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Abstract: Hyperspectral imagery plays a vital role in precision agriculture, forestry, environment, and
geological applications. Over the past decade, extensive research has been carried out in the field of
hyperspectral remote sensing. First introduced by the Italian Space Agency ASI in 2019, space-borne
PRISMA hyperspectral imagery (PHSI) is taking the hyperspectral remote sensing research commu-
nity into the next era due to its unprecedented spectral resolution of ≤12 nm. Given these abundant
free data and high spatial resolution, it is crucial to provide remote sensing researchers with informa-
tion about the critical attributes of PRISMA imagery, making it the most viable solution for various
land and water applications. Hence, in the present study, a SWOT analysis was performed for PHSI
using recent case studies to exploit the potential of PHSI for different remote sensing applications,
such as snow, soil, water, natural gas, and vegetation. From this analysis, it was found that the higher
reflectance spectra of PHSI, which have comprehensive coverage, have greater potential to extract
vegetation biophysical parameters compared to other applications. Though the possible use of these
data was demonstrated in a few other applications, such as the identification of methane gases and
soil mineral mapping, the data may not be suitable for continuous monitoring due to their limited
acquisition, long revisiting times, noisy bands, atmospheric interferences, and computationally heavy
processing, particularly when executing machine learning models. The potential applications of PHSI
include large-scale and efficient mapping, transferring technology, and fusion with other remote
sensing data, whereas the lifetime of satellites and the need for interdisciplinary personnel pose
challenges. Furthermore, some strategies to overcome the aforementioned weaknesses and threats
are described in our conclusions.

Keywords: Italian Space Agency; hyperspectral imagery; potential assessment; PRISMA; SWOT

1. Introduction

PRecursore IperSpettrale della Missione Applicativa (PRISMA), a satellite of the Italian
Space Agency, carries a hyperspectral sensor that captures a continuum of spectral bands in
the range of 400–2500 nm with a spatial resolution of 30 m. The widths of spectral sampling
intervals are ≤12 nm. This sensor counts 173 bands within 920–2500 nm in the short-wave
infrared (SWIR) portion and 66 bands within 400–1010 nm in the visible near-infrared
(VNIR) portion of the light spectrum. A panchromatic camera on PRISMA provides a
single band in the wavelength range of 400–700 nm at a 5 m spatial resolution [1,2].

PRISMA hyperspectral imagery (PHSI) has been used for applications such as forest
fuel mapping [1]; forest discrimination [2]; burned area mapping [3]; prediction of methane
emissions [4]; agricultural applications [5]; the study of geochemical investigations for
parameters of soil moisture, soil organic matter, and soil organic carbon [6]; the study of
water quality [7]; and geological applications [8,9]. The ‘Sviluppo di Prodotti Iperspettrali
Prototipali Evoluti’ project funded by the Italian Space Agency is developing procedures
to map fire presence and fire severity, the extent of fire fuel, urban growth, urban areas,
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industrial areas, volcanic areas and volcanic parameters, and vegetation. PRISMA proved
to be a valuable instrument for the determination of the residual fire severity in an in-
vestigated area (ASI|Agenzia Spaziale Italiana). Thus, the PRISMA satellite has wide
applicability [10].

