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Abstract: Image-based 3D modeling has been widely used in many areas. Structure from motion
is the key to image-based reconstruction. However, the rapid growth of data poses challenges to
current SfM solutions. A hierarchical SfM reconstruction methodology for large-scale oblique images
is proposed. Firstly, match pairs are selected using positioning and orientation (POS) data and the
terrain of the survey area. Then, images are divided to image groups by traversing the selected
match pairs. After pairwise image matching, tracks are decimated using an adaptive track selection
method. Thirdly, submaps are reconstructed from the image groups in parallel based on incremental
SfM in the object space. A novel method based on statistics of the positional difference between
common tracks is proposed to detect the outliers in submap merging. Finally, the reconstructed
submaps are incrementally merged and optimized. The proposed methodology was used on a large
oblique image set. The proposed methodology was compared with the state-of-the-art image-based
reconstruction systems COLMAP and Metashape for SfM reconstruction. Experimental results show
that the proposed methodology achieved the highest accuracy on the experimental dataset, i.e., about
22.37, and 3.52 times faster than COLMAP and Metashape, respectively. The experimental results
demonstrate that the proposed hierarchical SfM methodology is accurate and efficient for large-scale
oblique images.

Keywords: structure from motion; track selection; submap merging; outlier detection; image
grouping; direct georeferencing

1. Introduction

In recent years, image-based modeling based on oblique aerial images acquired by
unmanned aerial vehicle (UAVs) has been widely used for urban planning, infrastruc-
ture monitoring, environmental monitoring, emergency response, and cultural heritage
conservation [1–8]. The core techniques of image-based 3D reconstruction include image
matching, structure from motion (SfM), and dense matching. Image matching extracts
feature points from images and matches the feature points using similarity measures [9].
Tie points are then determined by filtering the matched feature points based on the funda-
mental matrix with a random sample consensus (RANSAC) framework [10]. Tracks are
generated by connecting the geometrically consistent tie points. SfM is used to fully auto-
matically orient the images and reconstruct a sparse model of a scene. The poses of images,
spatial positions of tracks, and calibration parameters of cameras are globally optimized
with bundle block adjustment [11]. Based on the sparse reconstruction, dense matching
extracts dense correspondence between overlapping images and generates depth maps [12].
A dense point cloud is then derived by fusing the depth maps. Finally, a photorealistic 3D
model is obtained by meshing the dense cloud and texturing the mesh with the acquired
images. This pipeline works well in 3D modelling based on small-sized datasets. With
fast-growing images, SfM has encountered challenges in terms of efficiency. [13].

Incremental SfM is well known in early studies for the reconstruction of landmarks
based on photos collected from the Internet [14,15]. The incremental SfM firstly reconstructs
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an initial stereo model using a selected image pair, and then grows the model by iteratively
adding new images and globally optimizing all parameters. The time complexity of the
initial incremental SfM methodology is commonly known to be O(n4) for n images, which
impedes the application of the initial incremental SfM on large datasets. Many studies
have been proposed to reduce the complexity of incremental SfM. A methodology based
on conjugate gradients was proposed in [16] to improve the efficiency of solving large-scale
bundle problems. Experiments showed that the truncated Newton method, paired with
relatively simple preconditioners, achieved a significant efficiency improvement on datasets
containing tens of thousands of images. The incremental SfM pipeline was extended to
reconstruct city-scale image collections [17]. The proposed pipeline was built on distributed
algorithms for image matching and SfM. Each stage of the pipeline was fully parallelized.
Experiments showed that the proposed pipeline was able to reconstruct a large scene
with more than a hundred thousand unstructured images in less than a day. A novel
methodology was proposed to improve the efficiency of the incremental SfM in [18]. A
preemptive matching strategy was proposed to speed up the image matching process.
Moreover, the multicore bundle block adjustment algorithm proposed in [19] was used to
improve the efficiency of SfM. Experiments on large photo collections showed that the time
complexity of the proposed pipeline was close to O(n).

