
Citation: Zhu, J.; Wang, F.; You, H.

Unsupervised SAR Image Change

Detection Based on Structural

Consistency and CFAR Threshold

Estimation. Remote Sens. 2023, 15,

1422. https://doi.org/10.3390/

rs15051422

Academic Editor: Stefano Tebaldini

Received: 20 January 2023

Revised: 22 February 2023

Accepted: 27 February 2023

Published: 3 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Unsupervised SAR Image Change Detection Based
on Structural Consistency and CFAR Threshold Estimation
Jingxing Zhu 1,2,3, Feng Wang 1,2,* and Hongjian You 1,2,3

1 Key Laboratory of Technology in Geo-Spatial Information Processing and Application System,
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

2 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
3 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,

Beijing 101408, China
* Correspondence: wangfeng003020@aircas.ac.cn

Abstract: Despite the remarkable progress made in recent years, until today, the automatic detection
of changes in synthetic aperture radar (SAR) images remains a difficult task due to speckle noise.
This inherent multiplicative noise tends to increase false alarms and misdetections. As a solution, we
developed an unsupervised method that detects SAR changes by analyzing structural differences.
By this method, the spatial structure cues of a pixel are represented by a set of similarity weight
vectors calculated from the non-local scale of the pixel. The difference image (DI) is then derived
by measuring the structural consistency of the corresponding pixels. A new statistical distance that
is insensitive to speckle noise was used to measure the similarity weights between patches in order
to obtain an accurate structure. It was derived by applying the Nakagami–Rayleigh distribution
to a statistical test and customizing the approximation based on change detection. The CFAR threshold
estimator in conjunction with the Rayleigh hypothesis was then employed to attenuate the effect
of the unimodal histogram of the DI. The results indicated that the proposed method reduces the
false alarm rate and improves the kappa and F1-scores, while providing satisfactory visual results.

Keywords: synthetic aperture radar (SAR); change detection; speckle noise; structure information;
dense structure feature

1. Introduction

Change detection (CD) is the process of detecting change through remote sensing
images taken at different times over the same geographic area. SAR imagery has been used
more rarely for change detection tasks than optical imagery, but has always been attractive
to scholars due to the independence of atmosphere and sunlight conditions. In recent
decades, it has received widespread attention, including urban studies [1], environmental
monitoring [2], disaster assessment [3], crop management [4], and land cover monitoring [5].
However, the inherent multiplicative speckle noise has always restricted the analysis and
application of SAR to change detection tasks [6].

There are various perspectives for classifying change detection (CD). In terms of
the data source, CD can be classified as follows: (1) monomodal change detection (MNCD)
and multi-modal change detection (MMCD); (2) from the detection strategy: direct change
detection and post-classification comparison; (3) from the scale: pixel-based change detection
(PBCD) and object-based change detection (OBCD); (4) from the labeling: unsupervised,
semi-supervised, and supervised change detection. Despite the diverse categories, the basic
steps typically involve three stages [7]: (1) pre-processing; (2) generation of the difference
image (DI); (3) analyzing the difference image to generate the change map (CM).

The first step usually encompasses geometric correction, co-registration, and denoising.
The purpose is to geographically align the bi-temporal images, as well as to suppress the
noise. In the second step, the differences between the dual-temporal images are compared
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pixel by pixel in order to obtain the difference image (DI) representing the change level.
The third step is to discriminate the DI into two groups: “changed” and “unchanged”. The
DI generation step and CM generation step are widely emphasized in the study.

In the context of SAR change detection, the suppression of speckle noise by the ratio-based
method is an important research trend. In the DI generation step, the main approaches are
the ratio detector (RD) [8] and the log-ratio detector (LRD) [9]. For isolated noise pixels,
a mean-ratio detector (MRD) [10] incorporating neighborhood information was developed
to find changes by the ratio of the mean values of local patches. Additionally, other advanced
ratio-based detectors, such as the neighborhood-based ratio detector [11] and the region
likelihood ratio detector [12], have been developed to address specific situations.

Later, the combined difference image (CDI) was proposed to enhance detection
by fusing the LRD and the MRD. It is based on the consensus that different detectors
target different differences. In the work of Ma et al. [13], the authors performed wavelet
transforms on the LRD and the MRD and then extracted their high- and low-frequency
components, respectively. The final DI was reconstructed by fusing LL, LH, HL, and
HH under a neighborhood-based fusion rule. Zheng et al. [14] fused the subtraction
DI and the log-ratio DI by experimental trial and error, allowing region consistency and
edge information to be retained. In [15], the authors proposed a novel fusion strategy
based on the discrete wavelet transform (DWT). The study explored the rule of selecting
the weight averaging for the low frequency and the maximum local contrast coefficients
for the high frequency. Experience showed that the CDI fusing the log-ratio DI and the
Gauss-log ratio DI enhances the difference intensity of the changed area. Later, the work
by Gong et al. [16] extended the fusion techniques by constructing intensity–texture
difference images (ITIDs). The ITID includes the intensity DI (IDI) and the texture DI
(TDI), which are generated by the log-ratio detector and Garbo filter banks. Innovatively,
the multivariate generalized Gaussian distribution (MGGD) is employed to fit the joint
probability (IDI, TDI), which is used as a prior term in the graph cut. Recently, Wang et al. [17]
fused superpixel-level affinities and pixel-level heterogeneous affinities to enhance the
multi-scale properties for SAR change detection.

Despite the success of ratio-based methods on CD tasks, they are limited by the properties
of first-order statistics and may still fail to detect changes when the average intensity of local
neighborhoods remains constant [10]. One possible solution is to use sliding-window-based
statistical analysis to consider higher-order neighborhood characteristics. In this mode, changes
are detected by measuring the difference of the statistical distribution of each pixel between
dual-temporal images. A classical approach is the assumption of a Gaussian distribution under
the KL divergence [18]. Subsequently, a local image statistical series expansion method based
on cumulants was proposed by Inglada and Mercier [10] to substitute the Gaussian assumption.
Immediately afterwards, Zheng and You [19] proposed a projection-based Jeffrey detector (PJD)
by replacing the KL divergence with the Jeffrey divergence. More similarity-based CD methods
can be found in the work of Alberga [20]. However, since the changes are not modeled, it is
difficult to select the window size, which affects the misdetections and overdetections.

In recent years, some scholars have obtained difference images through feature
transformation and representation. In this paradigm, the amplitudes are replaced by abstract
and reliable features. In [21], the interaction between feature points representing local
amplitude attributes was defined as structure features, which were encoded by a graph
model based on the ratio similarity. Then, the change can be indicated by the consistency
between the graph model constructed on bi-temporal SAR images. In the work of
Wan et al. [22], a sort histogram was created for each pixel to implicitly express the local
spatial layout, which weakens the defects of the PBCD method. Besides, a pairwise
pixel-structure-representing approach was proposed by Touati et al. [23] for the
heterogeneous CD task. It models the observation field through each image’s own pixel
pairs, which is imaging modality-invariant. Recently, a parametric contraction mapping
strategy based on spatial fractal decomposition was proposed in [24] to make dual-temporal
images comparable in the presence of intensity heterogeneity. This mapping is based
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on the consensus that any satellite data can be approximately encoded with their own
appropriate spatial transformation part. Moreover, in recent studies, Sun et al. [25]
proposed the NLPG method to build a K-nearest graph and a cross-mapping graph for each
pixel, whose discrepancy can reflect the change information. Later, an extended version
of NLPG, named IRG-McS [26], was put forward based on superpixels and iteration.