Bibliometric information collected from the literature was augmented using VOS-
viewer software (Figure 1) to identify PRISMA applications, techniques, and processing
methods. Such maps outline the relationships between existing publications based on the
relationships between journals, institutions, types of problems, and the frequency of topic
reoccurrences. Reoccurrences of keywords in the reviewed articles are mapped in Figure 1.
The links that attach the nodes in Figure 1 indicate connections between them; the shorter
the distance between them, the stronger the relationship. Scientometrics is the field of study
that concerns itself with measuring and analyzing scholarly literature. A scientometric
analysis of the augmented clusters shown in Figure 1 indicates that the “PRISMA” keyword
had the most repetitions (repeated 11 times), followed by Sentinel-2 with five occurrences,
which indicated articles on multispectral and hyperspectral data fusion. As shown in
Figure 1, the other predominant sensors next to PRISMA are HYPSIRI [11] and AVIRIS [11],
which are hyperspectral spectrometers. Before the launch of PRISMA, AVIRIS datasets
were employed in which these terms reoccurred, and some researchers connected these
data with future sensor HYPSIRI. Application domains such as nitrogen content prediction,
classification, and agriculture were repeated, which indicates crucial applications for which
the sensor is frequently used. Terms such as “classification”, “regression”, and “dimension
reduction” were also used in the PRISMA papers. Dimensional reduction is necessary
to reduce the computation load and the time required for computation. The guided
image filtering term shown in Figure 1 is an effective noise reduction technique used for
hyperspectral data.
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Figure 1. Knowledge mapping (2018–2022): scientometric analysis using VOS-viewer software. The
color bar at the bottom right corner denotes the year of the publication. This scientometric analysis
considered publications from 2018 to 2022 because the PRISMA satellite launched in 2018.

Figure 2 is based on the results of the scientometric analysis depicted in Figure 1. This
analysis is used in various earth observation inventory applications (Figure 1). Riyaaz
et al. [1] reported the automatic procedure developed for fuel types in forest fires and
concluded that PHSI provides an overall accuracy of around 85%. Their procedure can map
fuel types in any part of Europe, and thus assist researchers/policymakers/fire managers
in studying fire potential, behavior, emissions, management, effects, and land surface
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temperature. Sander et al. [11], in their survey, reported that PRISMA data products
provide opportunities to further explore linkages between ecosystem properties and fires
on both regional and global scales.
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In a study conducted to map burned areas [3] using PHSI and Sentinel-2—a constel-
lation of two polar-orbiting satellites—sensors data demonstrated that the combined use
of optical and hyperspectral datasets enabled the detection of burned areas in a complex
background with an overall accuracy of 98%. Lazzeri et al. [12] conducted multitemporal
mapping of post-fire land cover using PRISMA, Sentinel-2, and unmanned aerial vehicles
(UAVs) in Portugal and Italy. It was demonstrated that due to the ability to capture imagery
in a broader wavelength range, the hyperspectral sensors on UAVs are more beneficial
than PRISMA or Sentinel-2. Due to its ability to detect and classify nonphotosynthetic
vegetation [13], PRISMA was found to be suitable for studying crop residues; however,
senescent vegetation had not yet been harvested, and crop residues were not well distin-
guished. The study added that PRISMA is not designed to quantify cellulose abundance
or to evaluate differences among species. Bohn et al. [14] used PHSI to estimate glacier
ice surface properties, such as crystal size, algae concentration, and liquid water content.
Niroumand-Jadidi et al. [7] compared the results of PRISMA and Sentinel-2 in a study
of water quality and reported that an atmospheric correction algorithm developed for
PRISMA did not improve the results of either method. Bresciani et al. [15] compared
hyperspectral data from PRISMA and the Earth-sensing imaging spectrometer (DESIS)
used by the German Space Agency (DLR) for aquatic applications. They reported that more
data for training and validating would improve the results for both technologies. Kokal
et al. [16] compared PRISMA with LANDSAT-9 in land cover classification using a support
vector machine classifier and obtained overall accuracies of 89.33% for LANDSAT-9 and
92.33% for PRISMA. As LANDSAT-9 has a spectral resolution of 20–180 nm and PRISMA
has a spectral resolution of ≤12 nm, it was concluded that the higher spectral resolution of
PRISMA accounted for its slightly better results.
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From the literature search of PRISMA research, it was identified that, in a few studies,
strengths and weaknesses were explicitly discussed, while threats and opportunities were
overlooked. Meanwhile, other studies may be useful for explaining threats and opportuni-
ties, while ignoring other parameters. Many studies have explicitly reported the working
potential of PRISMA for their applications. However, to the best of our knowledge, no
comprehensive study quantitatively consolidates this information via a SWOT strategy
to bring out the potential of PRISMA images. This comprehensive study is essential for
researchers working on a hyperspectral remote sensing cluster to understand the impor-
tance of these newly launched data and their range of applications. The SWOT analysis
is the process of evaluating the interrelations between external and internal factors of a
system to extract strengths, weaknesses, opportunities, and threats; it is a mixed evaluation
(subjective–objective) [17–19]. Combining these analysis strategies will provide a compre-
hensive update and a detailed assessment of the situation. Strengths and weaknesses are
internal elements connected to the objectives and performance of satellite data [19]. At the
same time, opportunities and threats are external elements that consider features facilitating
the establishment of businesses and hindering achievable goals, respectively [20]. In this
study, a SWOT analysis was conducted for PHSI and further strengthened by examining
the internal and external factors reported in the various case studies. The objectives of
this study are as follows: (i) bibliometric analysis of publications on PHSI focusing on
applications; (ii) SWOT analysis with case studies from the literature, which includes the
technical defects of this imagery. SWOT analysis has remained one of the best ways to
assess the potential of any system, and there is no research available that contains a SWOT
analysis of PHSI. We believe this comprehensive study with a SWOT analysis would help
the remote sensing community to better understand the potential of PHSI.

