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Abstract: Detecting changes in buildings over time is an important issue in monitoring urban
areas, landscape changes, assessing natural disaster risks or updating geospatial databases. Three-
dimensional (3D) information derived from dense image matching or laser data can effectively extract
changes in buildings. This research proposes an automated method for detecting building changes in
urban areas using archival aerial images and LiDAR data. The archival images, dating from 1970 to
1993, were subjected to a dense matching procedure to obtain point clouds. The LiDAR data came
from 2006 and 2012. The proposed algorithm is based on height difference-generated nDSM. In
addition, morphological filters and criteria considering area size and shape parameters were included.
The study was divided into two sections: one concerned the detection of buildings from LiDAR
data, an issue that is now widely known and used; the other concerned an attempt at automatic
detection from archived aerial images. The automation of detection from archival data proved to
be complex, so issues related to the generation of a dense point cloud from this type of data were
discussed in detail. The study revealed problems of archival images related to the poor identification
of ground control points (GCP), insufficient overlap between images or poor radiometric quality of
the scanned material. The research showed that over the 50 years, the built-up area increased as
many as three times in the analysed area. The developed method of detecting buildings calculated at
a level of more than 90% in the case of the LiDAR data and 88% based on the archival data.

Keywords: building; change detection; SfM; LiDAR system; image filtering

1. Introduction and Literature Review

The detection of urban land use changes is very important for monitoring the status
of land use development. Such analyses should be performed at short time intervals
to achieve regularity of observations. Land use change analysis is a relatively simple
technique for comparing two or more maps from different periods. One of the techniques
for obtaining maps for comparison is land use classification. The determination of land
use can be derived from image data, i.e., orthophotos, satellite imagery, or pseudorasters,
obtained from point clouds. This approach involves deciding which pixels from the image
should be included in a particular land use class. In the present study, the concentration is
on building detection, since it is urban development that is growing at a relatively fast pace
and often becomes the dominant feature in the immediate landscape. As a consequence,
green areas are disappearing and the chaotic sprawl of buildings is occurring, causing
a number of potential hazards in the form of space degradation [1]. The uncontrolled
development of land in Poland was observed after 1989 [2]. In response to the emerging
development, documents began to be created to prevent inappropriate land development.
Urban planning has become the primary land use policy document to ensure order in
individual local government units [3]. The monitoring of built-up areas has become an
important research subject and was a motivation for this work. In the present study, a
detection of the changes in development that have occurred over several decades in the
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context of spatial planning was carried out. It was assumed that modern measurement
tools would make it possible to quickly and accurately show how cities grew and whether
they caused significant disruption to the landscape.

The theme of urban change detection is discussed in many articles. The authors
mainly concentrate on the analysis of image data—aerial and satellite images. Urban
change detection for the period of 1978–2017 at Kolkata is presented in [4]. The supervised
Maximum Likelihood Classification technique is used to classify the multi-temporal satellite
data in five classes, which are urban built-up, open land, vegetation, agricultural land
and water body. In [5], the proposed method realises the spatial–temporal modelling
and correlation of multitemporal remote sensing images through a coupled dictionary
learning module and ensures the transferability of reconstruction coefficients between
multisource image blocks. In [6], a novel supervised change detection method is proposed
based on a deep Siamese convolutional network for optical aerial images. The novelty
of the method is that the Siamese network is learned to extract features directly from
the image pairs. An interesting solution is to use the Conditional Adversarial Network
solution for change detection [7]. The original network architecture based on pix2pix is
proposed and evaluated for difference map creation. The principal goal of the research
in [8] is to introduce two novel deep convolutional models based on the UNet family for
multi-object segmentation, such as roads and buildings from aerial imagery. The presented
models are called multi-level context gating UNet (MCG-UNet) and the bi-directional
ConvLSTM UNet model (BCL-UNet). The study in [9] proposes a single patch-based
convolutional neural network (CNN) architecture for the extraction of roads and buildings
from high-resolution remote sensing data. Moreover, the authors in [10] explore the usage
of convolutional neural networks for urban change detection using two architectures:
Siamese and Early Fusion. The goal of the research in [11] is to create a strategy that
enables the extraction of indicators from large-scale orthoimages of different resolution
with practically acceptable accuracy after a short training process. The suggested model
training process is based on the transfer learning technique and combines using a model
with weights pretrained in ImageNet with learning on coarse and fine-tuning datasets.
In [12], a convolutional neural network (CNN)-based change detection method is proposed
with a newly designed loss function to achieve transfer learning among different datasets.
In [13], a generative adversarial networks (GAN)-based method is proposed for the data
augmentation of the collected crack digital images and a modified deep learning network
(i.e., VGG) for crack classification.

