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Abstract: The growth of citizen science presents a valuable potential source of calibration and
validation data for environmental remote sensing at greater spatial and temporal scales, and with
greater cost efficiency than is achievable by professional in situ reference-data collection alone.
However, the frequent mismatch between in situ data-quality requirements for remote-sensing-
product development and current data quality assurance in citizen science presents a significant
challenge if widespread use of these complementary data sources is to be achieved. To evaluate the
scope of this challenge, we conducted a targeted literature review into the nature of data-quality
issues faced by citizen-science projects for routine incorporation into terrestrial environmental-
monitoring systems. From the literature, we identify the challenges and trade-offs to inform best-
practice implementation of data quality assurance in citizen-science projects. To assist practitioners in
implementing our findings, we grouped these themes by stage of citizen-science project: (1) program
planning and design; (2) participant engagement; (3) data collection; and (4) data processing. As a
final step, we used our findings as the basis to formulate guiding questions that can be used to inform
decision making when choosing optimal data-quality-improvement and assurance strategies for
use of citizen science in remote-sensing calibration and/or validation. Our aim is to enhance future
development of citizen-science projects for use with remote sensing in environmental monitoring.

Keywords: citizen science; remote sensing; data quality; monitoring; calibration; validation

1. Introduction

Citizen science is increasingly being applied to scientific methodology, and involves
the often-voluntary contributions of generally non-expert ‘citizens’ towards various pro-
cesses, including data collection, analysis and hypothesis generation [1]. Citizen science
can be broadly defined as public participation in scientific research and knowledge produc-
tion [2]. Citizen-science projects are already delivering benefits to both science and society
in a wide variety of ways [3,4]. The development of citizen-science projects focused on
environmental monitoring has already seen citizen scientists collecting a diverse array of
data on ecosystems at unprecedented spatial and temporal scales [4,5]. As such, the scale
and cost efficiency of environmental data collection by citizen science, offers a promising
potential source of complementary data to the large-scale information products generated
by remote-sensing technologies. However, the use of citizen-science data with environmen-
tal monitoring still presents several challenges, including data interoperability, data quality,
participant engagement and issues of privacy [6–9].

A challenge for remote sensing is securing adequate and reliable in situ observation
data with which to calibrate and validate remote-sensing products [10,11]. Remote-sensing
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activities typically use ground-based data in one of two ways: calibration and valida-
tion. Calibration refers to data used to help convert raw remote-sensing data to usable
measures of reflectance, whereas validation refers to the use of data to determine the accu-
racy/precision of products resulting from analysis. These activities give rise to the question
of whether citizen science can play a role in generating field data (plot or point-based)
from vegetation and ecosystem conditions that can be used to calibrate and/or validate
remotely sensed data products [12]. Remotely sensed data provides a very broad spatial
and temporal coverage, but the resolution and ability to extract useful indicators such as
habitat, vegetation condition and biodiversity, requires ongoing access to data for image
training, calibration and validation [13]. Funding limitations can result in professionals
needing to compromise on re-visit frequency [14]. As a consequence, this can result in
long return-to-site visit times, leading to the need to account for these survey gaps within
modelling approaches in order to be able to quantify rapid change and inform management
decisions [15].

We aim to explore these challenges and subsequently identify the critical consid-
erations that would enable citizen-science data to be used to perform a fit-for-purpose
calibration/validation exercise of remotely sensed products to assist with monitoring
ecosystem conditions in terrestrial environments. Here, we synthesise the challenges and
recommendations that have been reported in the literature into overarching themes. We
then use these themes to generate a series of guiding questions to inform both optimisation
and future development of citizen-science projects for remote sensing. By doing so, we
show how to optimise data quality trade-offs in citizen science to improve its usability
and utility for calibration. Our goal is to identify commonalities among these challenges
and recommendations such that they may be applied by practitioners to help meet the
requirements of remote sensing and inform future citizen-science program design.

1.1. Current State of Citizen-Science Use in Remote Sensing

The research interest in combining citizen science and earth observation has grown
rapidly, with a marked increase year on year from 2005 to 2016 in publications mentioning
‘citizen science’ and ‘earth observation’ in Scopus [6]. The capacity of citizen science to
provide validation and reference data at broader spatial and temporal scales than traditional
field surveys, positions it well to complement future calibration and validation efforts [6].
Not only is the potential accessible extent of on-ground data collection expanded, it can be
more cost effective than traditional methods alone [6]. However, the information collected
by citizen scientists should be seen as complementary to professionals, as the two data
sources cannot easily be compared, due to the often extensive training required to match
professional levels. For example, a major challenge raised regarding the suitability of citizen
science is the lack of standardisation and heterogeneity of participation, which can hinder
data quality and/or the quantification of error in citizen-science data [6–8]. Furthermore,
the nature of participation of citizen scientists in projects is typically non-uniform, and
participants may be involved in any stage, such as data collection, interpretation and
authorship [16].