2. Materials
2.1. PRISMA Hyperspectral Products

PRISMA products are divided and subdivided according to their utility. Level 0 pro-
vides raw data in binary files, including instrument and satellite ancillary data (e.g., cloud
cover percentage). Level 1 consists of radiometrically and geometrically calibrated hyper-
cubes and panchromatic radiance images in the higher atmosphere. Level 2 consists of
four sub-levels: L2A, L2B, L2C, and L2D. Images of geolocated on-ground radiance (L2B),
geolocated reflectance (L2C), and geolocated and geocoded on-ground reflectance images
(L2D) are provided [2,21].

Land cover mapping and cloud masking are available in the Level 1 product. This
includes atmospheric constituents such as aerosols, thin cloud optical thickness, and water
vapor. Details of PRISMA products are provided in the PRISMA specifications document.
Levels 1 and 2 are generated on demand and released in hierarchical data format (release 5,
HDF5). Level 2 products can be georeferenced with or without ground control points
(GCP), according to user preference and GCP availability [2,21].

In June 2019, following the launch of the PRISMA satellite, hyperspectral data were
released for public use. Since hyperspectral imagery is useful for various applications,
it has become a particular interest of remote sensing researchers to exploit the fullest
potential of these data. Hence, since 2019, these data have been employed in various
applications, as shown in Figure 2. Environment for Visualizing Images (ENVI) is a software
application used to process and analyze geospatial imagery. ENVI recently released an add-
on ENVI-PRISMA toolkit that can ease the processing of PRISMA hyperspectral imagery
(PHSI). Additionally, ImaACor software was developed for atmospherically correcting both
multispectral and hyperspectral imagery. The evaluation of this software using PRISMA
data has proven it to be a value-added software that researchers can use to process PRISMA
L1 data and conduct atmospheric corrections independently.

The preprocessing steps of the PRISMA imagery commonly applied for all the appli-
cations include (1) georeferencing; (2) correction of georeferencing; (3) removal of noisy
lines and bands, since more than 20% of bands are affected; (4) conversion from radiance to
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reflectance for L1 and L2B PRISMA products; (5) Masking of pixels that are unnecessary to
the study using PRISMA L1 land cover map.

2.2. Assessment of PRISMA

This section explains SWOT components in detail, which were obtained using the
assessment of PRISMA hyperspectral data.

Strengths

PRISMA offers global coverage [1], with a spectral resolution of 12 nm, spectral bands
of >230 nm, and a spatial resolution of 30 m [22,23]. PRISMA provides more information
about the Earth’s surface than the planned hyperspectral sensor HYPSIRI [11] (which
is due to be launched in 2024) and the earlier hyperspectral sensor AVIRIS [11]. The
VIS-SWIR channels of PRISMA have a high spectral resolution that can be integrated
with a panchromatic camera [24,25]. PRISMA has a higher potential than Sentinel-2 for
mapping the quality parameters of water [7]. PRISMA’s SWIR channel offers a higher
separability than the SWIR channel on Sentinel-2 [2,12]. In the 2000–2200 nm range, the
Earth’s nonphotosynthetic vegetation cover can be examined using PRISMA [13,26,27].
Reflectance spectra (400–2500 nm) can indicate ng fuel types [15], water aquatic systems [26],
the classification of different types of agricultural land cover [5], and forest cover [2], as
well as provide an improved distinction between coniferous and broadleaved trees [2,28].
The discrimination between two and five forest categories by 40% and 102%, respectively,
is improved by PRISMA [2].

