the original image are too subtle to be captured by a camera.

Adversarial patch: This type of attack uses some specific-colored patches to replace
an area in an image, which can mislead the network to give a false prediction. Currently,
several breakthroughs have been made in the research of adversarial patches. Firstly, we
summarize the adversarial patch-based attack for classification tasks. Brown et al. [39]
propose adding a small patch to an image that can cause misclassification, even when the
patch is small and visually imperceptible. In contrast, Karmon et al. [40] propose a localized
and visible adversarial noise method to perturb only a small region of the image, making
it more practical for real-world scenarios. Aran et al. [41] introduce the concept of using
adversarial patches in QR codes, where the patch can be generated to be virtually invisible
yet capable of causing misclassification of the QR code’s data. They extend the concept
further [42], proposing a method that allows the attacker to control the QR code’s data
and still generate an adversarial patch. Gittings et al. [43] propose a novel approach for
generating adversarial examples that do not require any knowledge of the target model.
It utilizes a deep image prior to synthesizing robust and visually realistic adversarial
examples. Zhou et al. [44] introduce an approach that generates adversarial patches that are
effective against a wide range of models, making it a practical choice for attackers who do
not know the target model in advance. Bai et al. [45] propose an inconspicuous adversarial
patch that can be added to any object and is effective against image recognition systems on
mobile devices.

For the object detection tasks, Eykholt et al. [46] fooled the intelligent unmanned car’s
detection system by sticking a small patch on a traffic sign. They applied a range of im-
provements to the Robust Physical Perturbation algorithm [47], introduced disappearance
attack loss, and generated a range of small patches to attack the object detection algorithm.
To deal with the issue that the adversarial patch cannot attack both the Faster RCNN [48]
and YOLOv4 [49], Liu et al. proposed a DPATCH [50] algorithm. They iteratively train the
adversarial patch that can attack the Faster RCNN and YOLOv4 object detection networks
by simultaneously attacking the bounding box regression and object classification score.
However, their work did not limit the pixel values that may cause the pixel value to exceed
the valid range of an image. By introducing some augmentation to the patches, such as
rotation, and changing the patch’s location and lighting condition, Lee et al. [51] improved
the DPATCH algorithm. They used the Projected Gradient Descent (PGD) loss to confine
the pixel values to a valid range. Thys et al. [52] applied the adversarial patch to the
pedestrian detection system and successfully misled the pedestrian detector. They used the
objectness and the classification score as part of the loss and the total variation loss and
printable loss to make the patch applicable to the real world. Komkov et al. [53] attacked
the best public face recognition system, ArcFace, by putting a sticker on the hat. They
proposed a projection technique that projects the sticker to the image during the attack to
make it “real-like”. Wang et al. [54] proposed an attacking patch-generating algorithm to
make a specific class of objects invisible to the object detection algorithm. They analyzed
the influence of the patch’s size on the object detection algorithm.

Adversarial attack in remote sensing: In 2018, Czaja et al. [55] discussed the challenges
and potential impacts of adversarial attacks in remote sensing and provided an overview of
the existing adversarial attack methods. Chen et al. [56] study the vulnerability of remote
sensing image recognition systems to adversarial examples. They analyze the characteristics
of adversarial examples in remote sensing images and propose a method to generate them
using gradient-based optimization. They also propose a method [57] to generate universal
adversarial examples that can attack multiple remote sensing models. Zhang et al. [58]
analyze the universal adversarial patch attack for multi-scale objects in remote sensing
images captured by unmanned aerial vehicles (UAVs). They introduce a scaling factor to
make the adversarial patch valid for multi-scale objects. Bai et al. [59] extend the concept
of universal adversarial examples to targeted attacks, where the generated adversarial
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examples are intended to fool a specific classifier. Shi et al. [60] investigate the impact of the
adversarial attack on hyperspectral image classification using deep learning models. They
evaluate the performance of several attacking algorithms on two hyperspectral datasets
under different scenarios. Chen et al. [61] present an empirical study of the effects of
adversarial attacks on different types of remote sensing data and evaluate the robustness
of several popular deep neural network architectures. Li et al. [62] propose an approach
to generate adversarial examples for synthetic aperture radar (SAR) image classification
and evaluates the effectiveness of the generated adversarial examples on several CNN-
based classifiers.