Hierarchical SfM is a natural extension of the incremental strategy. It adopts the
divide-and-conquer approach to improve the efficiency of SfM. A variety of hierarchical
methodologies have been proposed. An out-of-core bundle adjustment was proposed for
large-scale 3D reconstruction [20]. The proposed approach partitioned the cameras and
points into submaps by performing graph-cut inference on the graph built from connected
images and points. The submaps were reconstructed in parallel, and merged globally
afterwards. The proposed methodology performed well on synthetic and real datasets. A
hierarchical approach based on skeletal graphs was proposed for efficient SfM [21]. The
proposed approach computed a small skeletal set of images using maximum leaf span-
ning tree. Then, it reconstructed the scene based on the skeletal set, and any remaining
images were added using pose estimation. Experiments on datasets containing thousands
of images showed that the methodology achieved dramatic speedups compared to the
traditional incremental SfM. A hierarchical pipeline based on the cluster tree model was
proposed [22–24]. Images of a scene were firstly organized to a hierarchical cluster tree.
Then, the pipeline reconstructed the scene along the tree from the leaves to the root. Experi-
ments on several datasets containing hundreds of images showed that increased speedup
was achieved compared to Bundler and VisualSFM. A multistage approach for SfM recon-
struction was proposed [25]. The approach firstly reconstructed a coarse model of a scene
using a fraction of feature points. The coarse model was then completed by registering
the remaining images and triangulating new feature points. Experiments showed that the
proposed approach produced similar quality models as compared to Bundler and Visu-
alSFM, while being more efficient. A hierarchical methodology with many novel techniques
was proposed to systematically improve the performance of SfM reconstruction [26]. The
proposed methodology partitioned the scene into many small, highly overlapping image
groups. The image groups were reconstructed individually, and then merged together to
form a complete reconstruction of the scene. The proposed pipeline reduced the runtime on
a large dataset by 36% when the overlap ratio between two image groups was set as 40%.
A similar hierarchical approach was proposed for large-scale SfM [27]. Images were firstly
organized into a hierarchical tree using agglomerative clustering. Smaller image sets were
reconstructed and merged in a bottom-up fashion. A scalable hierarchical SfM pipeline was
proposed to process city-scale aerial images on a cluster of ten computers [28]. Images were
clustered by graph division and expansion. The image clusters were reconstructed in an in-
cremental manner. The reconstructed clusters were merged using robust motion averaging.
The hybrid pipeline performed well in terms of robustness and efficiency. A novel method-
ology was proposed to systematically improve the performance of hierarchical SfM for
large-scale image sets [29]. Images were clustered based on a dynamic adjustment strategy.
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Unreliable clusters were removed, and corresponding images were redistributed. Experi-
ments on large terrestrial and aerial datasets demonstrated the robustness and efficiency of
the pipeline. A hierarchical approach with a focus on cluster merging was proposed [30].
Images were divided into non-overlapping clusters via an undirected weighted match
graph. The match graph was simplified with a weighted connected dominating set, and a
global model was extracted. After parallel reconstruction, clusters were merged based on
the extracted global model.

In addition to the above research directions, reducing the scale of a reconstruction
problem becomes a noteworthy line of research. It improves the efficiency of SfM by
reducing the number of parameters to be optimized in a reconstruction. An efficient
pipeline based on image clustering and the local iconic scene graph was proposed [31].
Images were firstly clustered based on visual similarity. Then, local iconic scene graphs
corresponding to city landmarks were extracted from the image clusters. The local iconic
scene graphs were processed independently using an incremental approach. Experiments
showed that the pipeline could reconstruct landmarks of a city based on millions of Internet
images on a single workstation within a day. The preemptive matching strategy proposed
in [18] only used only a proportion of top-scale SIFT feature points for image matching.
This strategy significantly speeded up image matching. Furthermore, the efficiency of SfM
was also improved as the estimated number of tracks was reduced. A reduced bundle
adjustment model was proposed for oblique aerial photogrammetry [32]. The poses of
oblique images were parameterized with the poses of nadir images and constant relative
poses between oblique and nadir cameras. This approach significantly reduced the number
of parameters and exhibited improvements in time and space efficiency. A track selection
approach was proposed as a general technique for efficiency improvement [33]. A subset
of tracks was selected in consideration of compactness, accurateness, and connectedness.
Experimental results demonstrated that the efficiency of two open-source SfM solutions
was improved using the track selection approach. A method for selecting building facade
texture images from oblique images based on existing building models was proposed
for photorealistic building model reconstruction [34]. Experimental results showed that
the reconstruction process was significantly accelerated using the selected images. An
oblique imagery selection methodology was proposed to improve the efficiency of SfM
towards building reconstruction in rural areas [35]. Oblique images covering buildings
were automatically selected out of a large-scale aerial image set using Mask R-CNN. The
selected oblique images and all nadir images were used for SfM reconstruction and dense
matching. The approach improved the efficiency of SfM while obtaining dense clouds of
similar quality compared to the conventional pipeline. A performant hierarchical approach
based on track selection was proposed [36]. The proposed approach firstly clustered the
images based on their observation directions. Then, the tracks were selected based on
a grid with a fixed spatial resolution. Submaps were sequentially reconstructed from
the image clusters and merged. The hierarchical approach performed well on several
large-scale datasets.

Although the above researches have made significant progresses in improving the
efficiency of large-scale SfM, challenges still exist. In this paper, a hierarchical SfM pipeline
based on an adaptive track selection approach is proposed for large-scale oblique images.
Section 2 details the workflow and procedures of the proposed methodology. Experimental
results and comparisons with two widely used solutions are detailed in Section 3. Discus-
sions of the proposed methodology and the results are presented in Section 4. Conclusions
are made in Section 5.

2. Methodology

The workflow of the proposed methodology is illustrated in Figure 1. Firstly, match
pair selection is performed on an aerial image set using positioning and orientation (POS)
data and the terrain of the survey area. Based on the match pair selection, pairwise image
matching and image grouping are carried out. Adaptive track selection based on track
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georeferencing is performed after pairwise image matching to decimate tracks. The image
grouping procedure divides the images to non-overlapping image groups. Based on the
selected tracks, parallel reconstruction is performed on the image groups to generate
submaps using incremental SfM in the object space. A novel method is proposed to
detect the outliers in common tracks between the reconstructed submaps. Finally, the
reconstructed submaps are incrementally merged.