The PRISMA sensor combines a hyperspectral sensor with a medium-resolution
panchromatic camera [21]. PRISMA is available in three products: L0, L1, and L2 (please
refer to Section 2) [1,21]. A hyperspectral image simulator (HSIS) is included in the PRISMA
system so that the performance of L1 and L2 PRISMA processors can be evaluated [29].
PRISMA HDF5 images can be opened with the EnMap Toolbox. PRISMA proved to be a
valuable instrument for the determination of the residual fire severity in the investigated
area [30].

PRISMA’s spectral resolution and its large number of channels, ranging from visible
to short-wave infrared “SWIR”, enables a better estimation of the abundance of major
atmospheric constituents, and an efficient removal of atmospheric effects on the acquired
images [31]. PRISMA matches well with the MODTRAN simulation [32] of high atmo-
spheric conditions. PRISMA top-of-atmosphere (TOA) radiances of Level 1 (L1) products
are consistent with the values expected to be observed over water targets [26]. The standard
products L1 and L2 are suitable for the retrieval of biophysical parameters [32]. The product
Level 2D is reported to be effective for the mapping of burned areas [3]. PRISMA data
can be used for the quantitative analysis of CH4 plumes [4]. PRISMA represents a unique
orbiting source of hyperspectral data to investigate and analyze geophysical/geological
phenomena [8]. PRISMA data can assist with soil organic content applications [6,33], as
well as detecting and identifying natural and anthropogenic disasters in vegetation, which
makes them useful in post-disaster management [33].

Weaknesses

3 Lack of phenological data [6];
3 Atmospheric correction is not developed for aquatic applications [7];
3 PRISMA data were only tested at the parcel scale, which is not sufficient for distin-

guishing between non-agricultural vegetation and crop leftovers [23,34];
3 The PRISMA sensor cannot scan at the required angles because there is no scanning

mechanism onboard [24];
3 As vegetation cover is dynamic and fast-changing, timely image acquisitions strongly

influence the performance of the PRISMA application. The temporal resolution of
PRISMA is an issue [12];

3 A contiguous spectral response might not detect aliasing between adjacent but differ-
ent materials. If there is a time lag between scene acquisitions, varying atmospheric
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and illumination conditions might have a considerable impact on the acquired im-
age [2];

3 More than 20 bands will contain greater than 50% noise [1];
3 Irregular noisy bands broaden temporal resolution [1];
3 Selected bands can have irregular noise values [28];
3 The spatial resolution of PRISMA data is insufficient for precision farming applica-

tions [5].

Opportunities:

3 Future algorithms for the routine mapping of vegetation traits from operational
spaceborne sensors will be defined [23];

3 The PRISMA-based retrievals agree well with those of Sentinel-2 (high consistency in
top-of-atmosphere radiance), mainly the total suspended matter (TSM) maps [7];

3 The Coeff (a univariate quadratic function of wavelength), computed from average
PRISMA spectra per land parcel, is a significant index for obtaining accurate results
with the object-based classification of crops’ single parcels. The main advantage of
object-based classification over per-pixel classification is faster computation [13];

3 PRISMA’s mission aims to demonstrate in-orbit qualification of a state-of-the-art
hyperspectral imager, validate end-to-end data processing, and enable environmental
monitoring and risk prevention [24];

3 The combined hyperspectral and panchromatic products enable the recognition of
geometric features that provide detailed information about the chemical composition
of substances on the Earth’s surface [31];

3 Unmanned aerial vehicles equipped with UAV platforms and a hyperspectral sensor,
and used with PRISMA, can enable the acquisition of ground truth. The PRISMA
image can be co-registered with a Sentinel-2 image [12];