Although these adversarial generation algorithms are capable of deceiving the object
detection algorithm, the adversarial patch they generate cannot simultaneously deal with
the issue that (1) they cannot generate the patches on optimal coordinate on the object;
(2) they cannot generate the patches with optimal size; (3) cannot patch on objects without
ground truth; (4) cannot deal with objects that have a large range of scales, especially
for small objects. The former three issues make it inefficient when deceiving the object
detection algorithm. The last one makes the attacking method inefficient when defending
against the LSST. Therefore, in this paper, we mainly focus on these four issues.

2.2. Method

To predict the optimal patch on objects without ground truth and make the patch-
generating algorithm adaptive to different scaled objects, we designed a brand-new network
(adaptive adversarial patch-generating network, AAPGNet) partially based on the YOLOv5
network structure, as shown in the lower part of Figure 1. The network extracts features
from three scales and fuses them to produce patches on objects by outputting a specific-
colored patch image and a patch mask that integrates the coordinates and size of the
patches. The construction details of the network in the lower part of Figure 1 are described
in Section 2.2.1.

The AAPGNet regresses the patch’s coordinate by regressing the offset of the patch
relative to the object’s coordinate and the patch’s size by regressing the size of the patch
relative to the object. To lead the network to learn the patch’s offset and size, we must
provide the ground truth about these two values. Therefore, we need to label the objects
with information about the patching coordinate and size of the patch on objects, as shown in
the upper part of Figure 1. This labeling process will be described in detail in Section 2.2.2.

2.2.1. Adversarial Patch-Generating Network

In this section, we construct the AAPGNet to generate patches on the object without
the ground truth. The AAPGNet consists of three parts, the backbone, the adversarial
patching image generator, and the patching information generator, as shown in Figure 2.
The patching information includes the patch’s coordinates on the patching image and the
size of the patch. After obtaining the patching image and the patching information, we
used the patching information to produce a mask image with a size equal to the patching
image. At last, we can use this mask image on the patching image to select the patches that
can directly patch onto the clean image.

To make the network have scale adaptiveness, we fused three different scales of
feature information in the patch coordinate generator (as YOLOv5) and patching image
generator. By doing this, the network can have fine-grained information in shallow layers
and semantic information in deep layers when predicting the patch.

To reduce the feature map size of the network, we introduced the DeFOCUS operation.
The DeFOCUS operation is the reverse process of the FOCUS operation in YOLOv5. It can
reduce the feature map size to half, accelerating the network. The process of the DeFOCUS
is shown in Figure 3.
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Figure 2. Adaptive adversarial patch-generating network. The main structure of the network consists
of three parts, (1) the backbone used to extract features from the input; (2) the patching image
generator that uses the features extracted by the backbone to generate a patching image with a size
identical to the input image; (3) the patching information generator that uses the features extracted
by backbone to generate mask on the patching location. Finally, the mask on the patching image is
used to select the corresponding patch out from the patching image and patch it on the objects. The
red circled numbers represent different scaled branches for ablation experiments in Section 3.3.
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Figure 3. DeFOCUS. The DeFOCUS can transform every four adjacent channels of the input layer as
one channel of the output layer and enlarge the size of the input layer by two. In this figure, we used
different colors to indicate channels of the feature map that needs to be enlarged by two.

After building the network structure, we must formulate a training goal as a loss
function to train the network approach to our purpose. For our network, the loss function
consists of two parts, (1) the adversarial loss function (ALoF) and (2) the patching infor-
mation loss function (PILoF). The ALoF leads the detection algorithm to miss the target,
and the PILoF leads the patching information generator to regress the patch’s coordinate
and size.
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1. ALoF

To hide the objects from the object detection network, we lead the network to predict
the objects as background. For this purpose, we used the binary cross-entropy function as
the loss function.

lossA =
1
n

n

∑
i=0
−[pi log( p̂i) + (1− pi) log(1− p̂i)] (1)

where the pi is the ground truth, the p̂i is the objectness the bounding box contains, and
n is the number of the bounding boxes the object detection algorithm output. To lead the
network to ignore the objects, we set the ground truth to zero in Equation (1), leading the
network to regard the objects as the background. Thus, the ALoF is designed as follows:

lossA =
1
n

n

∑
i=0
− log(1− p̂i) (2)

2. PILoF

The patch’s coordinate and size are predicted as an offset of the object’s center coordi-
nate and the ratio of the object’s size, respectively. Assume that the predicted object’s center
coordinate is (x̂, ŷ), the size is

(
ŵ, ĥ

)
, and the offset of the patch relative to the object’s

center point is
(
r̂x, r̂y

)
, the size of the patch relative to the object is k̂ (between 0 and 1).