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 27 
 

 

2. Methodology 

The workflow of the proposed methodology is illustrated in Figure 1. Firstly, match 

pair selection is performed on an aerial image set using positioning and orientation (POS) 

data and the terrain of the survey area. Based on the match pair selection, pairwise im-

age matching and image grouping are carried out. Adaptive track selection based on 

track georeferencing is performed after pairwise image matching to decimate tracks. The 

image grouping procedure divides the images to non-overlapping image groups. Based 

on the selected tracks, parallel reconstruction is performed on the image groups to gen-

erate submaps using incremental SfM in the object space. A novel method is proposed to 

detect the outliers in common tracks between the reconstructed submaps. Finally, the 

reconstructed submaps are incrementally merged. 

 

Figure 1. Workflow of the proposed methodology. 

2.1. Image Grouping Based on Traversal of Match Pairs 

The image grouping procedure exploits match pairs and divides the entire image 

set to non-overlapping groups which do not have common images. Match pairs define 

the overlapping relationship between images which is usually used for pairwise image 

matching. The match pair selection method proposed in [37] is used to generate match 

pairs in this study. The match pair selection process works as follows. Firstly, the prin-

cipal point of each image is georeferenced using the acquired POS data and an existing 

elevation model of the survey area. Then, the overlapping relationship between images 

is determined based on the georeferenced principal points using the k-nearest neighbor 

search. In this study, seven match pairs are generated for each oblique image. These 

match pairs include two pairs from neighboring images acquired by the same camera, 

four pairs from neighboring images acquired by the camera looking at the opposite di-

rection, and one pair from a neighboring nadir image. Four match pairs are generated 

Figure 1. Workflow of the proposed methodology.

2.1. Image Grouping Based on Traversal of Match Pairs

The image grouping procedure exploits match pairs and divides the entire image
set to non-overlapping groups which do not have common images. Match pairs define
the overlapping relationship between images which is usually used for pairwise image
matching. The match pair selection method proposed in [37] is used to generate match pairs
in this study. The match pair selection process works as follows. Firstly, the principal point
of each image is georeferenced using the acquired POS data and an existing elevation model
of the survey area. Then, the overlapping relationship between images is determined based
on the georeferenced principal points using the k-nearest neighbor search. In this study,
seven match pairs are generated for each oblique image. These match pairs include two
pairs from neighboring images acquired by the same camera, four pairs from neighboring
images acquired by the camera looking at the opposite direction, and one pair from a
neighboring nadir image. Four match pairs are generated for each nadir image. These
match pairs include two pairs from neighboring nadir images in the same strip and two
pairs from nadir images in the neighboring strips.

Based on the selected match pairs, the image grouping procedure divides the entire
image set to five groups, as illustrated in Figure 2. The entire image set is composed of
images in three strips. There are three exposure positions in each strip. At each exposure
position, images acquired by five cameras looking at different directions are exposed simul-
taneously. These images are represented by colored arrows and circles. The observation



Remote Sens. 2023, 15, 1374 5 of 25

direction of an image is represented by the direction of an arrow. It can be seen from the
figure that the image grouping procedure divides the images according to their spatial
proximity and similarity of observation directions. Images in each group have similar
observation directions, and each image spatially overlaps with its neighbors.
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The algorithm for the image grouping procedure is described by Algorithm 1. When
the procedure meets an unprocessed match pair, a stack is initiated, and the images from
the current match pair are added to the stack. Then, the procedure pops an image from the
stack at a time, and adds it to the current group. The procedure finds its match pairs in the
entire set of match pairs. For each one in the found match pairs, the procedure adds the
matched image to the stack if the match pair has not been processed. The current growing
process terminates until the stack is empty. The image grouping procedure traverses all the
match pairs and divides the images to five groups, as illustrated in Figure 2.

Algorithm 1 Image grouping by traversal of match pairs

Input: match pairs M = {(i, j)|i, j ∈ {1, 2, 3, . . . , n}, i < j}; each pair specifies the match
relationship between image i and j
Output: image groups G =

{
gk = {i}

∣∣∣i ∈ {1, 2, 3, . . . , n}, k = {1, 2, 3, 4, 5}, gi ∩ gj = Φ, if i 6= j
}

Initialization: G = Φ
1: for each pair (i, j) in M
2: if (i, j) is not processed
3: initialize a new group g
4: initialize a stack S, add i and j to S
5: while S is not empty
6: pop top element m from S, add m to g
7: for each match pair (m, n) in M
8: if (m, n) is not processed
9: push n into S
10: end if
11: end for
12: end while
13: add g to G
14: end if
15: end for
16: return G
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2.2. Adaptive Track Selection

Tracks correspond to 3D points in the object space. Tracks are generated from tie
points which are determined by pairwise image matching. Pairwise image matching is
carried out based on the result of the match pair selection. In this study, RootSIFT with the
approximate nearest neighbor (ANN) algorithm is used to generate putative matches for
each match pair. To speed up the matching process, the preemptive matching technique is
used. Then, putative matches between two images are geometrically verified based on the
fundamental matrix with RANSAC loops to generate tie points. Based on the geometrically
verified tie points, the tracks are then generated.