The above methods use only 2D data. An interesting approach to change detection is
to integrate 3D data extracted from dense matching or LiDAR data. Reference [14] proposes
the combination of image-based dense DSM reconstruction from historical aerial imagery
with object-based image analysis for the detection of individual buildings and the subse-
quent analysis of settlement change. For the case of densely matched DSMs, the evaluation
yields building detection rates of 92% for greyscale and 94% for colour imagery. In [15],
height difference and greyscale similarity are calculated as change indicators and the graph
cuts method is employed to determine changes considering the contexture information. In
the study in [16], LiDAR data were used to identify agricultural land boundaries. Paper [17]
proposes a change detection method based on stereo imagery and digital surface models
generated with stereo matching methodology and provides a solution by the joint use of
height changes and Kullback–Leibler divergence similarity measures between the original
images. In addition, [18] proposes a feed-forward convolutional neural network (CNN)
to detect building changes using ALS and photogrammetric data. The point cloud from
dense matching is also used in [19]. The graph cuts algorithm is adopted to classify the
points into foreground and background, followed by the region-growing algorithm to form
candidate-changed building objects. In [20], a four-camera vision system was built to obtain
the visual information of targets including static objects and a dynamic concrete-filled steel
tubular (CFST) specimen. In [21], a novel method is proposed to detect changes directly
on LOD2 (level of detail) building models with VHR spaceborne stereo images from a
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different date, with a particular focus on addressing the special characteristics of the 3D
models. Publication [22] proposes a multi-path self-attentive hybrid coding network model
(MAHNet) that fuses high-resolution remote sensing images and digital surface models
(DSMs) for the 3D change detection of urban buildings. In [23], the authors present a
semantic-aided change detection method aimed at monitoring construction progress using
UAV-based photogrammetric point clouds. A new approach for change detection in 3D
point clouds is proposed in [24]. It combines classification and change detection in one step
using machine learning. Paper [25] presents a graphical user interface (GUI) developed to
support the creation of a building database from building footprints automatically extracted
from LiDAR point cloud data. The research in [26] proposes the use of LiDAR-guided
dense matching to explicitly address these problems in detecting accurate building changes.
Paper [27] shows that point cloud completion improves the accuracy of change detection;
the authors perform point cloud completion using a hierarchical deep variational autoen-
coder (a type of artificial neural network) modified to include skip connections between
the convolution and deconvolution layers. A very interesting and in-depth summary of the
development and analysis of data and the state-of-art based on deep learning and 3D point
clouds is presented in article [28].

A review of the literature shows significant interest in the problem of change detection
in urbanised areas. This is an important issue in times of urban sprawl.

However, most of the presented methods only focus on current data: aerial photos,
satellite images and LiDAR elevation data, ignoring historical data completely. A review
of the literature revealed only a few publications that analysed archival data. This is a
major oversight, as urban development should be considered over a wider time period in
order to draw correct conclusions. The present study analyses a period of over 50 years of
change in the urbanised area in the centre of Krakow. The dynamics of these changes and
the exponential growth of the number of buildings in a relatively small area can be seen.
The developed method is simple and effective, clearly documenting the major urbanisation
of Krakow.