The DI analysis step can be viewed as a binary partitioning problem. A decision
threshold is usually determined to divide the DI into two categories. The Kittler–Illingworth
threshold (K&I) [27], the expectation maximization (EM) threshold, and Otsu [28] are
several widely used estimation methods, and they work under the class conditional
distribution assumption and no prior distribution assumption, respectively. Besides,
empirical threshold selection is also a common approach, which is called “trial and error”
(TAE). Clustering methods such as PCAKmeans [29], FCM, and FLICM [30–32], in an
unsupervised segmentation manner, automatically aggregate pixels into “change” and
“unchanged” classes without modeling the statistical distribution. Meanwhile, the recently
proposed new threshold method HFEM outperforms Otsu and FCM in the case of only a
few change areas [33].

This research focused on improving the performance of the pixel-based change detector
in the presence of speckle noise. To this end, we propose an effective method based on
the self-similarity of non-local structures. Speckle noise can still produce a large amplitude
difference even between pixels pairs that have not changed, even in a monomodal CD
task. However, the unchanged areas share the same spatial structure [25]. Inspired by
Sun et al. [34,35], we can, therefore, determine whether a pixel has changed by measuring
the structural consistency of the corresponding pixels. Unlike them, we focused on SAR
change detection. The acquired structural features were dense, i.e., each patch in the non-local
scale was taken into account. The spatial structure information of pixels is represented
by our proposed non-local structure weight feature (NLSW) and a sorted version (SNLSW).
The structure consistency can be measured by the similarity/dissimilarity of NLSW features
at the L2-norm.

Each component in the NLSW/SNLSW feature, as the weight strength of the mutual
interaction between the center pixel and non-local spatial pixel, is a function of the similarity
of their neighborhood patches. The Euclidean distance used in the NLM algorithm is not
suitable for SAR due to its inability to accurately construct the strength of the structural
weights. To overcome this problem, we derived and approximated a similarity metric
suitable for the multiplicative noise model based on our previous work [36], where
a dedicated statistical distribution of SAR, i.e., the Nakagami–Rayleigh distribution, was
assumed. The derived similarity metric was then used to build the weight components. As
a result, pixels associated with changes presented larger differences between the corresponding
NLSW/SNLSW features compared to those unchanged pixels.

The conversion of the difference image (DI) to the change map (CM) can be regarded
as a threshold segmentation procedure. The constant false alarm rate (CFAR) was employed
to automatically extract the change areas with an imposed Rayleigh statistical distribution
assumption to avoid the difficulty of estimating the decision threshold using histogram-based
methods when the change indicator exhibits a unimodal histogram. Besides, the Otsu
threshold, K&I threshold, and TAE were also implemented in the DI analysis step.

The main contributions are as follows:

(1) We propose an unsupervised framework for automated SAR change detection.
In the DI generation step, we extract the pixelwise non-local structure weight (NLSW)
features and detect changes by spatial structure cues. Eventually, the comparability
of bi-temporal SAR images (BTSIs) was enhanced.

(2) The mathematical proof is given to illustrate the uncertainty of the similarity between
patches in the expectation sense when the Euclidean distance is used in multiplicative
noise. For this reason, a patch similarity metric, dedicated to the proposed NLSW
change detector for BTSIs, was derived and approximated by considering the statistical
properties of SAR.
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(3) The CFAR under the Rayleigh distribution assumption was applied to the DI to generate
the final change map, thus avoiding the unimodal histogram problem. The experiments
on simulated and real bi-temporal SAR images demonstrated the effectiveness and
stability of the proposed method.

The rest of this paper is organized as follows. Section 2 presents the relevant theories
and the proposed framework. Section 3 presents the experimental results, the parameters’
analysis, and the discussion. The conclusion is provided in Section 4.

2. Materials and Methods

Speckle noise is a key factor in accurate change detection of SAR. Due to the fluctuating
amplitude, even pixels that have not changed may exhibit significant radiometric differences.
The purely amplitude-based methods may fail in highlighting the change area.
However, self-similar structures can always be found in any image (common to optical and
SAR images). That is, the image can be (approximately) formed of properly transformed
parts of itself [24]. One way of constructing self-similar structural information is by applying
the idea of non-local means (NLMs) [37]. However, in this work, we were primarily
interested in the similarity weights between non-local patches rather than the denoising
process of NLMs. This is because the structural information can be well quantified
by measuring the similarity between patches’ patterns. Therefore, we built the non-local
structure weight (NLSW) feature for each pixel on bi-temporal images by using a set
of measured weights in the non-local search window. Figure 1 depicts the construction
process of the NLSW feature. We first computed the weight G(Np, Nq) (defined in Section 2.2),
then we organized all the weights in a certain way (one case is shown by the yellow curve).
By assigning the NLSW feature per pixel, a projection of the unstable amplitude space
to the stable structural space can be implemented. Then, a simple pixelwise difference
between the bi-temporal SAR images can better show the degree of change.

Figure 1. Illustration of constructing the proposed non-local structure weight feature. Taking the pth
pixel as an example, the non-local search windowWp has the size (2w2 + 1)× (2w2 + 1).
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2.1. Theoretical Background
2.1.1. Non-local Means Method

The non-local mean (NLM) is a prevalent image denoising technology that was pioneered
by Baudes et al. [38]. The NLM obtains a weighted average of pixels by identifying similar pixels
within a non-local spatial search window and then assigning larger weights to those with similar
neighboring patterns [39]. In the context of SAR images, the NLM has been shown to be effective
at suppressing speckle noise while preserving intricate structural details, thereby facilitating
many applications such as SAR segmentation [36], guided patchwise despeckling [40], and
OPT/SAR image fusion [41]. Furthermore, the NLM can also improve the resolution and
sharpness of SAR images to enhance target detection and identification [42].

In this section, the NLM methods described in [43] are briefly introduced. Let us
consider a single-band image u = (u(x))x∈Ω defined over a bounded domain Ω ⊂ R2.
u(x) ⊂ R+, u(x) is the true observed amplitude, i.e., contaminated by noise at pixel x ∈ Ω.
Now, we consider pixel p, then the NLM is defined as

ũ(p) =
1

Z(p) ∑
q∈B(r,p)

w(Np, Nq)u(p) (1)

where Np and Nq represent the neighborhood patch centered at pixel p and pixel q,
respectively. B(r, p) denotes the non-local squared search window centered at pixel p
and with a size of (2r + 1)× (2r + 1). Limited by the computational cost, q is only chosen
within the r-box radius of p. Z(p) is normalized constant, i.e., Z(p) = ∑q∈B(r,p) w(Np, Nq).
The weight w(Np, Nq) expresses the similarity between the vectorized patches Nq and Nq
and is defined as

w
(

Np, Nq
)
= exp−

∥∥Vs(Np)−Vs(Nq)
∥∥2

2,σ

h2 (2)

where σ denotes the standard deviation of the Gaussian kernel, which is used to consider
the distance between the central pixel and other pixels in the patch. h is the smoothing
parameter, which is usually set empirically. Vs(Np) indicates the vectorization of patch Np
with a size of s× s, and ‖·‖ denotes the `2-norm.

2.1.2. Euclidean Measurement of Inter-Patches’ Similarity and Problem on SAR Image

The proposed NLSW detector is a structure change indicator based on the self-similarity
property, and its accuracy is directly affected by the stability of the weight w(Np, Nq)
in Equation (2). Generally, Equation (2) can provide a fairly reliable estimate of the similarity
of patches in optical images (also common to natural images). Azzabou et al. [44] asserted
that the Gaussian-weighted similarity estimation (Euclidean distance) is robust for additive
noise, but hardly effective for multiplicative noise (SAR speckle). With reference to [45],
we introduced a theoretical proof about the validity of the Euclidean distance in optical
images and the invalidity in SAR images.