To improve the efficiency of the following SfM reconstruction process, an adap-
tive track selection method is proposed. The adaptive track selection is performed on
the generated tracks in the object space. The tracks are georeferenced to determine
their positions in the object space, which is illustrated in Figure 3. For a given track,
its image observations are determined by pairwise matching. Therefore, its 3D posi-
tion can be estimated using its image observations and the orientation observations of
corresponding images.
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In this study, the position of a track is calculated as follows. Firstly, the position is
solved based on each observation using the DEM-aided georeferencing of a single image.
Secondly, the georeferencing positions are averaged to determine the final position of the
track. The fundamental model of DEM-aided direct georeferencing is the inverse form of
the collinearity equations as follows.

X = XS + (Z− ZS)× (a1 × x + a2 × y− a3 × f )/(c1 × x + c2 × y− c3 × f ) (1)

Y = YS + (Z− ZS)× (b1 × x + b2 × y− b3 × f )/(c1 × x + c2 × y− c3 × f ) (2)

where (X, Y, Z) is the spatial position of a track under the object coordinate system, (x, y)
is the image observation of the track under the image plane coordinate system, (XS, YS, ZS)
is the spatial position of the projection center under the object coordinate system, f is the
focal length, and a1 to c3 are nine elements of the rotation matrix from the image space
coordinate system to the object coordinate system.

The algorithm for the adaptive track selection procedure is described by Algorithm 2.
Basically, the procedure iteratively selects tracks until each image has no less than a

minimum number of observations (MNO). To effectively decimate the tracks, the tracks
with a large number of observations are preferable as they add more constraints. To select
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the tracks with a large number of observations, the track selection is conducted based on a
series of 2D grids. Firstly, the range of the grids is determined based on the result of track
georeferencing. Then, an initial ground sample distance (GSD) is calculated, and a grid is
initialized. The tracks are mapped to the cells of the grid based on their 2D position. Then,
the track with the maximum number of observations is selected from each cell of the grid.
To guarantee that all the images reach the MNO, the track selection works in an iterative
manner. In each iteration, the GSD is halved and a new grid is generated with finer cells.
The remaining tracks are mapped to cells of the new grid. The track with the maximum
number of observations is selected from each cell.

Algorithm 2 Adaptive track selection

Input: tracks Tall = {ti|i ∈ {1, 2, 3, . . . , m}}, where each track ti stores its image observations; the
value of MNO; the number of observations operator NoO
Output: selected tracks Ts =

{
tj

∣∣∣j ∈ {1, 2, 3, . . . , m}
}

, Ts ⊂ Tall

Initilization: Ts = Φ
1: for each track ti in Tall
2: georeference ti
3: end for
4: calculate GSDinit
5: initialize a set V = {i|i ∈ {1, 2, 3, . . . , m}, NoO(i) < MNO }
6: add all the images into V
7: initialize the ground sample distance GSD = GSDinit
8: while V is not empty
9: initialize 2D grid R with GSD
10: for each track ti in Tall
11: if ti is in Ts
12: continue
13: end if
14: find the images IM to which ti is visible
15: if IM ∩V = Φ
16: continue
17: end if
18: find the cell r in which ti lies

19: if r is occupied by another track tj and NoO(ti) < NoO
(

tj

)
20: continue
21: else
22: stores ti in r
23: end if
24: end for
25: for each cell ri in grid R
26: add the track t stored in ri to Ts
27: end for
28: update V according to Ts
29: GSD = GSD/2
30: end while
31: return Ts

The initial GSD of the grid R is calculated according to Equation (3).

GSDinit =
√
(W × H)/MNO (3)

where W and H are the width and height of the ground projection of an image, respectively.
The first two iterations of the track selection process are illustrated in Figure 4. Figure 4a
shows the initialized grid with the initial GSD. The points in the figure are the tracks
mapped to the cells. The red point in each cell indicates the selected track with the
maximum number of observations. Figure 4b shows the result of the second iteration.
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The GSD is halved and the tracks with the maximum number of observations in the cells
are selected.
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2.3. Parallel Submap Reconstruction and Incremental Submap Merging

Based on the selected tracks, submaps are reconstructed from image groups in parallel.
Each submap is reconstructed using incremental SfM in the object space. The optimization
problem is formulated as a joint minimization of the sum of the squared reprojection errors
and the sum of the squared positioning errors. The object function for the optimization is
given by Equation (4).