In the context of earth observation, there are two primary means whereby citizen
science is already contributing to the calibration and validation of remote-sensing prod-
ucts [17]. First, through the direct validation of land-cover imagery via crowdsourcing
classification and verification of images. For example, the Geo-Wiki project [18] used
local knowledge from a global network of volunteers to evaluate the accuracy of satellite-
derived land-cover maps, and the VIEW-IT project [19] used a team of students and expert
moderators to collect reference samples for producing and verifying the accuracy of satellite-
derived land-use/land-cover maps. Secondly, citizen scientists may be recruited to source
data in situ to provide either supplementary datasets for improving the calibration of
remote-sensing products, or ground-based observations that may be used to ground truth
remote-sensing products [12].
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1.2. Suitability of Citizen Science for Remote-Sensing Calibration/Validation

There is diversity in the potential role and design of citizen-science programs to assist
remote sensing [20]. Citizen scientists could be engaged to assist in the calibration and
validation of remote-sensing products at a number of stages in the data-processing chain,
namely: validation and description of remote-sensing data, collection of observations,
description, and correlation of data with remote-sensing data [6]. The stage at which
citizens are engaged and the nature of data capture by citizen scientists underpin type-
specific limitations, research challenges, best practice, and the novel benefits offered by
remotely sensed environmental monitoring. Chandler et al. [4] highlight that highly
correlated remote-sensing products require specific considerations for optimising data-
quality trade-offs in citizen science, and are limited to secondary productivity, nutrient
retention, ecosystem extent/fragmentation, and ecosystem functional-type composition.
Other variables such as species distribution, population abundance and habitat structure,
(while not directly translatable to the validation of remotely sensed products) can be used
as supplementary data [4]. However, it is also important to note that the requirements for
calibration and validation can be substantially different. For example, citizen-science data
might meet the requirements of calibration data, but be unsuitable for validation.

1.3. Data Quality in Citizen Science: Challenges and Trade-Offs

While citizen science is well positioned to provide reference and validation data in
relatively large quantities and at large spatiotemporal scales, these dimensions reflect
only one aspect of data quality [21]. Data quality requires a trade-off between relevant
attributes such as data accuracy, data completeness and data timeliness [21,22]. While the
capabilities of citizen scientists can be harnessed to generate large volumes of data, much of
the reluctance associated with the use of citizen-science data surrounds uncertainty about
its accuracy [9,23,24]. For example, while the task of describing remote-sensing data by
citizen scientists is possible, accuracy would be difficult to quantify, due to its interpretive
nature. This is highly relevant to the prospective applications of citizen-science data in
validation practices, wherein standards applied by professional land-survey protocols
require sampling-practice consistency to provide ground-truthing data [25]. Therefore,
if data is to be usable it must first be of trustable and usable quality, and supported by
methods developed to verify observer reliability [26].

2. Methods

To identify the opportunities and challenges of using citizen-science data for calibrat-
ing and validating data for remote sensing of the environment, we conducted a targeted
literature review, as per Ceccaroni et al. [27], into the data-quality issues faced by citizen
science to better understand how to increase uptake in earth observation [28]. We did this
using combinations of key search terms and Boolean operators. The following databases
were included in our search: Scopus and Web of Science. The sources comprise peer
reviewed literature from different disciplines (e.g., environmental sciences and remote
sensing). We employed both, to obtain more reliable and cross-checked data. The initial
search terms were ‘citizen science’ and ‘data quality’ and ‘remote sensing’ and were re-
stricted to between January 2011 and December 2022, using the ‘published from’ field.
This search yielded 61 results for ‘citizen science’ and ‘data quality’ and 136 results for
‘remote sensing’. We then screened the papers for duplicates within each database, and
removed them. We also excluded papers if their subject material was non-generalisable
(not easily synthesised) or focused on non-terrestrial environmental data collection such as
water and air quality [29]. Additional search terms using combinations of ‘crowd sourcing’,
‘data accuracy’, ‘remote sensing’, ‘ecology’, ‘vegetation’, ‘data validation’ ‘volunteered
geographic information (VGI)’ and ‘environment’ were subsequently used, based on key
words taken from articles from the initial search, and with the recognition that some of
these terms are used interchangeably in the literature. A ‘snowballing’ method from cited
literature was also used to identify additional papers. It is important to note that our aim
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was not to conduct a systematic literature review, as in, e.g., Vasiliades, Hadjichambis,
Paraskeva-Hadjichambi, Adamou and Georgiou [28], but rather a targeted review, so as to
thematically present an overview of the current state of data-quality issues and identify
appropriate considerations for data-quality improvement and assurance for citizen-science
data use in remote sensing in terrestrial environments.