Now, a classical additive noise model is considered, i.e., Y = X + V, where Y is
the observed image, X is the noise-free image, and V is the zero-mean Gaussian noise with
the standard deviation as σv. For patches YNp and YNq centered at the pth and qth pixels,
respectively, the distance ∆Y<p,q> can be written as

∆Y<p,q> =
∥∥∥YNp −YNq

∥∥∥2

2
=

O

∑
k=1

∣∣∣YNp(k)−YNq(k)
∣∣∣2 (3)
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where O denotes the number of pixels in the patch, then the expectation is

E
[
∆Yp,q

]
= E

[
O

∑
k=1

∣∣∣YNp(k)−YNq(k)
∣∣∣2]

=
O

∑
k=1

E
{[(

XNp(k)− XNq(k)
)
+
(

VNp(k)−VNq(k)
)]2
}

=
O

∑
k=1

E
[
(∆X(k) + ∆V(k))2

]
=

O

∑
k=1

(∆X(k))2 +E
[
(∆V(k))2

]
(4)

considering ∆X(k) =
∣∣∣XNp(k)− XNq(k)

∣∣∣, and ∆V(k) is the difference of the Gaussian

distribution, i.e., ∆V ∼ N (0, 2σ2), then we can obtain

E
[
∆Yp,q

]
=
∥∥∥XNp − XNq

∥∥∥2

2
+ O · 2σ2

v (5)

Equation (5) means that the Euclidean distance between the noise-polluted patches
YNp and YNq is related to the similarity between noise-free patches XNp and XNq , as well
as the noise variance σv. One can consider that the order of similarity between noise-free
patches is preserved in the sense of the distance expectation [45]. That is, if two patches are
similar in the absence of noise, they will remain similar in the presence of noise.

From the above evidence, one can see that, for optical images under the additive
Gaussian noise model, the Euclidean distance can effectively measure the inter-pixel
similarity. However, the SAR image is prone to multiplicative speckle noise, and therefore,
Equation (2) no longer fits the SAR image. A multiplicative noise model is assumed
for the SAR image, that is Y = X ·V, where Y denotes the noise-polluted image, X denotes
the noise-free image, and V denotes coherent noise with µv = 1 and σ2

v the variance.
For two patches YNp and YNq , we have the following distance:

∆Y<p,q> =
∥∥∥YNp −YNq

∥∥∥2

2
=

O

∑
k=1

∣∣∣YNp(k)−YNq(k)
∣∣∣2
2

(6)

then

E
[
∆Y<p,q>

]
= E

[∥∥∥YNp −YNq

∥∥∥2

2

]
=

O

∑
k=1

E
[∣∣∣XNp(k)VNp(k)− XNq(k)VNq(k)

∣∣∣2]

=
O

∑
k=1

E
[

X2
Np
(k)V2

Np
(k)− 2XNp(k)VNp(k)XNq(k)VNq(k) + X2

Nq
(k)V2

Nq
(k)
]

=
O

∑
k=1

E
[

X2
Np
(k)
]
(σ2

v + 1) +E
[

X2
Nq
(k)
]
(σ2

v + 1)− 2E
[

XNp(k)XNq(k)
]

=
O

∑
k=1

σ2
v

(
E
[

X2
Np
(k)
]
+E

[
X2

Nq
(k)
])

+E
[
|XNp(k)− XNq(k)|2

]
=

O

∑
k=1

∣∣∣XNp(k)− XNq(k)
∣∣∣2 + O

∑
k=1

σ2
v

[
X2

Np
(k) + X2

Nq
(k)
]

=
∥∥∥XNp − XNq

∥∥∥2

2
+ σ2

v

[
‖XNp‖2

2 + ‖XNq‖2
2

]

(7)

The second term in Equation (7) indicates that the similarity between the observed
patches YNp and YNq is linked to the noiseless amplitude. This means that the distance
depends upon the local area where the patches reside. The larger the amplitude of the local
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area, the larger the distance between the patches is. As a result, the structural information
about SAR obtained from Equation (2) is unstable. To accurately calculate the NLSW
features, a distance metric tailored to SAR images should be used.

2.2. A Novel Similarity Measurement for SAR Patches

Precisely projecting the amplitude domain specifically to the structure information domain
is the key factor in determining whether the NLSW detector works in the change detection task.
It is, of course, inappropriate for SAR to use Equation (2) to calculate the weight similarity. There
have been quite a few distance measurements developed in recent years to calculate the similarity
of the SAR block. Statistical tests on SAR statistical distributions are a widely discussed topic,
such as Deledalle’s proposal in [46]. Based on the statistical properties of SAR images, they
summarized a series of distance metrics. Wan et al. [39] applied the Nakagami–Rayleigh
distribution to the Bayesian formulation and derived a new statistical distance. Based on their
work, we combined the Nakagami–Rayleigh distribution and the generalized likelihood ratio
(GLR) to develop a non-logarithmic ratio-based distance in our previous work [36]. This paper
introduces this similarity metric in the change detection task due to its decent performance.
Significantly, to meet the practical requirements and the computational robustness, we made
the following modification.

As a basic theoretical multilook amplitude model for SAR, the Nakagami–Rayleigh distribution
was adopted to model the SAR amplitude image [47]. The L-look Nakagami distribution is
represented as

P(X|R) = 2
(

L
R

)L 1
Γ(L)

X2L−1 exp
(
−L

X2

R

)
(8)

The radar reflectivity, i.e., noise-free pixel amplitude, is represented by R, and the actual
observed amplitude is represented by X. Γ(·) is the Gamma function. For paired patches
(Np, Nq), the similarity (or distance) can be statistically regarded as the comparison of two
hypothesis,H0 andH1:

H0 : Rp = Rq = R12(null hypothesis)

H1 : Rp 6= Rq(alternative hypothesis)
(9)

where the null hypothesis (H0) means that both patches (Np, Nq) obey the same statistical
distribution, i.e., Rp = Rq = R12 (parametric constraint). The alternative hypothesis
(H1) denotes no parametric constraint of R. In this case, the likelihood ratio test (LRT) is
the optimal statistical test, which can approximate the ratio of two hypotheses:

L
(
Vs(Np), Vs(Nq)

)
=

P
(
Vs(Np), Vs(Nq) | Rp = Rq = R12,H0

)
P
(
Vs(Np), Vs(Nq) | Rp = R1, Rq = R2,H1

) (10)

where Vs(Np) and Vs(Nq) are the observed vectorized patches, which range in Θ. s is
the radius of the patches. R1, R2, and R12 are the true backscatter values. To limit the range
of R = {R1, R2, R12}, the generalized likelihood ratio test (GLRT) extends Equation (10)
to address the unknown parameters by using the maximum likelihood estimation (MLE)
as if they were known:

G
(
Vs(Np), Vs(Nq)

)
= Sup

R∈Θ

L
(
Vs(Np), Vs(Nq); R

)
(11)

Note that G
(
Vs(Np), Vs(Nq)

)
∈ [0, 1]; the larger the value, the greater the confidence

in accepting the hypothesis H0 is, which means a higher probability of paired patches
(Np, Nq) obeying the same statistical distribution.