E1 = ∑i ∑j ρij‖P
(
Cj, Xi

)
− xij‖2 + p ∑k ‖Mk − Sk‖2 (4)

where xij is an image observation of a 3D point Xi on image j, Cj represents the camera
parameters of image j, P is the function that projects a 3D point onto the image plane, ‖ · ‖
denotes the L2-norm, Mk is the position observation of image k, Sk is the estimated position
of image k, ρij is an indicator function with ρij = 1 if point Xi is visible to image j (otherwise,
ρij = 0). p is a weight for the squared positioning errors, and it is calculated according to
Equation (5).

p = σ2
0/σ2

GNSS (5)

where σ0 is the accuracy of image observations, while σGNSS is the accuracy of the global
navigation satellite system (GNSS) observations.

Common tracks between two submaps can be determined with ease as all submaps are
reconstructed based on the same set of selected tracks. To detect the outliers in the common
tracks between two submaps, the positional difference in common tracks is exploited. It can
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be assumed that Xi
1 and Xi

2 are estimated coordinates of two common tracks with the same
index i. Xi

1 is taken from Submap 1 and Xi
2 is taken from Submap 2. It can be assumed that:

Xi
1 = Xi + e1

i (6)

Xi
2 = Xi + e2

i (7)

where Xi is the true coordinate of the track, e1
i and e2

i are the residual errors corresponding
to Xi

1 and Xi
2, respectively. It can be assumed that e1

i and e2
i are subject to two normal

distributions, as follows.
e1

i ∼ N
(

µ1, σ2
1

)
(8)

e2
i ∼ N

(
µ2, σ2

2

)
(9)

where µ1 and µ2 are the means of the distributions, while σ2
1 and σ2

2 are the variances in the
distributions. The positional difference D between Xi

1 and Xi
2 is given by Equation (10).

D = e2
i − e1

i (10)

Based on the above assumptions, it can be deduced that D is subject to the normal
distribution given by Equation (11).

D ∼ N
(

µ2 − µ1, σ2
1 + σ2

2

)
(11)

Based on the normal distribution of D, the three-sigma rule is used to detect and
remove outliers in the common tracks. Specifically, a pair of common tracks is determined
as an outlier as long as the positional difference along an axe is outside the range of
the corresponding mean value plus and minus three times the corresponding standard
deviation.

After the detected outliers are removed from the common tracks, the submaps are
incrementally merged. The submap reconstructed from the image group composed of nadir
images is used as the base map. The other submaps are incrementally merged to the base
map. To merge a submap, a similarity transformation is firstly estimated. For common
tracks {Pi} and {Qi}, the transformation can be estimated by minimizing the object function
given by Equation (12).

E2 =
1
n ∑n

i h(‖ Qi − (λRPi + t) ‖2) (12)

where R is the rotation matrix, t is the translation vector, λ is the scaling factor, and h is the
Huber loss function. ‖ · ‖ denotes the L2-norm.

Then, the estimated transformation is applied to the submap. The transformed submap
is locally optimized with common tracks fixed to their counterparts in the base map. After
merging the submap and the base map, the merged map is globally optimized and used
as the base map for merging the next submap. For the local and global optimization, the
problem for refining camera poses and 3D tracks is formulated to minimize the first term
of Equation (4), where the sum of squared errors between the tie point observations and
projections of the corresponding tracks is minimized.

3. Experimental Results

A large-scale aerial image set was used to evaluate the performance of the proposed
methodology. Firstly, the specification of data acquisition is detailed. Secondly, the ex-
perimental results including image grouping, track selection, submap reconstruction, and
merging are presented. Finally, the proposed methodology is compared with widely used
software packages to demonstrate its performance. The proposed methodology was im-
plemented in the C++ programming language. In this study, pairwise image matching,
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track generation, and bundle block adjustment were based on the open-source software
OpenMVG [38]. Optimization problems were solved using the open-source software Ceres
Solver [39]. All of the experiments were performed on a Dell Precision Tower 7810 worksta-
tion. The workstation was equipped with a Windows 10 Professional operating system,
an Intel Xeon E5-2630 CPU (20 cores, 2.2 GHz), a NVIDIA Quadro M4000 GPU, and a
128 GB memory.

3.1. Survey Area and Data Specification

The dataset was acquired from a survey area mainly covered by farmland and vegeta-
tion. This area is 5.2 km from east to west and 4.1 km from south to north. The elevation
of the area is about 65 m above the sea level. The terrain of the area is basically flat.
Figure 5 shows an orthophoto of the survey area. The orthophoto was derived from the
acquired images.
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Figure 5. Orthophoto of survey area.

The area was surveyed in autumn 2018 with a five-camera imaging system mounted
on a vertical take-off and landing (VTOL) fixed-wing UAV. Specifications of the data
acquisition system are listed in Table 1.

Table 1. Specifications of data acquisition.