To present our findings, we first grouped results by the relevant stage of citizen-science
project, e.g., planning and design through to data processing and evaluation. Stages used
in this review were adopted from those presented in the literature [2,6]. This decision
was made to assist practitioners in more easily implementing our findings. Subcategories
within each stage of citizen-science projects were found based, on our approach of listing
key generalisable themes using a semi-structured checklist including a matrix of data-
quality requirements. All relevant information from the literature was identified, grouped
and named [2,6]. A summary of our findings from the literature, highlighting tips for
programmatic enhancements and considerations is presented in tables below each section.

Our last step was to present key guiding questions associated with each stage of a
citizen-science project as well as the relevant subcategories. Questions were formulated
from the literature and were decided on based on discussion and agreement among the
authors (two of whom have extensive experience with the design and implementation of
citizen-science projects and four of whom are scientific experts in environmental monitoring
and remote sensing). Our basis for this discussion was a list of generalisable themes
arising from the section above, again generated using a semi-structured checklist to guide
commonalities.

3. Results

There was consensus across the literature that citizen-science programs aimed at
producing usable data for remote-sensing purposes need to prioritise the usability of data
quality in a project and in an application-specific manner. Trade-offs between dimensions
of data quality should prompt resource investment into the elements of program design
that will be of most value to the intended end use. The role of technology is a key enabler
in improving data quality through data standardisation, such as supporting geotagged
images and the use and support of artificial intelligence. Below, we have detailed the data-
quality-improvement actions that may take place across multiple stages of citizen-science
projects. The summary is based on our review of the literature, noting that we did not run
any analyses to test the assertions from the literature presented below. Rather, the findings
synthesise and present the current state of the debate in this field across the life cycle of a
citizen-science project.

3.1. Planning and Design

From the outset, projects must be developed with clear research and engagement goals
to inform program design [30]. For use in remote-sensing calibration and/or validation,
it is important that programs or post hoc analysis techniques are developed with prede-
termined levels of acceptable error (i.e., fit for purpose). Depending on the application
of citizen-science data, and the type of remotely sensed data, the goals of the use of data
may vary considerably. Applicable data types for remote-sensing calibration/validation
can be broadly classified as the direct validation/visual interpretation of remote-sensing
images, the in situ collection of reference data sets, and the validation/description of in
situ data sets [31]. Projects may facilitate remote-sensing calibration and/or validation by
applying one or more of these approaches. Credible use of citizen-science data for these
purposes will rely not only on meeting minimum accuracy and spatial and/or temporal
coverage requirements, but also on effective declaration of error levels and sources [31].
Key considerations affecting data quality in the program planning-and-design stage are
outlined below.



Remote Sens. 2023, 15, 1407 5 of 16

(i) End use of data

Identifying how citizen-science data will contribute to remote-sensing calibration and
validation is critical to determining the relative value of prioritising data quality across the
program [32,33]. For example, investment might be placed in data-quality refinement or
characterisation based on the cost of error in the citizen-science data for its intended use.
These uses might be contributing to the direct validation of remotely sensed images or to
the direct in situ calibration/validation of data, or be indirectly associated with in situ data
for the improvement of remote-sensing modelling. Where citizen-science data is integrated
with other sources of calibration/validation data, the effect of error in citizen-science data
may be moderated through the clear identification and characterisation of error sources
and covariates [34,35]. Similarly, the type of data to be collected will influence error rates
and suitability towards different applications in remote sensing.

(ii) Trust, transparency and privacy

The conflict between privacy, transparency and trust is often amplified in citizen
science [36]. Clear planning and privacy/transparency standards should be set prior
to program implementation and be clearly communicated to participants (for a review
of human ethical considerations in the context of citizen science, see Rasmussen and
Cooper [37]). Furthermore, the factors influencing participant and user trust should be
evaluated in a project-specific and context-specific manner, prior to the development of
privacy and data-sharing policies. Iterative evaluations and remediations should be made
throughout the program implementation [36]. Key program-enhancement considerations
are summarised in Table 1.

Table 1. Program planning and design: Programmatic enhancement considerations.

End use of data
[4,33,34]

• The degree of reliance on the citizen-science data will
increase the cost of error in the data, increasing the
importance of data quality assurance and accuracy.

• Where citizen science is integrated with other sources of
data, the effect of error in citizen-science data may be
moderated through clear identification and characterisation
of error.