Then the patch’s coordinate will be

x̂p = x̂ + [(r̂x − 0.5)× ŵ] (3)

ŷp = ŷ +
[(

r̂y − 0.5
)
× ĥ
]

(4)

The size of the patch will be(
ŵp, ĥp

)
=
(

ŵ× k̂, ĥ× k̂
)

(5)

Therefore, when designing the PILoF, we must also consider the object’s coordinates
and size. For the object’s coordinate and size, we directly used the CIoU [63] as a loss. To
predict a patch on the object, we additionally predict three parameters r̂x, r̂y, and k̂. We
used Mean Square Error (MSE) for these three parameters as a loss function. At last, the
PILoF is designed as follows:

lossP =
1
|BA| ∑

i∈BA


(
1− CIoUi)+ [r̂i

x −
(
ri

x + 0.5
)]2

+
[
r̂i

y −
(

ri
y + 0.5

)]2
+
(

k̂i − ki
)2

 (6)

where BA is the set of boxes that have been assigned labels using the YOLOV5’s label
assignment method, |·| is the length of a set, the rx, ry, and k are the ground truths of the
parameters r̂x, r̂y, and k̂, respectively, which will be given in Section 2.2.2.

Finally, the training loss will be as follows:

loss = lossA + lossP (7)

To be noted is that there is an added or subbed 0.5 in Equations (3), (4) and (6). That is
because when we predicted the parameters, we used the sigmoid activation function before
the final output, which makes the value of r̂x and r̂y between 1 and 0. However, the ground
truth of r̂x and r̂y is relative to the object’s center point (given in Section The Optimal Size
of the Patches), which makes the rx and ry between −0.5 and 0.5.
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2.2.2. Label the Objects in the Training Dataset with Optimal Patch Coordinates and Size

The constructed network in the former section needs the ground truth of the patch’s
coordinates and size to train. The patch’s coordinate is predicted as the offset of the patch
relative to the object’s center point, and the size is predicted as the size of the patch relative
to the object. Therefore, in this section, we will describe the search process (as shown in the
upper part of Figure 1) for the offset of the patch relative to the object’s center point and
the size of the patch relative to the object.

The Optimal Coordinate of Patches

Varying positions of an adversarial patch on an object have different consequences on
the object detection network. To locate the optimal coordinate of a patch on the object, we
establish a score S to quantify the influence of the patch. A YOLO-type object detection
network usually predicts a bunch of bounding boxes B = {b1, b2, · · · , bn} for an image I.
For an object oj, only a few parts of the bounding boxes in B can be regarded as valid boxes,
and the others are not counted. Therefore, we only used these valid boxes to calculate
the score S for an object oj. Here, the valid boxes represent the boxes that have proper
Intersection over Union (IoU) with the object oj, and the predicted class is consistent with
the object oj. Thus, we used the IoU to select the valid boxes. Specifically, we consider the
bounding boxes to be valid when it has a greater than 50% IoU with the object oj, and the
predicted class is consistent with the object oj. Finally, the score S is calculated for an object
oj as follows:

Soj =
1
|Bv| ∑

bi∈Bv

Dbi
obj
(
oj
)

(8)

where Bv is the valid box set for the object oj, and Dbi
obj
(
oj
)

is the objectness probability of
the box bi given on the object oj.

We aim to find the patching point that makes the object detection network give the
minimum S to the patched object. For this purpose, we sampled several points on the object
and used these points to fit a surface on the object through the least-squares algorithm.