Item Specification

Number of cameras in the oblique
imaging system 5

Camera model SONY ILCE-5100
Image resolution (pixel) 6000 by 4000

Focal length of nadir and oblique
cameras (mm) 20, 35

Forward and side overlap ratio 80%, 70%
Flight height (m) 460

Ground sample distance (GSD) (cm) 7
Number of images 9775

POS observations Latitude, longitude, altitude, omega, phi,
and kappa

Observation direction of camera (1, 2, 3, 4,
and 5) Backward, forward, right, left, and down

Area covered (km2) 9.1



Remote Sens. 2023, 15, 1374 11 of 25

The acquired positioning observations include latitude, longitude, and altitude which
are defined under the World Geodetic System (WGS84). These observations were acquired
based on the differential GNSS technique. No ground reference station was used during the
surveying campaign. The accuracy of the GNSS observations was at the level of meters. The
orientation observations, including omega, phi, and kappa, defined the sequential rotations
around the X-Y-Z axes of the object coordinate system. In this study, the east–north–up
(ENU) coordinate system was used as the object coordinate system. Figure 6 shows the
position of exposures in the survey area. At each point, five images were synchronously
exposed. The image acquisition started from the red point at the top of the area and finished
at the blue point at the bottom. A total of 9775 images were acquired at 1955 exposure
positions. Figure 7 shows the two sample images.
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3.2. Pairwise Matching and Image Grouping

A total of 33,297 match pairs were selected. Based on the selected match pairs, pairwise
image matching was performed. A total of 32,050 pairs were robustly matched with
geometric verification, which accounted for 96.3% of all the selected match pairs. The
number of robustly matched pairs and the selected match pairs are listed in Table 2. It
can be seen from the table that almost all of the matched pairs from each single camera
were robustly matched. The percentages of matched backward–forward and right–left
image pairs were 95.0% and 97.0%, respectively. Although the percentage of matched
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oblique-nadir pairs was lower than that of the oblique–oblique ones, it was still higher than
87.1%. The pairwise image matching result shows that the oblique and nadir images were
well connected.

Table 2. Statistics of pairwise image matching.

Camera 1 2 3 4 5

1 1918/1922 6834/7195 - - 1764/1865
2 - 1921/1922 - - 1744/1849
3 - - 1921/1922 7229/7452 1521/1710
4 - - - 1921/1922 1510/1733
5 - - - - 3767/3805

Image grouping was also performed based on the selected match pairs. The procedure
automatically divided the aerial images to five groups. Each group contained 1955 images.
The first two groups contained images from the backward and forward cameras. The third
and fourth group contained images from the left and right cameras. The last group only
contained the nadir images.

3.3. Track Selection

A total of 1,137,945 tracks were directly generated based on the result of pairwise
image matching. Table 3 lists the statistics of track length and image observations. The
length of a track was the total number of its image observations. The observations of an
image corresponded to the total number of tracks visible to the image. The maximum
track length was 130, which means the corresponding track was observed in 130 images.
The median and mean of track length were less than 7, which demonstrates that most
tracks could only be observed in a few images. The standard deviation of the track length
indicates that most tracks had a similar number of observations. The second row of the
table shows that the maximum and minimum of image observations differed significantly.
It is found that the image with zero track observations was largely covered by water. The
image procedure failed to match this image with other ones, meaning that it had no track
observations. There were more than 700 observations in an image on average. The standard
deviation shows that the number of observations varied greatly among the images.

Table 3. Statistics of track length and image observations.

Min Max Mean Median STD

Track length 3 130 6.4 4 7.5
Image observations 0 1572 747.9 763 271.7

After track georeferencing, the positions of the tracks in the object space were de-
termined. In this study, an ASTER GDEM2 elevation model of the survey area was
used to georeference the tracks. The ASTER GDEM2 elevation model was downloaded
from USGS EarthExplorer as a GeoTIFF image. The resolution of the image was 3601 by
3601 pixels. The spatial resolution of the elevation model was about 30 m. The ASTER
GDEM2 elevation model refers to WGS84 with the height values transformed via the
EGM96 model to the physical height. The vertical accuracy of the elevation model is about
15.85 m [40]. Figure 8 shows the georeferenced tracks. The tracks were colored according
to their length. It can be seen from Figure 8a that the tracks less than 11 in length covered
the whole survey area. The density of longer tracks was lower than that of the shorter ones.
It can be found by combining Figures 5 and 8 that long tracks were mainly located in the
areas covered by bare earth or buildings. The feature points extracted in the areas covered
by farm field were less repetitive. The experimental results demonstrate that a large track
length was highly corelated with land cover.
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Adaptive track selection was performed based on the track georeferencing results.
Figure 9 shows the relationship between the MNO value and the number of selected tracks.
The figure demonstrates that the number of selected tracks was linearly correlated with
the MNO.
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Table 4 lists the length statistics of the adaptively selected tracks with various MNO
values. It can be seen that the mean and median track length of selected tracks decreased
with increasing MNO values. As is shown by Figure 8, there were fewer longer tracks than
shorter ones. With the increase in the MNO, more and more shorter tracks were selected. As
a result, the mean track length and the median track length decreased. However, the values
in the column of mean track length were much larger than the value listed in Table 3, which
demonstrates that tracks with a large number of observations were effectively selected. The
values in the column of standard deviation were also much larger than the counterpart
listed in Table 3, which also demonstrates that longer tracks were selected with priority.