2. Study Area and Materials

The choice of the test area was not random. The area was completely flooded during
the flood in Krakow in 2010. The research answers the question of how much uncontrolled
urban sprawl could have caused this disaster. This site is in the centre of Krakow, on
the west side of the Wisla River, and covers 9.17 ha. The analysed area includes the
Podwawelskie estate, which is located in the southern part, and the area named Monte
Cassino—Konopnicka, lying in the northern part (Figure 1). The Podwawelskie estate was
established on the territory of the previous villages of Ludwinów and Zakrzówek, which
were subsequently incorporated into Krakow in 1910 and 1909 as the IX and X cadastral
districts [29]. Currently, the entire study area is part of District VIII Debniki, belonging to
the Podgórze cadastral unit. The examined fragment is bounded by Kapelanka Street on
the western side, Monte Cassino Street on the northern side and Maria Konopnicka Street
on the eastern side. Over the past few decades, the area has been significantly urbanised.
At present, there are mainly residential blocks in the shape of cuboids. These buildings
have flat roofs, and their heights range from 10 m to 38 m. The area surrounding the blocks
is flat and covered with high vegetation.

Archival aerial photographs taken between 1970 and 1993 (Figure 2) and data acquired
by airborne laser scanning in 2006 and 2012 (Figure 3) were used for the analyses. All
archival aerial photographs are greyscale analogue images, characterised by poor radiomet-
ric quality and variable scale—from 1:16,000 to 1:30,000 (Table 1). Additionally, the current
BDOT10k (Topographic Objects Database) database was used for verification purposes.
This is a vector database containing the spatial location of topographic objects together
with their basic descriptive characteristics [30].
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Figure 1. Study area: (a) OpenStreetMap, (b) orthophotomap.

Figure 2. Fragments of aerial photographs representing the study area by specific years.

The first set of LiDAR data is from a survey carried out in 2006, where the Fli-Map
system was used. The point density is variable, ranging from 4 to 14 points per m2. This
means that the topography and all details of the covering elements are reproduced with
high precision. A second set of LiDAR data was acquired in 2012 as part of the Polish ISOK
project (IT System of the Country’s Protection Against Extreme Hazards) [31], whose point
density was 12 points per m2. Both datasets are recorded in the 92 coordinate system and the
area analysed includes the following sheets: M-34-64-D-d-1-4-3-2, M-34-64-D-d-1-4-4-2, M-
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34-64-D-d-1-4-4-1, M-34-64-D-d-3-2-2, M-34-64-D-d-1-4-4, M-34-64-D-d- M-34-64-D-d-3-2-1-2,
M-34-64-D-d-3-2-2-1, M-34-64-D-d-1-4-3-4 and M-34-64-D-d-1-4-4-3 (Figure 3, Table 1).

Figure 3. LiDAR point clouds in orthogonal projection: (a) displayed by point classification from
2006, (b) displayed by intensity attribute from 2012.

Table 1. Specific characteristics of the study data (AP—aerial photograph, LD—LiDAR data,
BDOT10k—topographic object data).

Acquisition Date Type of Data/Scale Time between
Acquisition Dates (Years)

Ground Pixel
Resolution

(m)
Points per m2

1970 AP black/white (1:18,000) - 0.25 -

1975 AP black/white
(1:17,000) 5 0.23 -

1982 AP black/white (1:16,000) 7 0.21 -
1993 AP black/white (1:30,000) 11 0.40 -
2006 LD X, Y, Z 13 - 4–7
2012 LD X, Y, Z, intensity, echo, RGB 6 - 6–12
2020 BDOT10k 8 - -

3. Methodology

Based on a very large set of source data covering 50 years of development in the centre
of Krakow, it was decided that a simple and fast change detection method would be chosen.
The proposed algorithm was based on the analysis of a normalised digital surface model
(nDSMs). The nDSM is a representation of the terrain surface along with objects extending
above that surface, such as buildings and trees. In this case, the nDSM was obtained from
point clouds extracted from the dense matching of archival images and directly from laser
data. However, before the final nDSM could be generated, proper processing of the input
data was required. To obtain the nDSM from the images, aerotriangulation is required and
then a dense matching is carried out. On the other hand, the point cloud from LiDAR must
be classified correctly. Having correctly generated point clouds, it is possible to generate the
nDSM from them. The generation of nDSM is carried out with the use of the morphological
operators, surface and shape analysis criteria. All measurements and calculations were
conducted in Agisoft Metashape, QGIS, SAGA, GRASS and Orfeo ToolBox software. The
proposed method of data analysis and processing is illustrated schematically in Figure 4.
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Figure 4. Algorithmic workflow. The schematic representation of the algorithm is depicted through
the flowchart, showing the three stages through which the input data are analysed to return the
information about buildings.