To obtain the analytical solution, we imposed a strict assumption that the paired
patches are irrelevant and paired pixels are independent. Thus, Equation (11) can be
reformed as

G
(
Vs(Np), Vs(Nq)

)
=

O

∏
k=1

φGLR(xp,k, xq,k) (12)
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where O is (2s + 1)× (2s + 1), xp,k ∈ Np, and xq,k ∈ Nq. φGLR(xp,k, xq,k) is given by

φGLR(xp,k, xq,k) =

Sup
R12

{
P
(

xp,k, xq,k | Rp = Rq = R12,H0

)}
Sup

R1

{
P
(

xp,k | Rp = R1,H1

)}
Sup

R2

{
P
(

xq,k | Rq = R2,H1

)} (13)

To obtain the maximum likelihood estimation value of the numerator in Equation (13),
we define the joint probability P

(
xp,k, xq,k | H0

)
by applying Equation (8):

P
(

xp,k, xq,k | H0

)
=

(
2

Γ(L)

)2( L
R12

)2L(
xp,kxq,k

)2L−1
exp

{
− L

R12

(
x2

p,k + x2
q,k

)}
(14)

As for parameter R12, we determined its maximum likelihood estimation R̂12 by differentiating
the log-likelihood function H(R12) = ∑M

m=1 ln P
(

xp,km , xq,km | R12

)
and setting dH(R12)

dR12
= 0,

then we obtain

R̂12 =
1

2M

M

∑
m=1

(
x2

p,km
+ x2

q,km

)
(15)

considering only one pixel can be observed in each position, i.e., M = 1; therefore, we can
obtain the following estimation:

R̂12 =
1
2

(
x2

p,k + x2
q,k

)
(16)

For the denominators P
(

xp,k | R1,H1

)
and P

(
xq,k | R2,H1

)
in Equation (13), the same

estimation process is performed, then we obtain{
R̂1 = x2

p,k

R̂2 = x2
p,k

(17)

Next, the R = {R1, R2, R12} in Equation (13) are replaced by the maximum likelihood
estimation R̂ =

{
R̂1, R̂2, R̂12

}
, then we have

φGLR

(
xp,k, xq,k

)
=

4L2L

Γ(L) (xp,kxq,k)
2L−1(x2

p,k + x2
q,k)
−2L exp(−2L)22L{

2LL

Γ(L) x−2L
p,k x2L−1

p,k exp(−L)
}{

2LL

Γ(L) x−2L
q,k x2L−1

q,k exp(−L)
} (18)

After simplification,

φGLR

(
xp,k, xq,k

)
=

(
2xp,kxq,k

x2
p,k + x2

q,k

)2L

(19)

Finally, we can measure the similarity of paired patches (Np, Nq) by

G
(

Np, Nq
)
=

O

∏
k=1

φGLR(xp,k, xq,k) =
O

∏
k=1

(
2xp,kxq,k

x2
p,k + x2

q,k

)2L

(20)

The structure weights can be measured by Equation (20). The statistical distance takes
the form of a ratio, so it can suppress speckle noise effectively. However, in this change
detection task, we cannot use the continued product form of Equation (20), because it will
result in a form that is not computationally tractable and unstable values. Local squared
neighborhoods with zero amplitude will result in no similarity, which is not desirable.
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Our solution to this problem, and to prevent the loss of contrast associated with the logarithmic
form, is to approximate the continued product by a summed form.

G
(

Np, Nq
)

∝
K

∑
k=1

(
2xp,kxq,k

x2
p,k + x2

q,k

)2L

(21)

2.3. The Non-Local Structure Weight Difference Detector
2.3.1. The Non-Local Structure Weight Feature

Consider two registered SAR images acquired at time t1 and t2 on the same
geographical area with a size of H×W, which are represented as X = {x1, x2, . . . , xN} and
Y = {y1, y2, . . . , yN}, respectively. N is the total pixels number. The Np refers to the patch
centered at the pth pixel with a size of s× s. We defineWp as a non-local search window
of size Q = (2w + 1)× (2w + 1). P =

{
Nq | (|pr − qr|, |pc − qc|) ∈ Wp

}
indicates the set

of non-local patches in the search window of pixel p. (r, c) denotes the position of the
pixels. For the pth pixel in image X, the non-local structure weight feature (SWF) is

SW FX
p =

{
sw f X

p,1, sw f X
p,2, . . . , sw f X

p,q, . . . , sw f X
p,Q−1, sw f X

p,Q

}
(22)

where each element sw f X
p,q of Q-dimensional SW FX

p encodes the distance between the
central patch Np and the corresponding candidate patch Nq in set P. According to the
modified distance metric Equation (21), sw f X

p,q can be calculated by

sw f X
p,q = G

(
Np, Nq

)
(23)

Traversing each pixel of the bi-temporal SAR images, we can obtain the non-local
structure weight feature maps of X and Y :

SW FX =
{

SWFX
1 , . . . , SWFX

p , . . . , SWFX
N

}
SW FY =

{
SWFY

1 , . . . , SWFY
p , . . . , SWFY

N

} (24)

2.3.2. Generation of Change Difference Intensity

As soon as the NLSW features of bi-temporal SAR images are obtained, the mapping
process from the amplitude to the stable multidimensional structure feature space is completed.
Therefore, we can detect the changes between the pre- and post-images using robust structure
information. Theoretically, traditional pixel-based change detection (PBCD) methods can be
used. Furthermore, studies on the distance criteria for measuring the difference between feature
descriptors have been conducted extensively in the field of feature matching. The most typical
is the Minkowski series criterion Lp. Others include the L1-norm distance, L2-norm distance,
and some variants such as the cumulative European distance and cumulative Manhattan
distance. Here, we adopted the simple L2-norm for the NLSW features to generate the difference
image (DI).

DIp =
1
Q

√√√√ Q

∑
k=1
|sw f X

p,k − sw f Y
p,k|2 (25)

where Q is the number of element in each NLSW feature. After traversing all pixels, we
normalize DI to obtain DInorm:

DInorm =
DI

max
p

{
DIp

} (26)
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Inspired by [22,25], a variant of the NLSW called the SNLSW was developed. We used
the following sorted non-local structure weight (SNLSW) feature in the actual experiments:

SW FX,S
p = Sort

{
SW FX

p

}
SW FY ,S

p = Sort
{

SW FY
p

} (27)

In the experimental part, we analyzed the impact of the NLSW and SNLSW features
and also explored the impact of the SNLSW feature length (percentage of Q) on
change detection.

2.4. Generation of Change Map

The generation of the change map (CM) from the difference image (DI) can be regarded
as a binary segmentation or classification problem.

CM(i, j) =

{
1, if DI(i, j) ≥ T
0, if DI(i, j) < T

(28)

where the label is configured as 〈change = 1, unchange = 0〉 and T is threshold. Common
methods include statistical model-based, clustering-based, and threshold-based methods.
This paper applied the CFAR method, which is used widely in radar detection systems.
In addition to being simple to calculate, CFAR threshold estimation offers constant false
alarm rates and adaptive threshold determination, among others. It also offers complete
unimodal histogram estimation while controlling false alarm detection areas. We must first
determine a clutter statistical model for the DI before performing CFAR. Here, the Rayleigh
distribution was selected, and the PDF is

f (x) =

{
x
b2 exp− x2

2b2 if x > 0
0 otherwise

(29)

where the expectation µ =
√

π
2 b and variance σ2 = 2−π

2 b2, respectively. After setting
the false alarm rate Pf a, the CFAR threshold TCFAR can be calculated by

TCFAR =

√
−2 log Pf a −

√
π
2√

2− π
2

σ + µ (30)

In addition, the other two commonly used automatic threshold estimation methods
and an empirical selection method were also employed to extract the changed regions:
(1) Otsu [28] threshold; (2) K&I threshold; (3) trial and error (TAE).

The flowchart of the proposed method is given in Figure 2. It consists of three steps:
(1) projection from the amplitude feature to the NLSW feature (if the SNLSW feature is
used, the NLSW needs to be sorted); (2) generation of the change difference image (DI);
(3) estimation of the threshold and segmentation to obtain the change map (CM).