Table 4. Length statistics of adaptively selected tracks with various MNO values.

MNO Number of
Selected Tracks Mean Median STD

30 61,329 17.2 9 18.9
40 82,708 16.0 9 17.7
50 103,918 15.0 8 16.8
60 124,469 14.3 8 16.0
70 144,095 13.7 8 15.4
80 165,252 13.2 8 14.8
90 186,390 12.7 8 14.3

100 207,924 12.3 7 13.9

Table 5 lists the statistics of image observation based on adaptive track selection. All
the indicators in the table were positively proportional to MNO values. It can be seen that
the maximum, mean, and media values were smaller than their counterparts from Table 3,
which means that the proposed track selection method effectively reduced the number of
image observations on the whole. The standard deviation was also smaller than that from
Table 3, which indicates that the number of observations became more balanced among
the images.

Table 5. Statistics of image observations based on adaptive track selection.

MNO Max Mean Median STD

30 383 107.7 95 46.9
40 465 135.3 120 56.7
50 561 159.5 143 64.8
60 593 181.7 166 71.3
70 676 202.0 184 76.8
80 700 222.6 205 81.4
90 741 242.8 225 85.2

100 764 261.8 246 88.4

Figure 10 shows the histograms of image observations of all tracks and the adaptively
selected tracks. It can be seen from Figure 10a that the number of observations of most
images ranged between 400 and 1200. However, there were still a considerable number
of images on the left and right sides of the histogram. This means that the number
of observations was unbalanced among the images. In comparison, the histogram of
adaptively selected tracks shows that most images were concentrated in the range between
100 and 300. The smaller range visually demonstrates that the number of observations was
more balanced among the images.
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Figure 10. Histogram of image observations: (a) all tracks; (b) adaptively selected tracks (MNO = 50).

Figure 11 shows the selected tracks with the MNO set as 50. It can be seen that there
were much fewer tracks in Figure 11a than in Figure 8a. It can be found that long tracks
were complementary in space to the short ones. This is because long tracks were selected
with priority. If the images met the MNO threshold given the selected long tracks, no other
tracks were selected. On the contrary, more short tracks were selected in the areas where
few long tracks existed. The selected tracks with the MNO set as 50 were used for the
following experiments.
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3.4. Submap Reconstruction and Merging

Based on the selected tracks and the five image groups, five submaps were recon-
structed in parallel. The parallel reconstruction of submaps was implemented using
multiple processes. For the reconstruction of a submap, bundle block adjustment was
performed every time 30 images were added. Statistics of the reconstructed submaps are
listed in Table 6. It can be seen that four reconstructions registered all the images. There
were eight unregistered images in Submap 1. It is found that these images were largely
covered by water. In addition, there were few matched feature points in these images. The
number of reconstructed tracks in the submaps was comparable. However, the average
length of tracks and average number of image observations in the submap reconstructed
from the nadir images were larger than those in the submaps reconstructed from the oblique
images. This indicates that tracks were more observable in the nadir images than in the
oblique images. All the submap reconstructions achieved sub-pixel accuracy.

Table 6. Statistics of reconstructed submaps.

Submap Registered
Images

Reconstructed
Tracks

Track Length
Mean

Image Observations
Mean RMSE (Pixels)

1 1947/1955 36,405 7 132.3 0.40
2 1955/1955 29,864 8 123.6 0.52
3 1955/1955 33,536 8 151.3 0.45
4 1955/1955 34,875 8 149.2 0.44
5 1955/1955 33,103 12 210.8 0.47

Figure 12 shows oriented images and reconstructed tracks for each reconstructed
submap. The oriented images were labelled with green points. The color of the tracks was
derived from corresponding image observations. The relative positions between oriented
images and reconstructed tracks in the figures were different, which is due to the different
observation directions of images. The experimental results show the effectiveness of the
proposed method for image grouping.

Outliers in common tracks were detected based on the statistics of positional differ-
ences. The statistics of positional differences between common tracks of the reconstructed
submaps are listed in Table 7. The numbers of common tracks between Submaps 1–5 and
2–5 were comparable. The numbers of common tracks between Submaps 3–5 and 4–5 were
similar. The forward and backward submaps had more common tracks with the nadir
submaps than the right and left submaps. This demonstrates that the image observations
acquired by the forward and backward cameras were more similar to those acquired by
the nadir camera. The average values of the positional differences along XYZ axes were at
the level of meters, which indicates that there was a positional bias of meters between the
reconstructed submaps. Most of the standard deviations of the positional differences along
XYZ axes were at the level of meters. The standard deviations and average values show
that most of the common tracks between an oblique submap and the nadir submap were
close in space. The maximum and minimum of positional differences along XYZ axes were
at the level of hundreds of meters, which were far from the corresponding mean values.
This indicates the existence of outliers in the common tracks.
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Figure 12. Reconstructed submaps: (a) Submap 1; (b) Submap 2; (c) Submap 3; (d) Submap 4; and
(e) Submap 5.