• Data types to be collected by citizen science are limited by
the overlap between data sources translatable between both
citizen science and remote sensing.

• Research goals, end use and data-quality requirements
should be clearly defined a priori, through collaborative
engagement of stakeholders from relevant domains.

• Program design, protocols and valuation of respective
elements of data quality should reflect these project-specific
end-use goals.

Transparency, trust, and
privacy
[36]

• The conflict between privacy protection, transparency and
trust is often amplified in citizen science, and the importance
of data quality and transparency is heightened for use with
remote sensing.

• Clear planning and privacy/transparency standards should
be set prior to program implementation, to be clearly
communicated to both participants and stakeholders.

• The factors influencing participant and user trust should be
evaluated in a project-specific and context-specific manner
prior to the development of privacy and data-sharing
policies, and iterative evaluations and remediations should
be made throughout the program implementation.

3.2. Participant Engagement

The engagement of participants is crucial to the success of programs, and underpins
the utility of citizen science for remote-sensing calibration and/or validation applications
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through the quantity and diversity of participants. The spatial and temporal extent of
engagement is of particular importance to the value offered by citizen science over other
means of data collection [38]. The diversity of mass participation and inclusionary practice
in citizen science, however, can also amplify uncertainty in the accuracy and sources of
bias/error within data. Programs should employ strategies to motivate a diverse range of
participants, while collecting participant metadata regarding the diversity of participants
and factors of bias, to facilitate program refinement [39]. The optimal number of contrib-
utors and the duration of participation may differ between programs, depending on the
costs of participant training, the ideal quantity of contributions, the sources of bias and
the computational efficiency of the data analysis [40,41]. Key considerations affecting data
quality in the participant-engagement stage are outlined below.

(i) Participant background

It is essential to consider whether participant background will affect data quality [42].
The value of participant background diversity or specificity will be project specific, and
local knowledge, for example, may be a valuable source of unique insights. Prior knowl-
edge and skills will also be likely to influence the efficiency of participants in relation to
their effort [39]. Training may be one way of mitigating the effects of variability in par-
ticipant background [38]. Furthermore, having economic, health and conservation stakes
in the outcomes of a project can increase participant engagement [43], but such stakes
may also bias observations. Researchers should consider evaluating potential conflicts of
interest among participants, while considering that these may also offer useful information
about the diversity of perspectives and access to private or commercial land (e.g., there
may be benefits to engaging landowners or those employed in commercial agriculture or
forestry) [44].

(ii) Training

Participant training presents a useful tool in balancing the effects of participant back-
ground diversity. Ongoing evaluation of training effects through feedback and testing
is largely recommended to improve training effectiveness, direct training resources and
improve understanding of data-quality covariates [20]. The effectiveness of training should
be considered not only in relation to data quality, but also in its effect on perceived confi-
dence and engagement of participants [45]. While initial costs may be incurred to produce
training data sets, ongoing training data may be provided by high quality contributions.
Selective attention may improve efficiency for direct remote-sensing applications (e.g.,
land-cover type); however, it may reduce the detection of additional data of indirect value
to calibration/validation applications (e.g., factors influencing environmental change) or
create an effect of learned inattention [46].

For researchers, participant training is seen as a data-quality-improvement strategy
and, for participants, training represents a basis for inclusion in the scientific process and in
learning [47]. Training is a tool for improving participant engagement if training protocols
address these motivational factors. Conversely, arduous or extensive training protocols
may risk reducing participant engagement [42,46,48]. Participant training can improve the
accuracy of sampling design, namely in structured sampling protocols [39], in standardising
methods, increasing participant knowledge and skill, and increasing participant confidence,
to increase consistency [20,22,43,45]. However, it has also been noted that overtraining, and
high task complexity can reduce the quantity and completeness of contributions, making
the best course of action often project dependent.

(iii) Incentivisation

Directing participant effort towards points of heightened interest to researchers (e.g.,
landcover-type boundaries), or to dispersed data points for greater coverage, may be ben-
eficial. Gamification or credit-based approaches may present useful tools for efficiently
directing participant effort. Participant effort in validating remote-sensing images may be
realised through tasking systems that facilitate consensus classification; that is, increasing
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the number of observations for difficult or valuable data points. While reward systems,
credit-based systems and gamification may strongly incentivise continued participation,
gamification could also lead to participants gaming the system, and may also risk disincen-
tivising some participants with altruistic motivations [42].

(iv) Feedback

Feedback and communication between participants can increase the quantity and
completeness of observations through benefiting participant engagement, learning and
confidence [6,36,42,45]. However, increased communication among participants may also
increase risk of bias, ‘group-think’, hypothesis guessing and treatment spillover [42]. Em-
bedded feedback systems within task design are recommended for improving participant-
contribution completeness and accuracy [45,49]. Some programs may wish to incorporate
performance evaluation and/or reputation metrics (i.e., participant-expertise ratings, where
applicable), for participants.