We first used a GAN to train an adversarial noise-generating network to sample points
on an object. This adversarial noise-generating network’s structure is similar to the network
in Figure 2, but without the patching information generator, as shown in Figure 4. For
constraint of the noise mainly on the object, we set the constraint function as follows:

lossc =
1
|O| ∑

oj∈O

1∣∣Tj
∣∣ L1
(
Tj
)

(9)

The L1(·) is the L1 normalization, Tj =
{

pix
∣∣pix ∈ oj

}
is the set of pixels that belong

to the object oj in adversarial noise image, and O =
{

oj
∣∣oj ∈ I

}
is the set of objects that

belong to the image I.
The training of the adversarial noise-generating network also requires adversarial

loss, which is identical to the adversarial loss designed for the adversarial patch-generating
network in Section 2.2.1, i.e., the lossA. Therefore, the final loss for the adversarial noise-
generating network is as follows:

loss = lossA + lossc (10)

After training the GAN, we set a noise-through window whose size is t (smaller than 1)
times the width and height of each object. With the target width and length as one and the
object center point as the origin, slide the noise window on the object surface in the x and y



Remote Sens. 2023, 15, 1439 10 of 21

directions in steps of 0.1. Finally, we can collect a set of sampling points, as shown by the
colored dots in the upper part of Figure 1.

{
rx, ry, sy,x

}
=


(r1, r1, s1,1) (r2, r1, s1,2) · · · (r9, r1, s1,9)
(r1, r2, s2,1) (r1, r3, s2,2) · · · (r9, r1, s2,9)

...
... · · ·

...
(r1, r9, s9,1) (r2, r9, s9,2) · · · (r9, r9, s9,9)

 (11)

where ri = i/10− 0.5 represents the offset of the window relative to the object’s center
point, si,j is the score S calculated under the (rx, ry) step of the noise-through window.
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Based on the sampled points, we used the following equation to formulate the curve
surface on the object, as shown by the colored surface in the upper part of Figure 1.

S =
1
2
(rx, ry)A

(
rx
ry

)
+
(
rx, ry

)
WT + b (12)

A =

[
a11 a12
a12 a22

]
, W = (ω1, ω2) (13)

Equation (12) can be transformed to

S =
[
r2

x, r2
y, rxry, rx, ry, 1

][
1
2 a11, 1

2 a22, a12, ω1, ω2, b
]T

=: RTβ
(14)

The least-squares equation will be

min
β

1
2
‖S−RT β‖ (15)

The solution to this function will be

β =
(

RTR
)+

RTS (16)
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The (·)+ indicates the Moore–Penrose generalized inverse. Finally, we can solve
the optimization issues Equation (17) to obtain the minimum point of S as the optimal
coordinate of the patch.

min
rx ,ry

1
2
(
rx, ry

)
A
(

rx
ry

)
+ WT

(
rx
ry

)
+ b (17)

which is approximately (
rx, ry

)
= A−1WT (18)

The inverse of A does not always exist because, on some objects, the surface is not
precisely fit Equation (12). For these objects, we directly pick out the smallest point in the
point set

{
rx, ry

}
as the optimal coordination of the patch.

The Optimal Size of the Patches

To determine the optimal patch size, we trained a patching image-generating network
using the network structure in Figure 4 with the kw× kh sized patch on the object’s optimal
patching point (as labeled in Section The Optimal Coordinate of Patches). The w and h are
the width and height of the object, respectively. When training the network, (1) we used the
network to generate a patching image with a size equal to the input image, (2) uncovered
kw× kh sized patches from the patching image on the point corresponding to the object’s
optimal patching point, (3) patch these patches to the object’s optimal patching point, and
(4) fed this patched image to the object detection network. The loss we used in this training
process is lossA.

The larger the size, the easier it is to fool the object detection network [54]. However,
if k is too large, the patch will lose its adversarial ability (this will be experimentally proven
in Section 3.6). Therefore, the k needs to be considered comprehensively to ensure that
(1) the patch is not too large to weaken the adversarial ability of the patch and (2) the patch
is not too small to deceive the algorithm.