The CFAR method is the only one described here, and the other methods are analogous.
Besides, the fine-tuning processing for the CM is not included in the flowchart, even though
the post-processing is widely used for improving the detection accuracy.
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Figure 2. The framework of the proposed method. Note: the CFAR threshold segmentation method
is employed in this diagram. In the experiments, the TAE, Otsu, and K&I threshold methods were
also adopted.

3. Experiments, Results, and Discussion
3.1. Datasets, Evaluation Criteria, and Comparison

To validate the performance of the NLSW/SNLSW detector, four pairs of bi-temporal
SAR images were used:

(1) Datasets #1/2: The first two datasets were taken by Radarsat-2 in the Yellow River
Estuary area of China in 2008 and 2009, with a size of 257× 289 and 306× 291, respectively,
shown in Figure 3. The huge disparity of the speckle noise between t1 and t2 may aggravate
the difficulties met in the process of change detection.

(2) Dataset #3: The third dataset was taken by Radarsat-1 in 1998 and 1999 with
a resolution of 10 m and a size of 627× 619. The change regions shown in the third column
of Figure 3 were caused by the different water content of soil.

(3) Dataset #4: The fourth dataset was taken by Radarsat-2 at Vancouver airport
in 2008 and 2009 with a resolution of 3 m and a size of 908× 532. The narrow and long
structure of the change area makes the detection difficult. Noticeably, we downsampled
the bi-temporal images to reduce the impact of the registration error.

For comparison, we implemented several representative algorithms, including SH [22],
MRFFCM [32], HHG [17], the log-ratio detector [9], and NLPG [25]. MRFFCM processes
the DI generated by the LR detector to obtain the change map. For SH, LR, and NLPG,
Otsu [28], CFAR, PCAKMeans [29], and FLICM [31] were selected to produce the change
map, respectively. For the proposed method, we used the CFAR estimator in addition to the
K&I [27] threshold, Otsu, and trial and error (TAE).



Remote Sens. 2023, 15, 1422 12 of 26

Figure 3. Four experimental bi-temporal SAR datasets. From the first column to the fourth
column are Dataset #1, Dataset #2, Dataset #3, Dataset #4, respectively. Each column refers
to 〈image t1; image t2; ground truth〉.

The performance of the proposed method can be evaluated by eight widely employed
measurements: the false alarm rate (FAR), the missed rate (MR), the overall error (OE), the
overall accuracy (OA), the precision (PRE), the recall (RC), the F1-score (F1), and the Kappa
coefficient (KC). The NLSW/SNLSW performed better when the FAR, MR, and OE were
small and the OA, PRE, RC, F1, and KC were large. Furthermore, the quality of the DIs
generated by the various parameters were evaluated using the ROC curve. For the ROC
curve, a positive detection rate (PDE) is regarded as a function of the false alarm rate (FAR).
As an additional quantitative indicator, the area under the curve (AUC) was calculated for
the DI. The greater the AUC, the better the discriminability of the DI is.

3.2. Experimental Result and Quantitative Comparison
3.2.1. Noise Sensitivity Analysis of the Simulation

Speckle noise has been one of the bottlenecks of SAR change detection tasks.
We, therefore, conducted the noise sensitivity experiment on the simulation of the SAR
images to validate the effectiveness of the proposed method in suppressing speckle
noise and representing structure information. The validity was verified in two ways:
(1) for the unchanged bi-temporal images, the changes should not be detected regardless
of the degree of noise interference; (2) for the changed bi-temporal images, the changed
area should be detected irrespective of the noise interference.

Figure 4a,b are the T1 and T2 images. First, six-look speckle noise was added to the
T2 image. Second, 2-look, 4-look, and 6-look speckle noise were added to the T1 image.
Then, we defined an image set NoiseMap = [T1 with 2-look noise, T1 with 4-look noise,
T1 with 6-look noise]. Figure 4c gives the DI matrix. According to the first row ((A),(B),(C)),
it is obvious that the difference between the dual-temporal images can be detected under
different numbers of look noise, implying that the proposed NLSW has good feasibility.
Even though the noise intensity in the 2-look and 6-look images had a huge disparity,
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the NLSW features were still able to distinguish changed and unchanged pixels, which
indicates that the NLSW is robust to speckle noise. As a note, the only difference between
the images in NoiseMap was the number of looks (noise level). Therefore, ideally, no change
should be detected between them. (D), (E), and (F) (shown in Figure 4c), representing
the DI between any two NoiseMaps, confirmed that. Specifically, (D) and (F) showed
almost no possible change are, while (E) showed extremely slight possible changes. This
is because the huge difference of the speckle noise level between the 2-Look and 6-Look
images complicates the change detection.

Figure 4. Noise sensitivity test on the simulated SAR image. (a) T1 image. (b) T2 image. (c) Change
difference intensity map matrix. We added 2-look, 4-look, and 6-look speckle noise to T1 image. We
added 6-look speckle noise to T2 image.

3.2.2. Result on Dataset #1

For Dataset #1, we set the parameters as w1 = 2, w2 = 7, k = 0.1, and L = 3. The
segmentation thresholds were set as TTAE = 0.5, TOtsu = 0.39, TK&I = 0.42, TCFAR = 0.45,
respectively. The default parameters were set for the comparison of the CD methods. The
change maps of the mentioned methods are shown in Figure 5. In comparison to the other
methods, MRFFCM and LR-FLICM gave more false alarms due to inaccurate amplitude
information. By exploiting the pixel features, PCAKmean (Figure 5i) suppressed the noise
for a better result. The results of NLPG under two thresholds (Figure 5j–k) were evidently
different, which indicated the instability of the DI generated by NLPG for SAR images.
Affected by sliding window detection mode, the SH produced many false alarms and
missed blocks. HHG yielded a high number of false alarms. Our proposed methods
presented the best visual results. Only a few isolated noise pixels appeared in our results,
in contrast with the other methods. Additionally, the NLSW detector showed consistent
results (Figure 5b–e) under the four thresholds, suggesting that the DI generated by the
NLSW is stable for SAR images.

Table 1 reports the quantitative assessment of different algorithms. NLPG with CFAR
had the lowest FAR, but with the most-serious MR of 0.76. PCAKmeans and HHG obtained
a competitive FAR 0.0351 and 0.0947, but were much inferior with respect to our methods
in terms of the MR. By the overall evaluation, the OA and Kappa also demonstrated that
the proposed NLSW indicator could detect change trends correctly.
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Table 1. Quantitative evaluation of the different methods on Dataset #1.

Method MRFFCM SH-Otsu HHG
LR NLPG Proposed SNLSW

FLICM PCAK Otsu CFAR TAE Otsu K&I CFAR

FAR 0.1027 0.2155 0.0947 0.3370 0.0351 0.1547 0.0117 0.0313 0.0784 0.0627 0.0507
MR 0.4541 0.4800 0.1416 0.1256 0.1983 0.1697 0.7605 0.1487 0.0739 0.0845 0.1003
OE 0.1662 0.2634 0.1032 0.2991 0.0646 0.1574 0.1471 0.0525 0.0776 0.0667 0.0597
OA 0.8338 0.7366 0.8968 0.7008 0.9354 0.8426 0.8529 0.9475 0.9224 0.9333 0.9403
Pre 0.5399 0.3475 0.6668 0.3639 0.8344 0.5423 0.8184 0.8572 0.7227 0.7631 0.7967

Recall 0.5459 0.5200 0.8584 0.8744 0.8017 0.8303 0.2395 0.8513 0.9261 0.9155 0.8997
F1 0.5429 0.4166 0.7506 0.5139 0.8178 0.6561 0.3706 0.8542 0.8119 0.8324 0.8451

kappa 0.4413 0.2551 0.6868 0.3472 0.7785 0.5598 0.3144 0.8222 0.7639 0.7912 0.8083

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5. Change maps of the different methods on Dataset #1. (a) DI of proposed method (heat
map). (b) SNLSW-TAE (ours). (c) SNLSW-Otsu (ours). (d) SNLSW-K&I (ours). (e) SNLSW-CFAR
(ours). (f) HHG. (g) MRFFCM. (h) LR-FLICM. (i) LR-PCAKmeans. (j) NLPG-Otsu. (k) NLPG-CFAR.
(l) SH-Otsu.