(v) Participant motivation and retention

To optimise the recruitment and retention of participants, programs should consider
how motivation can be evaluated [6,39,42,50]. For example, programs might usefully be
tailored to the motivations of participants from the outset and throughout the program
implementation [33,47]. There may also be a training effect incurred by retention of
participants [33,39] and these effects have been observed to increase the competency of
contributors. However, the effects may be variable, and participation may not predict
contribution quality [51]. Where socialisation among participants occurs, retention of
participants can create experienced contributors capable of providing useful feedback and
assistance to novice participants. However, long-term participation can cause a participant
‘staleness’ effect, resulting in poorer-quality contributions regarding completeness and
quantity [49]. Key program-enhancement considerations are summarised in Table 2.

Table 2. Participant engagement: Programmatic enhancement considerations.

Participant background
[29,38,42–44]

• The value of participant background diversity or specificity
will be project specific; in the context of remote sensing, local
knowledge for example, may provide unique insight.

• Prior knowledge and skills will likely influence the
efficiency of participants in relation to effort. However,
further research and project-specific investigations would be
required to account for the extent of this effect.

• Training may mitigate the effects of variability in
participant background

• While having economic, health and conservation stakes in
the outcomes of a project can increase participant
engagement, such stakes may also bias observations.
Researchers should consider evaluating conflicts of interest
among participants, while considering that these may also
offer useful information such as in the diversity of
perspective and access to private or commercial land.

Training
[20,42,45,47]

• Ongoing evaluation of training effects through feedback and
testing is largely recommended to improve training
effectiveness, direct training resources and improve
understanding of data-quality covariates.

• The effectiveness of training should be considered not only
in relation to data quality but in its effect on perceived
confidence and the engagement of participants, through
periodic evaluation.

• While initial costs may be incurred to produce training data
sets, ongoing training data may be provided by
high-quality contributions.
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Table 2. Cont.

• While for researchers, participant training is seen as a
data-quality-improvement strategy, for participants, training
represents a basis for inclusion in the scientific process and
an opportunity for learning.

• Arduous or extensive training protocols may risk reducing
participant engagement.

• Training complexity, like task complexity, should be
relatively simple if high participation numbers are required.

• The effectiveness of increased training effort may be
increased where observer-bias effects are a primary
challenge; this may include training participants on how to
select suitable sampling sites for collection of in situ data, or
training in areas where the cost of misidentification or
false-absence data will greatly reduce data usability.

Incentivisation
[20,47]

• Reward systems, point-based systems and gamification can
strongly incentivise continued participation and possibly
provide tooling for directing participant effort; however,
gamification may risk disincentivising some more valuable
participants with altruistic motivations.

• Gamification and point-based approaches, in addition to
training on sampling-location selection, may be useful tools
to efficiently direct participant effort.

Feedback
[6,39,45,49]

• Contributor confidence and data accuracy is aided by
providing practice data-collection opportunities with
integrated feedback systems.

• Embedded feedback systems within task design are
recommended, to improve participant-contribution
completeness and accuracy

Participant motivation and
retention
[6,39,42,49,50]

• To optimise the recruitment and retention of participants
and maximise their engagement, programs should consider
how participant motivation can be directly evaluated.

• Participant motivation affects the completeness and quantity
of observations.

• Lengthy participation may cause a participant ‘staleness’
effect, resulting in poorer-quality contributions in terms of
completeness and quantity.

3.3. Data-Collection Protocols

Program development must consider design choices with respect to associated trade-
offs. These trade-offs include deciding on the level of data-collection-protocol standardi-
sation, task difficulty, metadata collection, data-capture requirements and sampling rep-
etition [52]. The literature suggests that subjectively estimated measures are not suited
to valid interpretation of data. Such data types include visual-cover estimates that are
highly translatable to remote-sensing land-cover and ecosystem functional-type data. While
visual-cover estimates are often highly variable among non-experts, variability in these
subjective interpretations is also common among professionals [51,53]. It may be useful to
generate subjectively interpreted cover estimates for calibration/validation data which may
benefit from the aggregation of multiple responses using geo-located photographic data.
Geo-located photographic data (due to the resolution) can usefully provide land-cover
information (e.g., the Degree Confluence Project, [54]), species presence (e.g., iNatural-
ist, [44]), and azimuth images at reference points (e.g., GLOBE observer app, [17]), but the
sampling strategies should be directed to facilitate the scalability of this information. Key
considerations affecting data quality in data collection are detailed below.