In this paper, we chose three k values according to the algorithm’s performance
degradation on the training dataset, which also divided the object in training datasets into
three groups, i.e., the easy to fool, the general to fool, and the hard to fool. Expressly, we
set three performance degradation thresholds f 1 < f 2 < f 3, and we choose three k values
(k1, k2, k3) for three thresholds. The principle to choosing ki value is to train kiw× kih sized
patches on the objects to make the performance degradation approximately (±10%) equal
to each threshold (from low to high) and remove the former undetected objects from the
dataset for the latter ki value. By doing this, we divide all the objects in the training dataset
into three sets Ok1 , Ok2 , and Ok3 . The Oki

contains the object that the detection network
cannot detect under a kiw × kih sized patch. The three sets of objects are incompatible
because we removed the undetected objects from the dataset for the latter ki value.

In the end, we used the Bisection method to search the optimal patch size on each set
of objects, as shown in Algorithm 1. We set a threshold score of ts as a stopping point to
use the Bisection method.

In Algorithm 1, the value ε acts as a relaxation variable, and the values l and h are the
upper and lower bounds of the search region of the Bisection method. The SPnew

oj represents
the score S under the patch Pnew for the object oj, which is calculated as follows:

SPnew
oj

=
1
|Bv| ∑

bi∈Bv

Dbi
obj
(
oj
∣∣Pnew

)
(19)

The Dbi
obj
(
oj
∣∣Pnew

)
is the objectness probability of the box bi given on the object oj under

the condition of patching a patch Pnew on the object oj.
After running this algorithm on three sets of objects, the algorithm will label all the

objects in the training dataset.
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Algorithm 1: Patch size calculation algorithm

Preparation
1: set a thresh score of ts, a relaxation value ε, l = 0, h = ki
2: train a GAN with the kiw× kih sized patch on the object’s optimal patching point.
3: use GAN to produce a kiw× kih sized patch Porg for every object in Oi
Start
1: for every object oj in Oi:

2: while
∣∣∣SPnew

oj − ts
∣∣∣ > ε:

3: let k = (l+h)
2

4: cut the kw× kh area from the center of the Porg as patch Pnew

5: if SPnew
oj < ts:

6: let l = k
7: else:
8: let h = k
9: save the k as the optimal patch size of the object oj
end

3. Results
3.1. Dataset

In this research, we used the Digital Combat Simulator (DCS) to simulate the UAV
view environment and collect images from it as a dataset. There are many realistic military
target modules in DCS, including aircraft, tanks, ships, etc. The mission editor in Digital
Combat Simulator (DCS) is a powerful tool that allows users to create custom missions
and combat scenarios. It enables the user to define mission objectives, such as destroying
enemy targets, performing air support missions, and escorting targets.

To collect the data, we used the DCS mission editor to set different target marching
tasks in various scenarios and simulated aerial observations of each target. The targets
include tanks, armored vehicles, warships, and carriers, and the background includes the
sea surface, port, wilderness, town, etc. During the observation, we set the altitude of the
UAV from about 20 m to 1000 m to simulate the LSST’s flying height. The view is slowly
zoomed in to simulate the scenario of an LSST approaching the target. The resolution of the
data image is 1920 × 1080, and when scaled down to the network input size (640 × 640),
the target size ranges from a minimum of 11 × 11 to a maximum of 304 × 304. When
collecting the data, we set the altitude of the UAV from about 20 m to 1000 m to simulate
the LSST’s flying height. We collected 9150 images and split them into training (90%) and
testing (10%) datasets.

3.2. Implementation Details

We implemented the YOLOv5 [20] network for the detection network according to the
official YOLOv5 version 6. Based on this work, we implemented our attack algorithm on
YOLOv5. We also implemented the YOLOv3 [64], YOLOv4 [49], YOLOX [65], and Faster
RCNN [48] algorithms to test the transferability of our attacking algorithm.

During the labeling of the patch’s coordinate on the object, we set noise-through
window size t to 0.3, set the f1, f2, f3 to 30%, 60%, 90%, and accordingly set the k1, k2, k3,
ts to 0.17, 0.26, 0.42, 0.1 when we are labeling the optimal size of the patches, respectively.
We also added the total variation loss [66] to control the variation of the patch colors. To
improve the algorithm’s robustness to lighting and object position variations, we applied
Gamma transfer, random flipping (in all four directions), and random rotations ranging
from−5◦ to 5◦ on patched images during the network training. We avoided larger rotations
during training as they may result in inaccuracies in the ground-truth bounding boxes.