3.2.3. Result on Dataset #2

Figure 6 show the CD results on Dataset #2. We set w1 = 2, w2 = 7, k = 0.1, and L = 1
and the thresholds TTAE = 0.47, TOtsu = 0.34, TK&I = 0.29, and TCFAR = 0.43.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Change maps of the different methods on Dataset #2. (a) DI of proposed method (heat
map). (b) SNLSW-TAE (ours). (c) SNLSW-Otsu (ours). (d) SNLSW-K&I (ours). (e) SNLSW-CFAR
(ours). (f) HHG. (g) MRFFCM. (h) LR-FLICM. (i) LR-PCAKmeans. (j) NLPG-Otsu. (k) NLPG-CFAR.
(l) SH-Otsu.

While the LR with MRFFCM and FLICM had the highest detection resolution, the false
alarms were quite serious due to speckle noise interference. Similarly, the CMs of NLPG
showed extreme false alarm and misdetections. SH was almost invalid on Dataset #2.
The visual performance of the NLSW detector under the different threshold methods
(Figure 6b–e) was, as expected, more satisfactory. When compared to other structure-based
detectors (NLPG, SH, and HHG), the proposed NLSW detector not only found more
changed pixels, but also weakened the influence of speckle noise.

Table 2 provides the results of the quantitative analysis. Our methods supplied the best FAR
(0.0122), OA (0.9833), and Kappa (0.8570). An FAR of 0.0057 was under the manual threshold
setting (see TAE), which means the DI generated by the NLSW detector can adequately reflect
the change level. According to the Kappa coefficient and F1-score, the NLSW detector with
CFAR performed better than PCAKmeans, with 0.8570, 0.8659, 0.7527, and 0.7703, respectively.
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Table 2. Quantitative evaluation of the different methods on Dataset #2.

Method MRFFCM SH-Otsu HHG
LR NLPG Proposed SNLSW

FLICM PCAK Otsu CFAR TAE Otsu K&I CFAR

FAR 0.1337 0.1731 0.0239 0.3538 0.0338 0.1536 0.0161 0.0057 0.0308 0.0477 0.0122
MR 0.1332 0.4495 0.0729 0.0182 0.0370 0.0258 0.4288 0.1440 0.0334 0.0192 0.0886
OE 0.1336 0.1895 0.0268 0.3339 0.0340 0.146 0.0405 0.0139 0.0310 0.0460 0.0167
OA 0.8664 0.8105 0.9732 0.6661 0.9660 0.854 0.9595 0.9861 0.9690 0.9540 0.9833
Pre 0.2897 0.1667 0.7089 0.1486 0.6418 0.2852 0.6904 0.9044 0.6637 0.5641 0.8247

Recall 0.8668 0.5505 0.9271 0.9818 0.9630 0.9742 0.5712 0.8560 0.9666 0.9808 0.9114
F1 0.4343 0.2559 0.8035 0.2582 0.7703 0.4412 0.6251 0.8795 0.7870 0.7162 0.8659

kappa 0.3792 0.1815 0.7894 0.1732 0.7527 0.3849 0.6039 0.8722 0.7709 0.6931 0.8570

3.2.4. Result on Dataset #3

For Dataset #3, we set w1 = 3, w2 = 7, k = 0.1, L = 7, and L = 1 and the thresholds
TTAE = 0.32, TOtsu = 0.20, TK&I = 0.082, and TCFAR = 0.27. Figure 7 shows the binary
change maps, and Table 3 lists the corresponding quantitative results. Generally, the
amplitude-based methods, including MRFFCM and LR-FLICM (see Figure 7g,h), exhibited
serious false alarm pixels, as expected, due to fluctuating amplitudes. NLPG showed a quite
highfalse alarm rate and misdetections due to a huge disparity between the statistical
distribution of the DI generated by NLPG and the statistical assumptions in both threshold
estimations. The SH method still barelyworked. While HHG produced a better result,
there were still large blocks of false alarms. Benefiting from the structured strategy, our
methods (Figure 7b,e) outperformed the other methods and yielded satisfactory visual
results. The quantitative analysis shown in Table 3 confirmed the visual results. Our
proposed NLSW detector won by most indicators.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. CMs of the different methods on Dataset #3. (a) DI of proposed method. (b) SNLSW-TAE
(ours). (c) SNLSW-Otsu (ours). (d) SNLSW-K&I (ours). (e) SNLSW-CFAR (ours). (f) HHG. (g) MRFFCM.
(h) LR-FLICM. (i) LR-PCAKmeans. (j) NLPG-Otsu. (k) NLPG-CFAR. (l) SH-Otsu.
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Table 3. Quantitative evaluation of the different methods on Dataset #3.

Method MRFFCM SH-Otsu HHG
LR NLPG Proposed SNLSW

FLICM PCAK Otsu CFAR TAE Otsu K&I CFAR

FAR 0.1164 0.0757 0.0674 0.4866 0.0611 0.0938 0.0320 0.0074 0.0586 0.1846 0.0191
MR 0.2094 0.6782 0.0210 0.4202 0.0108 0.1869 0.4541 0.1424 0.0092 0.0002 0.0637
OE 0.1209 0.1044 0.0652 0.4835 0.0587 0.0983 0.0521 0.0138 0.0563 0.1758 0.0213
OA 0.8791 0.8956 0.9348 0.5165 0.9413 0.9017 0.9479 0.9862 0.9437 0.8242 0.9787
Pre 0.2535 0.1753 0.4208 0.0563 0.4476 0.3024 0.4607 0.8534 0.4581 0.2132 0.7099

Recall 0.7906 0.3218 0.9790 0.5798 0.9892 0.8131 0.5459 0.8576 0.9908 0.9998 0.9363
F1 0.3839 0.2270 0.5886 0.1026 0.6163 0.4409 0.4997 0.8555 0.6266 0.3514 0.8075

kappa 0.3360 0.1762 0.5592 0.0172 0.5894 0.3991 0.4725 0.8482 0.6005 0.2961 0.7965

3.2.5. Result on Dataset #4

On Dataset #4, we set w1 = 2, w2 = 12, and L = 7 and the thresholds TTAE = 0.42,
TOtsu = 0.25, TK&I = 0.29, and TCFAR = 0.34. Figure 8 provides the CM results obtained by
the different CD methods. The fragmented change area of Dataset #4 along with speckle
noise made it difficult for MRFFCM and LR-FLICM (Figure 8g,h) to produce a clean binary
CM. SH is sensitive to scatter noise, and many changed pixels were undetected. It can be
confirmed from Table 4 that the MR of SH was the highest (0.7230). The red circle (see
Figure 8b–f,i–k) indicates that our proposed NLSW detector was capable of retaining small
structures. Moreover, HHG also yielded a remarkable visual result.