4. Generation of nDSM
4.1. Generation of nDSM Using Archival Data

In the first step, to obtain point clouds from archival images, adjustment and dense
matching were performed.

The adjustment was carried out using five GCPs measured from archival images
(Figure 5a). This task was quite complicated, since in the 1970s, there were a lot of agri-
cultural areas in the study region, without characteristic ground details. Five GCPs were
selected to have redundant observations and to determine the georeferencing accuracy.
Attempts were made to place points in the corners and the centre of the area. Unfortunately,
due to the impossibility of identifying the same points in all years, it was not completely
achievable. Attempts were made to select GCPs at road intersections, but due to the poor
radiometric quality of the archival images, this measurement was not always unambiguous
(Figure 5b).

Figure 5. Location of GCPs in the study area—(a), identification problem of GCP—(b).
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Due to problems with the precise identification of GCP (especially for 1993), a mean
RMSE of 10 pixels was set as acceptable. The detailed adjustment results are included in
Table 2.

Table 2. SFM block bundle adjustment results.

Year Number of
GCPs Tie Points Reprojection

Error (pix)
Mean RMSE

(pix)

1970 5 495 0.96 2.69
1975 5 1688 0.20 1.02
1982 5 2247 2.47 10.03
1993 5 1513 1.67 8.71

The dense point clouds differed significantly in quality. The best results were obtained
for 1975, where the correct radiometry and large scale of the images made it possible to
generate a cloud of high quality and density. Significant problems were encountered for
the data from 1993. Unfortunately, the images from this period had very poor radiometric
quality and high noise and carrying out the procedure of dense matching did not bring
satisfactory results. An example of two buildings, surrounded by vegetation, in a 1993
image is shown in Figure 6. As can be seen, the high graininess of the image and the similar
brightness of the pixels actually prevent the correct identification of the objects.

Figure 6. Poor radiometric quality of the 1993 image.

A significant challenge in generating dense clouds for all of the dates considered
were the wooded areas, which had very similar brightness in the halftone images. The
dense clouds acquired for these fragments were characterised by ragged information and
erroneous height values (Figure 7).

Figure 7. Problem of forested areas: (a) archive image, (b) dense point cloud.
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The problem of the poor radiometric quality of historical images is an important
research issue. However, the purpose of this study was to detect changes in buildings
over 50 years. Future research will be devoted to improving the radiometry of scanned
analogue images.

The quality of the point clouds was also affected by the overlap between successive
images. Unfortunately, a complete set of historical data was not always available, and a
small percentage of overlap affected the density of the acquired cloud.

Based on the dense point cloud, a 0.5 m digital surface model (DSM) nearest neighbour
method was interpolated. In order to better identify the development in the analysed area,
it was decided to determine the normalised digital surface model (nDSM). To realise this,
an actual digital surface model (DTM) derived from the ISOK project with a field resolution
of 0.5 m was used [31].

4.2. Generation of nDSM Using Lidar Data

To extract information about buildings from LiDAR data, it is necessary to classify the
point cloud. Classification is the assignment of appropriate attributes to points, considering
their relative heights. Height classification was carried out on data from 2006. First,
point filtering was performed, that is, searching for points representing terrain using the
active model triangulation method [32]. Next, points representing vegetation were grouped,
relative to height, into low, medium and high vegetation. Height was defined as the distance
of the point from the ground. The final step was to find points reflected from buildings.
Data from 2012 were obtained from the National Geoportal [31], which had already been
clustered. Having the data classified, height models—DTM and DSM—were built using the
interpolation of scattered points to a regular 0.5 m grid, where the interpolation neighbour
method was used. Points belonging to the “Ground” layer were used to build the first
model (DTM), while the second model (DSM) was unusual because was only generated
from points belonging to the “Buildings” layer. The normalised digital surface model is a
differential model that represents the relative heights of objects projecting above the ground
surface, so it was calculated as the difference between the DSM and DTM models. As a
result, two rasters with relative values of the analysed area were obtained.