3 PRISMA has better discrimination and a more complex nomenclature system than
Sentinel-2; the two can be combined to study the physiochemical and geometric
features of a target, contributing to forest analysis, precision agriculture, water quality
assessment, and climate change research [2];

3 Automatic procedures can be applied to develop fuel maps of any part of Europe [1];
3 Procedures developed for PRISMA will be used globally [28];
3 Ongoing research will improve PRISMA images [5];
3 PRISMA data might be fused with data from a panchromatic camera or with satellite

data from Landsat and ASTER (advanced spaceborne thermal emission and reflec-
tion) [35];

3 The standard nearest-neighbor method proved to be the most robust on the PRISMA
scene [27].

Threats:

3 Lack of reference data for model training leads to a decrease in PRISMA accuracy [23];
3 The one-day time gap between PRISMA and Sentinel-2 leads to differences in their

atmospheric corrections [7];
3 PRISMA is not designed to quantify cellulose abundance or to evaluate species

differences [13];
3 Hyperspectral images should be used with caution when evaluating burned areas

after wildfires because of the elapsed time from event to image acquisition [12];
3 The presence of many shadow areas, where tall and short trees are mixed, can alter

the results of separability analysis [2];
3 Unlike Sentinel-2 data, PRISMA images cannot be downloaded in a cloud platform [1];
3 Irregular noisy bands can lead to inaccuracies in PRISMA images [1];
3 The number of noisy bands, the georeferencing, and the levels of data are not yet

standardized in PRISMA [28];
3 As the data and parameters that can be retrieved from PRISMA are often fed into

physical models, it is crucial to ensure an extremely accurate radiometric accuracy
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during the mission lifetime. The COVID-19 pandemic affected the data measurement
plan. Further analyses are necessary to confirm the results obtained using PRISMA
extreme viewing geometries, including new land cover targets for the spring/summer
period when agricultural soil is not plowed [32];

3 PRISMA-Sentinel-2 data fusion procedures are being tested to search for the best-
performing procedure in the PRISMA-Sentinel-2 framework. Sentinel-2 and PRISMA
images acquired with very low time differences might not be available [36].

2.3. SWOT Matrix

Table 1 shows a strength, weaknesses, opportunities, and threats (SWOT) matrix
created for PHSI. This matrix depicts the positives and negatives of the internal and
external factors of a system and determines the strengths, weaknesses, opportunities, and
threats of PHSI.

Table 1. SWOT Matrix.

Technology Internal External

Po
si

ti
ve

s

Strengths:

3 Better accuracy for various applications;
3 Possibility of automation using machine learning;
3 Can be extended to any location on Earth;
3 PRISMA toolkit in ENVI for easy processing;
3 PRISMA processing can be carried out using EnMap;
3 Spectral shape is in the 2.0–2.2 m range;
3 Operations in the VIS-SWIR channels can be optically

integrated with a panchromatic camera;
3 PRISMA provides a level 2D product that is

atmospherically corrected, georeferenced, and geolocated;
3 PRISMA provides a land cover map with a Level 1 product.

Opportunities:

3 PRISMA saves time and costs via
avoiding field-based measurements;

3 PRISMA technology can be transferred
between organizations and research labs;

3 PRISMA image fusion with multispectral,
radar; LiDAR is possible.

N
eg

at
iv

es

Weaknesses:

3 PRISMA is an on-demand technology and its acquisition is
not easy;

3 The availability of archived data is limited;
3 Revisiting time is equal to ~16 days;
3 Temporal resolution is low;
3 A long processing time and high computational power are

required;
3 Unstable noisy bands are present in the data;
3 Unstable deadlines are present in some bands;
3 Lack of accurate atmospheric corrections for aquatic

applications;
3 A residual coherent horizontal pattern of noise and a

diagonal pattern of about 630 lines, with a periodic
disturbance at ~0.3–0.4 cycles/pixel.

Threats:

3 Interdisciplinary knowledge is required
for processing PRISMA data;

3 The lifetime of the PRISMA satellite is
unknown.

2.4. Discussion

The strengths, weaknesses, opportunities, and threats of PRISMA are discussed below.