(i) Sampling scale and density

For larger datasets, there is a trade-off between the computational efficiency of citizen-
science data analysis and the possible scale of inference [55]. However, it may be possible
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to mitigate biases through program design. Spatial and temporal biases are likely to
follow common patterns of human movement and population density, and even more so in
unstructured citizen-science design, which can greatly influence the variability and density
of data [44,55,56]. Patterns of spatial bias increase with variables such as mass participation,
opportunistic sampling and untrained-amateur reliance [57]. Where mass participation is
sought, or ephemeral participation is likely, spatial-sampling biases can be mitigated in
program design and/or integrated with professional data [57].

(ii) Structure and standardisation of sampling protocols

Where data completeness relies on accurate absence information, or estimation of
abundance, structured-sampling protocols may be necessary [51]. However, increasing
the structure of sampling may incur costs associated with training and loss of participa-
tion, while facilitating simpler data analysis. Unstructured sampling is best suited where
presence-only information is used, such as distribution estimation. This is because unstruc-
tured sampling will be prone to much lower signal-to-noise ratios. The integration of tools
to capture confidence and effort information are of increased importance for programs
producing usable, unstructured citizen-science data [38]. The feasibility of reliably standar-
dising data-collection protocols will be reduced with increasing task complexity, and/or the
incorporation of subjective estimation [39,51]. Some recommendations that overemphasise
reducing functional differences between volunteers and professionals may detract from the
inherent quality offered by the unique value proposition of citizen science [48]. The use of
mobile applications to standardise data input and improve field data has been shown to
reduce curation costs [58].

(iii) Metadata capture and technology

Efforts to collect metadata such as time of observation and perceived difficulty, provide
useful sources of covariate information when estimating certainty in data and potential
sources of error [38,59–61]. Collection of participant confidence level can also help calibrate
citizen-science data and be used to direct training effort or evaluate the effectiveness of
training [51,59,62]. The use of inbuilt sensors in smartphones is growing in popularity.
However, the accuracy and capabilities of these devices is variable, and may influence
the accuracy of data [42]. These sensors, along with controlled-data-input requirements
can reduce the syntactic-error rate in data entry [45]. Issues include how technological
requirements may reflect technological availability within the intended pool of partici-
pants, and whether these requirements are likely to influence the diversity of participants.
However, the use of progressive web applications is helping to resolve many of the issues
associated with device compatibility, thus making the issue of technological availability
less of a barrier. Key program-enhancement considerations are summarised in Table 3.

Table 3. Data collection: Programmatic enhancement considerations.

Sampling scale and density
[39,40,44,55,57,60]

• For larger datasets, there is a trade-off between the
computational efficiency of data analysis and the possible
scale of inference.

• Spatial and temporal biases are likely to follow common
patterns of human movement and population density in
citizen science, and even more so in unstructured
citizen-science design, which can greatly influence the
variability and density of data.

• Where mass participation is sought, or ephemeral
participation is likely, spatial-sampling biases can be
mitigated in program design through the collection of
secondary data pertaining to contributor trust and biases to
facilitate modelling, and through simplification of sampling
protocols in both opportunistic and structured schemes.
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Table 3. Cont.

• Optimal sampling size and density should be determined in
early stages of development, as there may be diminishing
returns on data-analysis effort and reductions in
signal-to-noise ratio, with larger sample sizes.

• Post hoc data-analysis strategies may also be used to correct
for some degree of spatial bias, but this will only account for
variation in sampling density—if spatial coverage of data is
insufficient for remote-sensing purposes, program managers
may consider incentivisation of data-poor locations.

Structure and
standardisation of sampling
protocols
[38,51]

• Where data completeness relies on accurate absence
information, or estimations of abundance,
structured-sampling protocols may be necessary. Increasing
the structure of sampling may incur costs associated with
training and loss of participation while facilitating simpler
data analysis.

• Unstructured sampling is best suited where presence-only
information is used, such as distribution
estimation—unstructured sampling will be prone to much
lower signal-to-noise ratios and require greater investment
in effective data-analysis strategies.The integration of tools
to capture confidence and effort information are of increased
importance to programs producing usable, unstructured
citizen-science data.

• For remote sensing, simpler task design and increased
sampling standardisation is likely to increase data accuracy
and validity for end use when collecting in situ calibration
and/or validation data.

Metadata capture and
technology
[38,59–61]

• Effort metrics including time and perceived difficulty
provide useful sources of covariate information when
estimating certainty in data and potential sources of error.