5. Building Detection
5.1. Otsu Method Thresholding

The Otsu algorithm is used for thresholding method segmentation [33]. The purpose
of it is to select the optimal threshold for image binarisation. A criterion function is used for
optimisation, which is the intra-class variance (it is minimised), or the inter-class variance
(it is maximised). Assuming that the image pixels are divided into two classes C0 and
C1 by the boundary value n, then C0 will contain pixels with brightness [1, ..., n], and C1
will contain pixels with brightness [n + 1, ..., L], where L is the maximum value of a pixel
and pi is equal to the ratio of the number of pixels with a given value i to the number of
all pixels in the image. The class probability (normalised histogram value) for C0 and C1,
respectively, will be:

ω0 =
n

∑
i=1

pi (1)

ω1 =
L

∑
i=n+1

pi (2)

The inter-class variance is taken as the criterion function, aiming to maximise it. It is
expressed by the formula:

σ2
B = ω0(µ0 − µT)

2 + ω1(µ1 − µT)
2 (3)

where:
µ0—C0 mean;
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µ1—C1 mean;
µT—the total average level.
The value of n for which the value of the inter-class variance is the largest is the

searched optimal threshold for the image.

5.2. Opening Operator and Geometry Analysis

The next step in the algorithm is to perform a morphological opening operation on
the image obtained after thresholding [34]. The resulting image A is given an erosion and
then dilation using structural element B:

A ◦ B = (A � B)
⊕

B (4)

Opening removes small objects and fine details, such as peninsulas and protrusions,
and disconnects some objects with constrictions. However, it does not affect the basic shape
of the object. In the case of point clouds from archival images, this was a very helpful
step due to the high noise of the information and the creation of many false artifacts. The
operator was enhanced with two additional criteria: surface analysis and the shape of
the detected objects. The threshold for the minimum building area was set at 25 m2. The
second criterion concerned the geometry of the building, and the rectangularity parameter
was determined based on Formula (5):

R =
A

a + b
(5)

where:
A—the area of the object;
a, b—sides of the smallest rectangle in which the object can be contained.
The study assumed a threshold for R > 0.6.
Performing additional operations was necessary, especially for the archive images,

which were characterised by a lot of noise in the clouds. An example of the above-
mentioned operators on building detection in 1975 is shown in Figure 8.

Figure 8. Improving building detection with additional operators: (a) Otsu thresholding alone,
(b) additional operators.

As a result of the developed algorithm, binary images were obtained, which included
the two classes “Building” and “Non-building”. For each time period, a separate binary
image with detected buildings was created (Figure 9).
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Figure 9. Detection results obtained for all of the considered years.

Figure 9 shows very large errors for the year 1993. This was caused by the very
poor radiometric resolution of the images and the small scale—1:30,000, as discussed in
Section 4.1. It was therefore decided to omit this year from further study.

6. Results and Discussion

All years were compared with buildings extracted from the topographic objects
database from the OT_BUBD_A layer of 2020. The file containing the vector descrip-
tion of the buildings was rasterised, producing a raster with two layers: “Building” and
“Non-building”. The result is presented in Figure 10.

Figure 10. Buildings extracted from the database of topographic objects.

The first analysis of the collected data is the quantitative analysis. The pixel area of
the “Building” class was calculated, i.e., that which represents the area in which buildings
can be found. Then the percentage of buildings in relation to the total analysed area was
calculated (Table 3). The total area of the entire analysed region is 503,369 m2. The area of
the buildings, as well as of the whole area, was rounded to 1 m2.
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Table 3. Area of “Building” and “Non-building” classes and percentage of built-up area in relation to
the whole study area.

1970 1975 1982 2006 2012 2020

Building Area (m2) 28,317 38,148 53,655 73,210 84,295 85,332
Non-Building Area (m2) 475,052 465,221 449,714 430,159 419,074 418,037

Percentage of built-up area (%) 5.6 7.6 10.6 14.5 16.7 17.0

Analysing the above table, it can be seen that the development area has increased
more than three times over several decades. From the above table it can be seen that the
area of development every few years increases by 3–4%, on average.

Figure 11 presents the results that show the detected buildings for each year. All
data were compared with a reference, i.e., 2020 buildings from BDOT. In the images, red
indicates is a positive site, i.e., where the building is present, and grey sites are negative
sites, i.e., there was no building at a given time, but now there is.