Strengths

A major strength of PRISMA hyperspectral imagery is its accuracy in detecting wild-
fire fuel types [37,38]. It is possible to detect all the available fuel types in the area
of interest due to PRISMA’s high number of spectral bands and support of machine
learning approaches [1,39,40]. Only vegetation in broad categories, such as shrublands,
grasslands, broadleaf forests, and coniferous forests, can be detected using multispectral
data [41–44]. LiDAR can detect hyperspectral data, but there is a lack of LiDAR sensors na-
tionwide [45–48]. At present, actively operating spaceborne hyperspectral sensors include
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PRISMA, DESIS—a dynamic line rating Earth-sensing imaging spectrometer platform of
the International Space Station that is attached to a multiple-user system for Earth sensing
(MUSES) [15,30]—and the recently launched EnMAP [30] (the hyperspectral satellite of
the German Aerospace Centre). Few comparative studies have been performed that com-
pare the data among these sensors. In one example, a study on crop classifications using
PRISMA and DESIS concluded that PRISMA yielded substantially higher classification
accuracies because of its higher signal-to-noise ratio [49].

PRISMA is one of the satellites that have global coverage. The algorithm developed
for one region can be implemented in other parts of the world to extract wildfire fuel
types. Many other hyperspectral sensors have limited coverage, such as the Airborne
Imaging Spectrometer (AIS) [50], Airborne Hyperspectral Scanner (AHS) [51], Airborne
Imaging Spectrometer for different Applications (AISA) [52], Airborne Reflective Emissive
Spectrometer (ARES) [53], Airborne Prism Experiment (APEX) [54], Airborne Visible/Near-
Infrared Imaging Spectrometer (AVIRIS) [55], Hyperspectral Digital Imagery Collection
Experiment (HYDICE) [56], Digital Airborne Imaging Spectrometer (DA-IS-7915) [57], Hy-
perspectral Mapper (HyMap) [58], Operational Modular Imaging Spectrometer (OMIS) [59],
and Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) [60].

Algorithms for vegetation indicators [61], water quality [62], fire severity mapping [12],
forest fire front mapping, volcanic parameters estimation [63], urban mapping [64], fuel
mapping [65], and material detection were developed under the framework of “Sviluppo di
Prodotti Iperspettrali Prototipali Evoluti”, which is funded by the Italian Space Agency [64].
Each algorithm provides input for one specific region on Earth. Additionally, a recent study
on analyzing marine mucilage [66], sugarcane leaf area index [67], wildfire detection [68],
and cyanobacterial estimation [69] using PRISMA was published. Aside from its applicabil-
ity in many fields, automation is necessary for continuous monitoring in any application
and is particularly essential for disaster management [1], which is possible with PRISMA
due to its global availability.

A strength of PRISMA is its panchromatic camera. This camera provides panchromatic
sharpening, a technique that combines the high-resolution detail from a panchromatic band
with the low-resolution color information of other bands, usually only visible bands.
Panchromatic images reduce the spatial resolution to 5 m. For instance, Maria et al. [25]
detected plastic litter using PRISMA panchromatic image resolution.

Weaknesses

PRISMA is an on-demand technology, and the acquisition of data for a specific date is
not easy due to the high traffic of requests. Easy and automatic access to data is essential
for the management of disasters, such as wildfires, earthquakes, etc. Moreover, an analysis
cannot be performed for the complete desired region due to the limited availability of data
in the archive. Figure 3 shows the PRISMA images available for Italy. PRISMA also requires
cloud environments such as DIAS (Data and Information Access Services), provided for
the Sentinel family, to automatically download images [70].

The revisiting time of the PRISMA satellite is ~16 days, which is another constraint
on data gathering. The PRISMA-Second Generation satellite, which is due to be launched
in 2024, will make PRISMA more accessible. The processing of PRISMA data is time-
consuming due to a large number of bands (239). Processing data using machine learning
techniques takes more time than processing data with a multispectral [3], synthetic aper-
ture radar (SAR) [24]. Data from the dynamic line rating (DLR) Earth-sensing imaging
spectrometer (DESIS) are captured only in the visible and near-infrared (VNIR) regions [49].