3.4. Data Processing

Several strategies employed in data collection and program design are shown to
assist with the ability of data processing and data mining to generate more reliable and
accurate outputs [23,32]. Simple methods such as standardisation of data-input require-
ments and prompting participants to double check improbable submissions may reduce
syntactic errors in data [22]. The credibility of citizen-science data, however, will often
require additional data-validation and processing strategies [63]. Professional-reference
data is recommended for citizen-science programs where individual contributions must be
verified [43,64], and for quantification of error in data. Professional data sets may also be in-
tegrated with citizen-science products to increase extent and completeness and to calibrate
against error [9,61]. Where possible, it is also recommended that ‘gold-standard’ reference
data sets be obtained prior to data processing, as a means of calibrating observations [43,64].
Where the citizen-science-data sample size exceeds the number of observable-data points,
professional-reference data sets may not be required for data processing [34,62,65]. Inter-
participant rating and reputation systems may also be used to generate reference data sets
through monitoring the consistency of contributions from individuals [64].

Whether citizen-science projects directly collect in situ data and/or provide inter-
pretation of remote-sensing images will influence strategies for deriving data of usable
quality for remote-sensing calibration and validation applications. A priori determination
of acceptable error rates should inform acceptable tooling for data processing and data
mining, and pilot testing should seek to determine expected certainty-rate estimates [32,34].
The costs of data processing are likely to increase with the scale of data sets and associated
increases in noise. Thus, a consideration is how the effectiveness of data processing tools
will be evaluated and refined as citizen-science data sets grow. Applying a peer-review
system to the design and products of citizen-science programs may also assist in stan-
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dardising citizen-science data for use in remote-sensing calibration/validation [45]. Key
program-enhancement considerations are summarised in Table 4.

Table 4. Data processing: Programmatic enhancement considerations.

Citizen science data
validation and data
processing
[39,43,45,64]

• Professional-reference data is strongly recommended for
citizen-science programs where individual contributions
must be verified for use, and for quantification of error
in data.

• Interparticipant rating and reputation systems may facilitate
the production of reference-data sets through monitoring the
consistency of contributions from individuals

• Examples of potentially useful sources of covariate
information that may assist data calibration in an ongoing
manner include data-capture technology used, effort
information (both temporal and perceived), education
history, occupation, sociodemographic characteristics, stakes
and motivations in the citizen-science project, environment,
training effect (actual and perceived), and confidence.

• The costs of data processing are likely to increase with the
scale of data sets and associate increases in noise.

• Transparency with regard to data quality, certainty and
potential sources of error are strongly advised for the use of
citizen science.

• Standardisation of strategies to communicate error and
certainty estimates across data sets of different scales, or
where data-mining modifications have been made, may be
necessary for consistency in the use of citizen-science
calibration data.

• Applying a peer-review system to the design and products
of citizen-science programs may assist in standardising
citizen-science data to position for use in remote-sensing
calibration/validation and modelling.

3.5. Guiding Questions

Guiding questions and considerations for designing citizen-science projects to provide
data supporting the remote sensing of the environment are presented in Table 5, along
with associated references to support each guiding question. These guiding questions
synthesise and present the current state of the literature, and provide a full life-cycle view
of the key considerations associated with citizen-science projects for remote sensing. Some
of these issues are highly specific to remote sensing, while others are common challenges
that are broadly relevant to all citizen-science projects. However, all relevant considerations
are included. For program planning and design, we recommend practitioners consider
upfront the end use of data, including the need for fit-for-purpose data and data-quality
requirements. We also recommend practitioners pose questions around the privacy needs
of citizen-science contributors at this stage of the project. For participant engagement,
practitioners should consider diversity of skills and background including training and
its impact on both motivation and data quality. Questions around participant feedback
and motivation should also be posed, including how this can improve data quality and the
benefits of long-term participant retention for the success of the project. We recommend
practitioners consider spatial and temporal scale when designing data-collection protocols,
to balance the trade-off between maximising the number of samples and accounting for
bias and effort. For the final stage, data processing, we recommend posing questions based
on validation of the standard required for calibration and validation of citizen-science data.
Finally, questions should be asked to help evaluate the data-quality elements for the use of
citizen-science data.
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Table 5. Synthesis of guiding questions for designing citizen-science projects to provide data sup-
porting remote sensing of environment.

Program Planning and Design: Guiding Questions and Considerations

End use of data
[6,30,31,34,35]

• How will citizen-science data contribute to the calibration
and validation of remote-sensing data?

• What data are needed to be fit for purpose, and what type of
data are possible?

• What type of citizen-science data are being collected?
• What are the data-quality requirements for this function?
• How have stakeholders and end-users informed

program design?

Transparency, trust, and
privacy
[20,36,37]

• How will the need for data-quality transparency for this end
use be balanced with participant privacy and the trust of
both participants and data users?