This paper used the adversarial patch to hide the object from the object detection
network. Therefore, to evaluate the algorithm’s performance, we introduced an evaluation
index named average precision drop (APD) to evaluate the performance of the attacking



Remote Sens. 2023, 15, 1439 13 of 21

algorithm. We define the APD as the drooping rate of the detection algorithm’s Mean
Average Precision (mAP). Accordingly, the APD is calculated as follows,

APD =
mAPb −mAPa

mAPb
(20)

The mAPb and mAPa are the mAP of the algorithm before and after the attack, respec-
tively. mAP is used instead of the recall rate for APD because the recall rate depends on the
threshold of the objectness score used to select the object from the background. Thus, the
recall rate is not as stable as mAP.

To evaluate the performance of our attacking algorithm, we first tested all the object
detection networks on our dataset. The results are shown in Figure 5. To evaluate the
performance of our attacking algorithm, we first tested all the object detection networks on
our dataset. The results are shown in Figure 5.
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All the algorithms are programmed based on Pytorch 1.10 and carried out on TITAN
RTX GPU.

3.3. Evaluation of the Scale Adaptiveness

To evaluate the efficiency of the strategy used to increase the scale adaptiveness of our
algorithm, we constructed four networks: (1) the network AAPGNet drawn in Figure 2,
(2) the network without branches 2 and 3 named AAPGNet1, (3) the network without
branch 3 named AAPGNet12, (4) the network without branch 2 named AAPGNet13. We
also split the objects in the test dataset into two groups: (1) the objects with a size smaller
than 50 × 50 pixels, and (2) the objects with a size bigger than 50 × 50 pixels. We tested
these four networks on the testing dataset and separately counted the detection results on
these two groups of objects. The results are listed in Table 1.

Table 1 shows that the network with three branches has the highest APD, and the
network with only one branch has the lowest APD. The gap is more prominent on small
objects, which means that the network with three branches has more adaptiveness to
small-sized objects. That is because of the down-sampling operation, and the deep network
structure makes the network lose fine-grained information about the objects, making the
network ignore small objects. The three-branched network fuses different scaled feature
information to obtain semantic and fine-grained information about the objects. However,
the other three networks do not have sufficient fine-grained information about the objects.
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Table 1. Testing result of the scale adaptiveness.

Dataset mAPb Attack Algorithms mAPa APD

Small objects 74.11%

AAPGNet 21.57% 70.90%
AAPGNet1 40.99% 44.69%

AAPGNet12 29.28% 60.49%
AAPGNet13 24.60% 66.80%

Large objects 89.57%

AAPGNet 13.74% 84.66%
AAPGNet1 34.58% 61.39%

AAPGNet12 24.22% 72.96%
AAPGNet13 25.72% 71.29%

3.4. Evaluation of the Optimal Coordinate

We construct five training datasets labeled with five different patch coordinates on
objects to verify the optimal patch coordinate. The five datasets are identical except for
the coordinate of the patches. In these five training datasets, only one is labeled with
optimal coordinates using the method described in this paper. The others are all labeled
with random coordinates on objects. After constructing the training datasets, we construct
five patch-generating networks on each of these five datasets using the network in Figure 2.
We tested these five networks on our testing dataset and presented the results in Figure 6.
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Figure 6 shows that the network trained on the dataset with optimal patch coordinates
has the highest ADP, demonstrating that the optimal coordinates of patches are much better
than random coordinates. This is because we are labeling the objects with patch coordinates
that affect the objectness most, and detecting results of the object detection network mainly
rely on the objectness.

3.5. The Influence of Different Patch Shapes

The shape of patches can affect the performance of the patch. To verify this, we gener-
ated adversarial patches with various shapes for the testing dataset, including rectangles,
squares, ellipses, and circles. In the case of the ellipse, we set two axes as h/2 and w/2.
For the square, we set the length of the side as k × min(h, w), and for the circle, we set
the radius as k × 1/2 min(h, w). It is worth noting that when searching for the optimal
patch coordinates (or optimal patch size), the shape of the noise-through window (or patch)
needs to be adjusted to the corresponding shape. We recorded the results in Table 2.
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Table 2. Comparison of the different-shaped patches.