To automate data processing for a complete region, high computation power is re-
quired. Virtual machines, such as the EarthConsole G-BOX [71] provided by European
Space Agency (ESA), can be accessed to process this hyperspectral imagery. Hyperspectral
data have unstable, noisy bands in the hypercube. PRISMA data have dead/noisy lines on
some of the bands in the hypercube, as illustrated in Figure 4. A procedure for removing
the dead and noisy lines using linear/nonlinear interpolation is described in [1]. According
to the literature, most of the applications apply some machine/deep learning techniques
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to predict the required parameters using PRISMA. Data regarding the desired region of
interest are required to train artificial intelligence techniques. However, data are often
scarce, which is a major weakness of data processing [72].
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Opportunities

PRISMA hyperspectral data are available from any part of Earth and can be accessed
by anyone from anywhere upon registration. Open access algorithms developed for various
applications can be used when needed. Once an algorithm/procedure is developed, it can
be transferred among institutions and research centers. Technology transfer has become
easier since PRISMA data became globally available. In some cases, image fusion with
remote sensing data, such as multispectral, radar, and LiDAR data, can help to extract the
desired results. For example, LiDAR data can help to determine whether forest vegetation
is prone to catching fire [73,74]. Nicola et al. [36] fused PRISMA data with Sentinel-2 data
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to enhance the spatial resolution to 10 m. Anis et al. [75] developed a soil fertility map of
northern Morocco by fusing PRISMA and GIS data.

Challenges

Hyperspectral data processing is an interdisciplinary field, and personnel who process
these data need to be familiar with their applications and with machine/deep learning.
Artificial intelligence techniques are essential for the processing of hyperspectral data.
Procedures developed for the PRISMA satellite will be useful over the lifetime of the satellite
(5–7 years) if there is no degradation in the sensor. However, the Italian Space Agency has
announced the launch of PRISMA-SG, which could extend the use of procedures developed
for PRISMA.

Future Scope for PRISMA

Although the applicability of PRISMA has been demonstrated for almost all land and
ocean applications, it is yet to be tested for applications regarding oil spills, defense, soil
pollution, and climate change. Furthermore, a few recent studies highlighted that using
deep learning approaches and composite kernels significantly enhances the classification
accuracy of hyperspectral data products after fusing them with LiDAR data [76,77]. Hence,
PRISMA hyperspectral imagery and LiDAR data fusion, using extinction profiles and
quantum machine learning [77] or a deep convolutional neural network [78], have excellent
future scope in classification applications.

3. Conclusions

Hyperspectral imagery plays a vital role in precision agriculture, forestry, environ-
ment, and geological applications. In the present study, SWOT analysis was performed for
PHSI, using recent case studies in which the potential of PHSI was exploited for different
remote sensing applications, such as mineral mapping, snow mapping, wildfire fuel map-
ping, crop monitoring, forest management, non-photosynthetic vegetation mapping, the
identification of methane gases, quantum-based studies, wildfire detection, marine plastic
litter detection, post-fire land cover, aquatic management, soil fertility mapping, water
pollution management, soil properties study, and cyanobacterial biomass estimation. The
significant strength parameters of PHSI have enhanced reflectance spectra and improved
spatial resolution, therefore making PHSI more suitable for studying vegetation biophysical
parameters compared to other applications. The major weakness of PRISMA is the very
high computational time required to process a huge amount of data using complex machine
learning models. Furthermore, PRISMA data have limited availability, and atmospheric
interference results in noisy bands that require computationally intensive processes. The
significant advantage of PRISMA data is the technology transfer and fusion with other
remotely sensed images, such as optical remote sensing data, LiDAR, and SAR, which
make these data applicable for a wide range of applications and able to obtain reliable
results without atmospheric interferences. Data acquisition is mainly hindered by the
lifetime of PRISMA, and data processing is made challenging due to the requirement of
interdisciplinary personnel.
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