• Has project privacy and the data use/sharing policy been
informed by survey feedback?

Participant engagement: Guiding questions and considerations

Participant background
[39,42,43]

• Is diversity in skills and prior knowledge of participants
being sought?

• Is participant background likely to influence quality
of contributions?

Training
[20,33,38,42,45,46]

• How will training effectiveness be evaluated?
• How will training affect biases in observations? Is an

over-training effect possible?
• How will training affect participant motivation?
• Will training effort have a significant effect on data quality?
• Is the required training within the resources of the project?

Incentivisation
[20,47]

• Can participation effort be directed?
• What incentivisation methods are best suited to the

program?

Feedback
[6,33,39,42,45]

• Will participants be able to receive performance feedback
from experts? From each other?

• How will bidirectional feedback improve data quality?

Participant motivation and
retention
[6,33,39,42,47,49–51]

• Does the program design and use reflect the motivation of
participants?

• Is there an intended optimal duration for participation?
• Is long-term participant retention more important than

participant numbers?

Data collection: Guiding questions and considerations

Sampling scale and density
[7,8,55–57,66]

• Is the intended scale and density of observations operable
with remote-sensing pixel resolution?

• Can spatial and temporal sampling biases be mitigated
through program design?

• Does repeated sampling or maximising the number of
samples best suit the use of data?

Structure and
standardisation of sampling
protocols
[38,39,42,48,51]

• Is data collection best suited to structured or unstructured
sampling design?

• Is standardisation of sampling protocols feasible?

Metadata capture and
technology
[38,42,59–61]

• Is participant effort and confidence captured in data entry?
• What are the minimum requirements of data-capture

technology for the intended use?
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Table 5. Cont.

Data processing: Guiding questions and considerations

Citizen-science data
validation
and
data processing
[22,23,32–34,43,62,64,65,67]

• Is a ‘gold standard’ reference data set required for
citizen-science calibration/validation?

• Can validating data be derived from citizen-science data?
• How will sampling design and data-capture facilitate

data processing?
• What data-processing strategies best suit the nature of

data collection?
• Will data-mining strategies be refined as data sets grow?
• How will data-quality elements be evaluated for use in

citizen-science data?

4. Discussion

We found that the challenges in data quality assurance faced by citizen-science pro-
grams are amplified, not in their intensity but in their importance for use in remote-
sensing calibration and/or validation. While there is significant potential in synergistic
co-validation of citizen science and remote sensing, optimising data interoperability be-
tween the two data sources will require consistency in data quality assurance from citizen
science. In contrast to traditional in situ data collection, where protocols are systematically
equipped to identify data-quality sacrifices such as spatial extent to improve reliability, the
nature of remote sensing of environment presents unique challenges and requires explicitly
identifying data-quality deficits and their sources. Considering the strategy undertaken by
programs throughout all stages of development, implementation and analysis can be opti-
mised to prioritise the usability of citizen-science data for remote sensing, while conserving
the utility it offers (summarised in Tables 1–4).

Using our literature review as the basis, we generated a set of guiding questions for
designing citizen-science projects in conjunction with remote-sensing data for environ-
mental monitoring (Table 5). These questions can be used to help inform the design of
citizen-science projects that are the most effective, efficient, and ethical, geared towards pro-
viding data to support remote sensing of the environment while maintaining citizen-science
enthusiasm and participation. They were intended to help practitioners consider at what
stage (or multiple stages) of a citizen-science project there is a need to help inform design
to improve integration with remote sensing. While it may be unfeasible for citizen-science
programs to produce complete data sets for remote-sensing applications, their usability
may be improved by efforts to improve and quantify data certainty and characterise co-
variates of data quality. Importantly, understanding the data quality trade-offs in citizen
science upfront may assist the prioritisation of data-quality elements, while facilitating the
identification of consequent reductions in the assurance of other data-quality elements.

5. Conclusions

This review represents the current state of the debate on citizen science for remote
sensing, and serves to enhance the future development of citizen-science projects for
application to remote sensing in environmental monitoring, so that the potential of citizen
science can become an integral component and complementary data source [63]. Although
citizen science is currently used in its widest sense in data collection rather than in scientific
analysis of the data or project design, there is potential for citizens to be involved in the full
sequence or workflow of a citizen-science project [6]. The role of technology (in particular)
as a key enabler for the use of citizen science in remote sensing to improve data quality
through data standardisation and integration with artificial intelligence will likely continue
to seed its growth. In this way, citizen science can continue to develop and help meet the
needs of the remote-sensing community by providing data at the spatial and temporal
scales required to support the science required in the face of rapid environmental change.
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