Figure 11. Detected buildings for each year.

In order to precisely verify the detection results, confusion matrices were calculated.
When building the confusion matrix, data from 2020 were used as a reference. Five
confusion matrices were calculated, one for each period. The binary confusion matrix is
a 2 × 2 matrix, which contains information, i.e., the number of pixels correctly classified
as a “Building” (TP—true positives), correctly not classified as a “Building” (TN—true
negatives), falsely classified as a “Building” (FP—false positives) and falsely not classified
as a “Building” (FN—false negatives). One binary confusion matrix is assigned to one
period. An example matrix is given for the time period 1970 (Table 4). In our case, we
have five binary confusion matrices (one for each time period), where each matrix has
been flattened and written in one row (Table 5). The graphical presentation of the results is
shown in Figure 12.

In addition, parameters defining the quality of detection were calculated for each
confusion matrix, which are listed in the right part of Table 5. The indicators that were
calculated are presented in Table 6, below.
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Table 4. Binary confusion matrix for 1970. Pixel-by-pixel comparison results.

Confusion Matrix Reference Map

Our Results Building Non-Building Total

Building 1,639,728 (TP) 32,589 (FP) 1,672,317
Non-Building 258,028 (FN) 80,900 (TN) 338,928

Total 1,897,756 113,489 2,011,245

Table 5. Binary confusion matrix for all analysed years with parameters defining the quality of
building detection.

Years TP TN FP FN TPR PPV ACC ERR F1

1970 1,639,728 80,900 32,589 258,028 0.8640 0.9805 0.8555 0.1445 0.9186
1975 1,598,977 79,155 73,240 259,873 0.8602 0.9562 0.8344 0.1656 0.9057
1982 1,585,320 127,480 86,949 211,496 0.8823 0.9480 0.8516 0.1484 0.9140
2006 1,558,810 259,067 113,621 79,747 0.9513 0.9321 0.9039 0.0961 0.9416
2012 1,609,333 314,500 63,097 24,315 0.9851 0.9623 0.9565 0.0435 0.9736

Figure 12. Bar graphs presenting the changes in values and parameters over time calculated from the
confusion matrix.

Table 6. Selected accuracy indicators calculated for each time period [35,36].

Description Acronym Formula

Sensitivity (True positive rate) TPR TP
TP+FN

Precision (Positive predictive value) PPV TP
TP+FP

Accuracy ACC TP+TN
TP+TN+FP+FN

Error ERR FP+FN
TP+TN+FP+FN

F1 score F1 2×TPR×PPV
TPR+PPV

Upon analysing the above results, the following conclusions can be reached. The
calculated values of the true positive rate parameter (sensitivity) are in the range from 86%
to 98%. This parameter determines what percentage the true positive class, in our case the
detection of the “Buildings” layer, was covered by the positive prediction. It can be seen
that in the case of building detection, the LiDAR-acquired data are at a high level. Detection
using archival images was found to be weaker, but here, the error is certainly influenced by
the complex preparation of the input data. However, despite these disadvantages, it is an
excellent source of data from which it is possible to verify the coverage of an area quickly
and automatically with buildings as it was several decades ago.

The overall accuracy (ACC) of the presented building detection algorithm using
data from different sources is, on average, 88%, which shows the percentage of correctly
classified pixels. However, again, the accuracy of the detected buildings using LiDAR data
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is much higher. The detection of buildings from archival images is at a level well above
80%, which is a satisfactory result.

For each dataset, the positive predictive value (PPV) is above 93%. This value de-
termines what percentage of the detected buildings for each dataset overlap with the
buildings in the reference image. Thus, a high PPV value indicates high precision on
building detection for each time set.

The error rate (ERR) is small for the LiDAR data at less than 10%. On the other hand,
for archived data, it is not much higher, but this was to be expected since the input dataset
was much less accurate.

In addition, confirmation of the correct operation of the algorithm is the F1 score
parameter, which is above 0.9 for each case.

7. Conclusions

Urban development is growing at a very fast pace. As a consequence, green areas
and permeable areas are disappearing, and there is a chaotic expansion of development,
causing a number of potential dangers in the form of space degradation. The monitoring of
these areas has become an important issue and motivated the present research work.