Table 4 reports the quantitative analysis on Dataset #4. The SNLSW with CFAR
was slightly higher than HHG on the recall, which was 87.32% and 86.72%, respectively.
For the other indicators, HHG outperformed our approach. However, by adjusting
the threshold, our method (SNLSW with TAE) achieved similar results to HHG.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8. CMs of the different methods on Dataset #4. (a) DI of proposed method. (b) SNLSW-TAE
(ours). (c) SNLSW-Otsu (ours). (d) SNLSW-K&I (ours). (e) SNLSW-CFAR (ours). (f) HHG. (g) MRFFCM.
(h) LR-FLICM. (i) LR-PCAKmeans. (j) NLPG-Otsu. (k) NLPG-CFAR. (l) SH-Otsu.
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Table 4. Quantitative evaluation of the different methods on Dataset #4.

Method MRFFCM SH-Otsu HHG
LR NLPG Proposed SNLSW

FLICM PCAK Otsu CFAR TAE Otsu K&I CFAR

FAR 0.1761 0.0346 0.0105 0.3293 0.0156 0.0139 0.0125 0.0050 0.0737 0.0437 0.0208
MR 0.1099 0.7230 0.1328 0.0565 0.1473 0.3300 0.3545 0.2595 0.0723 0.0879 0.1268
OE 0.1736 0.0603 0.0151 0.3192 0.0205 0.0257 0.0252 0.0145 0.0737 0.0453 0.0248
OA 0.8264 0.9398 0.9849 0.6808 0.9795 0.9743 0.9748 0.9855 0.9263 0.9547 0.9752
Pre 0.1634 0.2362 0.7610 0.0997 0.6784 0.6509 0.6660 0.8509 0.3272 0.4467 0.6181

Recall 0.8901 0.2770 0.8672 0.9435 0.8527 0.6700 0.6455 0.7405 0.9277 0.9121 0.8732
F1 0.2762 0.2550 0.8106 0.1803 0.7556 0.6603 0.6556 0.7919 0.4837 0.5997 0.7239

kappa 0.2276 0.2238 0.8028 0.1212 0.7450 0.6470 0.6425 0.7844 0.4537 0.5787 0.7113

3.3. Parameter Analysis and Discussion
3.3.1. Selection of Analysis Window

In this section, we investigated the sensitivity of the NLSW detector to its parameters:
the local patch size w1 and the non-local search window size w2. We carried out the experiments
on Dataset #1 and Dataset #2, shown in Figure 3. w1 was set as [1, 2, 3, 4, 5], and w2 was set
from 1 to 20. The AUC curves of the NLSW detector with different w1 and w2 for both datasets
are plotted in Figure 9a,b.

Figure 9. AUC curves with different sizes of patch (w1) and non-local search windows (w2):
(a) Dataset #1. (b) Dataset #2.

Figure 9a gives the curve on Dataset #1. We can see that the AUC curve rose at first,
then gradually declined before staying steady with w2 from 1 to 8. With w2 further
increasing, the AUC ascended slowly and remained stable. Figure 9b shows the result
on Dataset #2.

Overall, the AUC curves on Dataset #2 appeared relatively flat. Concave points
occurred in five curves near w2 = 7, and they had the highest AUC values between
w2 from 12 to 15. All AUC curves exhibited fluctuations, but the fluctuations were not
significant. Dataset #1 showed a low inter-curve fluctuation of less than 2% and a low
intra-curve fluctuation of less than 1%. In particular, the curve of w = 1 showed the greatest
fluctuation, perhaps because a small patch reduces the robustness of the NLSW detector.
The inter-curve and intra-curve fluctuations on Dataset #2 were less than 1% and 0.5%. We
speculated that a small non-local search window would result in less robust and imprecise
structure information. A large analysis windows, however, could result in redundancy and
interference, which would reduce the NLSW features’ discrimination. The peak points in
the AUC curves indicated that the robustness and discriminativeness of the NLSW features
achieved a balance. In conclusion, the slight fluctuation indicated that the NLSW detector
is insensitive to and stable with respect to the analysis window.
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3.3.2. Performance Analysis of NLSW and SNLSW

This section aimed at analyzing the performance of the NLSW feature and the sorted
NLSW (SNLSW) feature. We carried out the experiments on Datasets #1/2/3. The ROC
curve and AUC were used to qualitatively and quantitatively evaluate the performance
of the DI generated by the NLSW and SNLSW, respectively. (w1, w2) was set as
{(2, 3), (2, 5), (2, 7)}. Figure 10 plots the ROC curves of the NLSW and SNLSW under
different parameters. As shown in Figure 10a–c, the SNLSW had a slightly higher ROC
than the NLSW in the interval with a small false alarm rate. As the false alarm rate (X-axis)
increased, the ROC curves crossed over and showed the opposite. We can note that the
NLSW and SNLSW had different performance in different false alarm rate intervals. In
general, the NLSW and SNLSW performed similarly. It is possible to select the NLSW and
SNLSW based on the FAR requirements for CD tasks.

Tables 5–7 report the quantitative results of both detectors on Datasets #1/2/3.
There is no significant difference between the numerical results in Table, which is consistent
with the findings of the ROC curves. The thing worth mentioning is that we only sorted the
NLSWs to obtain the SNLSW features without reducing the number of feature elements.
This suggests that the SNLSW features may be redundant. In practice, not all elements
in the SNLSW features contribute to the detection of changes. In Section 3.3.1, it was
mentioned that a long SNLSW feature may reduce discrimination.

Figure 10. The ROC curves of the NLSW and SNLSW detectors on Datasets #1/2/3. (a) ROC curves
on Dataset #1. (b) ROC curves on Dataset #2. (c) ROC curves on Dataset #3.

Table 5. Quantitative analysis of the SNLSW and NLSW on Datasets #1/2/3 with w1 = 2, w2 = 3.

Metric
Dataset #1 Dataset #2 Dataset #3

AUC OA Kappa AUC OA Kappa AUC OA Kappa

sort 0.9240 0.8932 0.6918 0.9917 0.9686 0.7684 0.9917 0.9809 0.7928
unsort 0.9244 0.9182 0.7446 0.9924 0.9774 0.8153 0.9917 0.9793 0.7821

Table 6. Quantitative analysis of the SNLSW and NLSW on Datasets #1/2/3 with w1 = 2, w2 = 5.

Metric
Dataset #1 Dataset #2 Dataset #3

AUC OA Kappa AUC OA Kappa AUC OA Kappa

sort 0.9186 0.9101 0.7327 0.9912 0.9698 0.7752 0.9907 0.9784 0.7733
unsort 0.9202 0.9202 0.7536 0.9914 0.9740 0.7948 0.9784 0.9749 0.7515

Table 7. Quantitative analysis of the SNLSW and NLSW on Datasets #1/2/3 with w1 = 2, w2 = 7.

Metric
Dataset #1 Dataset #2 Dataset #3

AUC OA Kappa AUC OA Kappa AUC OA Kappa

sort 0.9166 0.9120 0.7382 0.9910 0.9693 0.7723 0.9899 0.9773 0.7609
unsort 0.9203 0.9203 0.7550 0.9909 0.9721 0.7834 0.9889 0.9723 0.7300
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3.3.3. Sensitivity to the Length K of SNLSW

In the experiments, we found that the length of the SNLSW feature plays an important
rule in the CD task. This section aimed at analyzing the sensitivity of the SNLSW to the
length K. K refers to the feature length of the SNLSW. Two aspects were considered:
(1) Interference: If K is small, we think that the robustness of the SNLSW is not enough
to suppress speckle noise. This is because the SNLSW structure feature will be dominated
by weights corresponding to the contaminated patch if K is small, which leads to a larger
error in the DI. (2) Redundancy: A large K means more patches are included, along with
more redundant patches. This will result in the discrepancy between the SNLSW features
to be averaged, thus impairing the discriminative ability.