Shape mAPb mAPa APD Average Size

Rectangle

81.84%

17.8% 78.25% 0.32
Square 15.86% 80.62% 0.41

Elliptical 18.49% 77.4% 0.27
Circle 16.43% 79.92% 0.35

Table 2 indicates that the highest APD is achieved when the patch shape is square, but
the patch size is larger than other shapes and may exceed the target boundary. In terms
of patch size, the elliptical patch has the smallest size, but the success rate of APD is the
lowest, although it is only slightly different from that of the rectangular patch. If we use
“APD/patch size” as the measure of patch deception efficiency, then the order of efficiency
for several shapes is elliptical > rectangular > circle > square.

3.6. The Relationship between Patch Size and the Patch’s Adversarial Ability

In Section The Optimal Size of the Patches, we mentioned that if the patch size is too
large, it will lose the adversarial ability. Generally, the bigger the patch’s size, the weaker
the adversarial ability. To prove this conclusion, we designed an experiment. We used
the GAN network structure drawn in Figure 4 to train two patching image-generating
models. The first one was trained with 0.6w× 0.6h sized patches on the object’s center
point, named 0.6p-net. The second one was trained with 0.4w× 0.4h sized patches on the
object’s center point, named 0.4p-net. Afterward, (1) we patched each object in the test
dataset with a 0.4w× 0.4h (0.6w× 0.6h) sized patch using the patching image the 0.6p-net
(0.4p-net) generated. The w and h are the width and height of the object, respectively. We
recorded the APD in Table 3.

Table 3. Comparison of the different-sized patches.

Control Group mAPb mAPa APD

0.6p-net with 0.6w× 0.6h sized patch 81.84% 10.04% 87.73%
0.4p-net with 0.4w× 0.4h sized patch 81.84% 30.62% 62.59%

0.6p-net with 0.4w× 0.4h sized patch 81.84% 53.55% 34.57%
0.4p-net with 0.6w× 0.6h sized patch 81.84% 28.36% 65.35%

In this experiment, when training the patching image-generating models, we uncov-
ered corresponding sized patches, for example 0.4w× 0.4h, from the patching image on the
point corresponding to the object’s center point from the patching image. Table 3 shows a
significant decline in APD when decreasing the patch size of 0.6p-net but not a consider-
able increase when increasing the patch size of 0.4p-net. This phenomenon indicates that
the patching image generated by 0.6p-net has a weaker adversarial ability than the one
generated by 0.4p-net.

3.7. Evaluation of the Transferability

Our attacking algorithm is implemented on YOLOv5 object detection networks. We
needed to test its attacking transferability to other object detection networks. Therefore,
we chose Faster RCNN, YOLOv3, YOLOv4, YOLOv5, and YOLOX five networks to test
the attacking transferability. During the test, we separately trained five networks on our
training datasets and generate the adversarial patches on the test dataset only for YOLOv5.
We used this patched testing dataset to attack four other object detection networks. The
results are listed in Table 4.
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Table 4. Transferability testing results.

Algorithm mAPb mAPa APD

YOLOv5 81.84% 17.8% 78.25%
Faster RCNN 74.59% 22.95% 69.23%

YOLOv3 68.52% 15.48% 77.41%
YOLOv4 79.06% 21.13% 73.27%
YOLOX 81.13% 23.5% 71.03%

Table 4 shows that our attacking algorithm can attack the YOLO type one-stage
algorithm and the Faster RCNN two-stage algorithm with only one model. Our attacking
algorithm is designed for YOLO type (one-stage algorithm) object detection network.
However, it has transferability to the two-stage object detection network. That is because
we trained our attacking model on the whole training dataset, which makes the model
learn the common features of the training dataset. Therefore, if the object detection network
is construed based on this training dataset, there will be a high probability that the object
detection network can be attacked by the attack model trained on this dataset for other
object detection networks.