This paper proposes a method for detecting changes in development over 50 years.
Archival aerial imagery and LiDAR data were used for this purpose—the dataset covered
six time periods: 1970, 1975, 1982, 1993, 2006 and 2012.

The choice of the test area was not random. The area was completely flooded during
the 2010 Krakow floods. The study revealed three times the number of buildings in the
analysed area, which may be one of the reasons for the flooding of the area. Such data are
an excellent source of information for local governments involved in urban planning.

A review of the literature revealed that most publications focus on change detection
using 2D aerial and satellite images. The use of 3D information in this process significantly
enhances the ability to identify and correctly interpret changes in the analysed area.

A key step was the extraction of 3D information from archival images. Both alignment
and dense matching presented a major challenge. When aligning historical photographs,
it is important to remember to correctly identify the GCPs, which must be elements that
have not changed over 50 years. A considerable problem is also often the poor radiometric
quality of such images or missing data, which results in the density and quality of the
generated point cloud. The approach presented here makes it possible to reconstruct the
heights of buildings in particular years, thereby improving the interpretive possibilities of
analogue images. The resulting point clouds reproduce the three-dimensional reality of the
city more than half a century ago.

Detecting buildings using LiDAR data is a well-known, frequently used task, and the
results obtained are at a high level. This was also confirmed by the present study, since
for the time periods for which there are point clouds from airborne laser scanning, the
detection of buildings was above 90%.

The accuracy metric calculated in this study is reliable and works well for the case of
classifying one class—in our study it was buildings. For the analysed area, the calculated
average ACC value was 88%, which is a satisfactory result since the input data were of
different quality. It is also worth noting that automatic detection was taken in an area with
differentiated roofs, including flat, two- or four-pitched and round roofs, and areas that
were covered with tall trees at different times. Detecting such diverse objects in a complex
terrain is much more difficult.

The proposed algorithm is not perfect and requires improvements, e.g., improving the
radiometry of archival images for better detection of buildings.

The present study shows that, given a diverse set of input data, it is possible to make an
automatic analysis of urban land use over several decades. This method is ideal for urban
planning and assessment of infrastructure development and can also be an informational
element for local governments in urban planning.
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ania się miast. Infrastrukt. I Ekol. Teren. Wiej. 2010, 13, 111–121.
4. Kundu, K.; Halder, P.; Mandal, J.K. Urban Change Detection Analysis during 1978–2017 at Kolkata, India, using Multi-temporal

Satellite Data. J. Indian Soc. Remote Sens. 2020, 48, 1535–1554. [CrossRef]
5. Yang, W.; Song, H.; Du, L.; Dai, S.; Xu, Y. A Change Detection Method for Remote Sensing Images Based on Coupled Dictionary

and Deep Learning. Comput. Intell. Neurosci. 2022, 2022, 3404858. [CrossRef] [PubMed]
6. Zhan, Y.; Fu, K.; Yan, M.; Sun, X.; Wang, H.; Qiu, X. Change Detection Based on Deep Siamese Convolutional Network for Optical

Aerial Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1845–1849. [CrossRef]
7. Lebedev, M.A.; Vizilter, Y.V.; Vygolov, O.V.; Knyaz, V.A.; Rubis, A.Y. Change detection in remote sensing images using conditional

adversarial networks. In Proceedings of the ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, Riva del Garda,
Italy, 4–7 June 2018; Volume 42, pp. 565–571.

8. Abdollahi, A.; Pradhan, B.; Shukla, N.; Chakraborty, S.; Alamri, A. Multi-Object Segmentation in Complex Urban Scenes from
High-Resolution Remote Sensing Data. Remote Sens. 2021, 13, 3710. [CrossRef]

9. Alshehhi, R.; Marpu, P.R.; Woon, W.L.; Mura, M.D. Simultaneous extraction of roads and buildings in remote sensing imagery
with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2017, 130, 139–149. [CrossRef]

10. Daudt, R.C.; Le Saux, B.; Boulch, A.; Gousseau, Y. Urban change detection for multispectral earth observation using convolutional
neural networks. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium,
Valencia, Spain, 22–27 July 2018; pp. 2115–2118.
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