We define Kmax as the maximum number of elements in the SNLSW, i.e., the length of
the SNLSW. K is defined as the actual length of the SNLSW. In the SNLSW features, Kmax
is directly related to the radius w2 as follows:

Kmax = (2× w2 + 1)2 − 1 (31)

To explore the impact of K, we selected Datasets #1/2/3 as the analysis object. The ROC
curve and AUC were used as the qualitative and quantitative indicators, respectively.
In the experiments, we set w2 = [5, 9, 15], i.e., Kmax took three values. Since K varies with
Kmax, it is inappropriate to set a series of fixed K. Therefore, we set K as a percentage
of Kmax, as follows:

K = {dke | k = (i + 1)× ∆s × Kmax, i = 0, 1, . . . , 9} (32)

where d·e is the ceil operator and ∆s denotes the incremental step, which was set as ∆s = 0.1
in experiments.

Figure 11 plots the ROC curves of the SNLSW with different K on Datasets #1/2/3.
Some regularities can be observed in the ROC curves on Datasets #1/2 (see Figure 11a–f).
With a low false alarm rate, the SNLSW detector had a higher ROC curve when K was
smaller. As the false alarm rate rose, the curves crossed and became reversed. As the size
of the non-local search window increased, the ROC curves with a small K value dominated
in every interval. However, the AUC curves with different K on Datasets #1/2 (shown
in Figure 12a,b) reflected that the small K was associated with the better performance
of the SNLSW. We considered two extremes of change detection in the application based
on the ROC curve and AUC curve. First, the accuracy was as high as possible to ensure
the detected area had actually changed. Second, we preferred a high recall so that all of
the changed areas were marked as much as possible, with less emphasis on the false alarm
rate. On the ROC curve, the left and right intervals (X-axis) correspond to these two cases,
respectively. Therefore, it is possible to select K according to both requirements mentioned
above. On Dataset #3, it was apparent that the ROC curves of a small K were better, which
illustrated that the SNLSW detector with a small K can obtain a better DI.

The AUC curves on Datasets #1/2/3 demonstrated in Figure 12 showed a consistent
trend, i.e., the smaller the length K, the higher the value of the AUC. Combining the ROC
curves and AUC curves, we believe that the sorted NLSW (SNLSW) detector with small K
can often obtain a better change detection result.
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Figure 11. The ROC curves of the SNLSW detector with different K on Datasets #1/2/3. (a–c) ROC
curves on Dataset #1. (d–f) ROC curves on Dataset #2. (g–i) ROC curves on Dataset #3.

(a)

Figure 12. Cont.
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(b)

(c)

Figure 12. The AUC curves under different K on Datasets #1/2/3. (a) AUC curves on Dataset #1.
(b) AUC curves on Dataset #2. (c) AUC curves on Dataset #3.

3.3.4. Effect of Changed Region Size on NLSW Detector

To analyze the effect of the size of the changed regions on the NLSW detector, one
approach is to use the simulated data with known changed regions of different sizes.
This allows for a controlled comparison of performance across different changed region
sizes. First, based on the pre-time image (Figure 13a), we generated five post-time images
with different sizes of changed regions corresponding to 2.5%, 4.5%, 10.6%, 22.2%, and
30% of the total image (256× 256). Single-look simulated speckle noise with the Gamma
distribution was added to the simulated images, as depicted in Figure 13. Then, we ran
the algorithm on five dual-temporal pairs with the parameters settings of {w1 = 1, w2 = 5}
and {w1 = 2; w2 = 7}.

(a) (b) (c) (d) (e) (f)

Figure 13. Simulated bi-temporal SAR image pairs. (a) Before image. (b) After Image #1 (2.5%). (c) After
Image #2 (4.5%). (d) After Image #3 (11.6%). (e) After Image #4 (22.2%). (f) After Image #5 (30%).

Figure 14a,b show the ROC curves under two parameters, respectively. Figure 14c
presents the AUC curves under four groups of parameters. We observed that the optimal
size of the changed regions may fall in the range of 4–10% of the image. Our finding revealed
that the size of changed regions had some impact on the performance of the NLSW detector
with smaller or larger region sizes, resulting in a degraded performance, corresponding
to false alarms and misdetections, respectively. However, we can cope with the sensitivity
by adjusting the parameters; for example, a large neighborhood w1 = can be selected
to improve the effectiveness when the changed region is relatively large.
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Figure 14. The evaluation curves on five simulated bi-temporal images. (a) ROC curves under
the parameters {w1 = 1, w2 = 5}. (b) ROC curves under the parameters {w1 = 2, w2 = 7}. (c) AUC
curves under four sets of parameters.

3.3.5. Sensitivity to Distance Metric

A reliable non-local structure feature is essential to the effectiveness of the NLSW
detector. To illustrate the superiority of the NLSW detector obtained by our developed
distance metric in terms of reliability, we compared four other distance metrics: (1) Euclidean
distance; (2) Euclidean distance applied on the log-transformed SAR image, the “Log-Euclidean
Distance”; (3) Bayesian distance under the assumption of the Nakagami–Rayleigh distribution
proposed by Wan et al. [39], “Nakagami-Bayesian Distance”; (4) a modified version of (3),
derived from the log-transformed SAR image [36], “Log-Nakagami-Bayesian Distance”;
(5) ours (Equation (20)), “Nakagami-GLR Distance”. The comparison was performed
on Datasets #2/3, and the parameters were set as {w1 = 2, w2 = 7}.

The experimental results, as depicted by the ROC curves in Figure 15a,b, clearly
showed that the detector using our distance metric outperformed the Euclidean distance,
indicating that it was more effective at capturing structural information. The trend of change
can be properly reflected. Our finding underscores the critical importance of selecting
an appropriate similarity metric while building a non-local structure weight structure
detector. For SAR images, the Euclidean distance is not an optimal, option and the intrinsic
statistical properties should be fully considered.

(a) (b)

Figure 15. The ROC curves of NLSW detectors with the five different distance metrics. (a) ROC
curves on Dataset #2. (b) ROC curves on Dataset #3.

4. Conclusions

In this study, we mainly addressed the generation of the difference image (DI) and
proposed an unsupervised change detection strategy specifically for analyzing SAR images.
As a result of this method, it avoids the problem of amplitude instability caused by speckle
noise in SAR by finding the change based on the spatial structural consistency and the
discrepancy of pixels. By encoding similarity weights between patches in non-local search
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windows, we assigned each pixel a non-local structure weight called the NLSW and
sort NLSW (SNLSW) feature. As a measure of the patch similarity, we introduced and
modified a statistical distance that was not sensitive to speckle noise in order to capture
structure cues and calculate the NLSW features accurately. It was derived by combining
the multiplicative noise model, the Nakagami–Rayleigh distribution, with a non-log
transformed generalized likelihood ratio. Then, the binary change map was automatically
generated by detecting the threshold of the DI with the CFAR technique. We validated
the effectiveness of the NLSW detector and its extended version, the SNLSW, on simulated
and real SAR images. The experimental results indicated that the proposed method
can correctly describe difference trends between dual-temporal SAR images, providing
satisfactory results in both visual and quantitative analysis.

The advantages of our method are summarized as follows: (1) The proposed CD
framework is unsupervised and does not require a priori knowledge. (2) The SAR
amplitude attribute was discarded, and the image is represented by stable structure
information. (3) A statistical distance suitable for SAR was adopted, which effectively
suppresses the noise. In future work, we will focus on the enhancement of the DI and
the analysis of change difference intensity maps.
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