3.8. Comparing with Other Attacking Algorithms

To compare our algorithm with other adversarial patch-generating algorithms, we im-
plemented two other patch-generating algorithms, i.e., OBJ in paper [52] and the algorithm
in paper [54] (for convenience, we named it PG in this paper). For fairness, we removed the
printable loss in algorithm OBJ and PG during the comparison. We set the parameters a, α,
and β in PG to 0.125, 0.6, and 0.4, respectively. We recorded the average size of the patches
on all objects as the size of our algorithm in Figure 7, and set the patching size of the OBJ to
the size of our algorithm’s average size. The testing results are shown in Figure 7.
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In Figure 7, the size represents the proportion of the patch size to the object size.
Our algorithm gets the highest ADP when the size is equal to the other two algorithms,
indicating that our attacking algorithm is more efficient in hiding the object from ILSST.

There is something that should be noticed. In this test, the other two algorithms
needed to provide the ground truth about objects when patching the patch on each object,
but our algorithm does not need the ground truth about the objects. We also visualized
some of the testing results in Figure 8. In the third column of Figure 8, some patches exceed
the objects, which is hard to realize in a real-world situation. In the second column of
Figure 8, several ground units failed to be hidden from the detector. However, in the first
column of Figure 8, not only did the patch not exceed the objects, but it also deceived the
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detector, which indicates that our algorithm is more efficient when hiding the object from
the detector.
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4. Discussion

In this paper, we presented an adaptive adversarial patch generation algorithm de-
signed to protect military ground units from ILSST attacks or reconnaissance. In the design
process, we considered the target characteristics (multiple scales) of LSST and devised an
adaptive adversarial patch-generating network. During the adversarial patch generation,
the network extracted features from three scales. Based on these three scaled features, an
adversarial image generator was employed to produce an adversarial image, while a patch-
ing information generator predicted the positions and sizes of the patch across the three
scales. Finally, based on its position and size information, we located the corresponding
patch in the adversarial image and patched it onto the target. To verify the effectiveness
of the multi-scale feature extraction network, we conducted ablation experiments in the
experimental section. The results confirmed the efficiency of our algorithm.

Previous adversarial patch-generating algorithms generated adversarial patches by
manually specifying their position and size, which is inefficient in deceiving target detection
algorithms. To deal with this issue, we used the least squares method and binary search to
find the optimal patch position and size for the targets in the training dataset and trained the
patch generation network using this position and size information. We conducted several
experiments to verify the patch’s efficiency. The results demonstrate that our algorithm
can generate optimal-sized adversarial patches for targets at different positions, greatly
improving the adversarial efficiency of the patches.

There is something we noticed in our experiments. The patch-generating algorithm
in this paper generates patches for multiple objects in the input image, and these objects
can belong to different classes. Intuitively, the patches that hide the object from the object
detection network should have different color patterns. However, we found that the color
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patterns of the patches are surprisingly similar. We speculated that it is because the object
detection networks detect all the objects as one class, i.e., the objectness class, when it
discerns the object from the background. The pass-through of the same class label is
consistent, which led to the noise patterns that interfere with prediction results for the same
object class being similar.

The adversarial patches are needed to be transferred to real-world military units.
Currently, researchers are using the non-printable loss [66] when training the patch to
transfer the electronic patch to the real world. The transformation also needs the patch to
be smoothly colored. The smooth color process can be achieved by using the total variation
loss to restrict the frequent abrupt change of colors which is already used in our paper
(mentioned in Section 3.2). However, this process will significantly reduce the adversarial
effectiveness of the patch, and further extensive studies are needed to address this issue.

5. Conclusions

In this paper, we proposed an ILSST defending strategy to hide the object from the
ILSST’s onboard object detection networks. The patch-generating algorithm proposed
in this paper can automatically generate patches on the objects with optimal coordinates
and size without the ground truth. When constructing the patch-generating network, we
also considered that the ground units have an extensive range of scales from the ILSST’s
view. In the end, extensive experiments are applied, and the performance of the proposed
algorithm is verified. The result shows that our algorithm can effectively generate patches
on objects without ground truth, has high transferability to other object detection networks,
and is more effective than other similar state-of-the-art algorithms.

Currently, we have mainly verified the feasibility of our proposed defending algo-
rithm in the simulation environment. It requires further work to establish a real-world
environment and transfer the patches to real-world ground units, which requires consider-
ing clouds, light conditions, etc. In future work, we will focus on establishing real-world
environments and transferring the patches to real-world ground units.
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