Figure 13 shows the positional difference histograms of common tracks between
Submaps 1 and 5 within the range of mean values plus and minus three times the cor-
responding standard deviations. The red curves in the histograms were fitted normal
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distributions. It can be seen that the normal distributions fitted well with the histograms,
which demonstrates the correctness of the proposed model for outlier detection.

Table 7. Statistics of positional differences between common tracks (unit: meters).

Submaps Number of
Common Tracks Min Max Mean STD

1-5 18,358
X −228.34 223.76 −1.84 6.33
Y −136.57 165.65 3.76 4.37
Z −266.05 400.56 3.12 7.24

2–5 18,049
X −206.69 361.10 −1.01 6.54
Y −113.63 206.02 5.30 3.62
Z −221.60 207.53 3.08 5.27

3–5 14,405
X −278.84 283.24 −1.58 7.66
Y −248.83 258.23 1.51 7.35
Z −465.37 370.04 3.06 12.15

4–5 14,461
X −269.90 212.66 −0.73 7.24
Y −205.99 283.89 5.26 7.41
Z −311.22 399.73 0.31 11.73
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which were far from the corresponding mean values. This indicates the existence of out-

liers in the common tracks. 
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Y −205.99 283.89 5.26 7.41 

Z −311.22 399.73 0.31 11.73 

Figure 13 shows the positional difference histograms of common tracks between 

Submaps 1 and 5 within the range of mean values plus and minus three times the corre-

sponding standard deviations. The red curves in the histograms were fitted normal dis-

tributions. It can be seen that the normal distributions fitted well with the histograms, 

which demonstrates the correctness of the proposed model for outlier detection. 

 

Figure 13. Positional difference histograms of common tracks between Submaps 1 and 5: (a) X axis;
(b) Y axis; and (c) Z axis.

The common tracks are visualized in Figure 14. The inliers and outliers were labeled
with green and red points, respectively. In total, 91, 91, 79, and 97 outliers were detected in
common tracks between Submaps 5-1, 5-2, 5-3, and 5-4, respectively. It can be seen from
the figure that the outliers were more likely to be in the areas covered by road, farm field,
and bare earth. There were fewer outliers detected in the building-covered areas. This is
because feature points in these areas are more distinctive.

Figure 15 shows the image observations of an outlier detected in common tracks
between Submaps 1 and 5. The observations were labelled with red circles in the images.
Figure 15a,b are from the image group used to reconstruct Submap 1. Figure 15c,d are from
the image group used to reconstruct Submap 5. It can be seen that the outlier was derived
from corresponding outliers remaining in the matches. This demonstrates that although
image matches were geometrically verified, the classical robust image matching technique
could not remove all the outliers from the matches.
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(a) cam1_0009.jpg; (b) cam1_0010.jpg; (c) cam5_0004.jpg; and (d) cam5_0005.jpg.
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Statistics of incremental submap merging are listed in Table 8. A total of 102,148 tracks
were reconstructed after merging all the submaps, accounting for 98.3% of the selected
tracks. The high reconstruction ratio demonstrates the effectiveness of the proposed track
selection method. The number of registered images shows that all of the images oriented
in the submaps were successfully registered in the merging process. Sub-pixel accuracy
was achieved in the process of merging each submap. This demonstrates that the accuracy
of the final map was comparable to the accuracy of the submaps listed in Table 6, which
indicates that errors did not accumulate in the submap merging process.

Table 8. Statistics of incremental submap merging.

Merging Reconstructed Tracks Registered Images RMSE (Pixels)

5-1 51,055 3902 0.43
5-1-2 62,779 5857 0.47

5-1-2-3 81,831 7812 0.46
5-1-2-3-4 102,148 9767 0.45

Figure 16 visualizes the incremental submap merging. The figure shows oriented
images and a sparse point cloud after each submap was merged. The oriented images were
labelled with green points. The figures visually demonstrate the robustness and accuracy
of the proposed methodology.
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3.5. Comparison with Software Packages

The proposed methodology was compared with two software packages that are widely
used by the academic community and industry professionals. The software packages and
their configurations are listed in Table 9.

Table 9. Specification and parameter settings of software packages.

Software Package Match Pair
Selection Image Matching SfM Strategy Version Source

Metashape Position and
visual similarity

Highest accuracy,
maximum features:
40,000, maximum

tie points: 4000

Hierarchical 1.8.4 build 14,856
https://www.agisoft.com/

(accessed on
21 January 2023)

COLMAP Position Maximum
resolution: 2000 px Hierarchical 3.7

https://github.com/
colmap/colmap

(accessed on
21 January 2023)

Metashape is a commercial software package widely used by industry professionals
and the research community for processing aerial images and producing orthomosaics,
digital elevation models, and photorealistic 3D models [41]. It supports position-based and
visual-similarity-based match pair selection. The ground altitude of the survey area was
set as 65 m to make the position-based match pair selection procedure work efficiently. The
visual-similarity-based match pair selection procedure finds overlapping images by match-
ing the downscaled copies of original images. The software package parallelizes image
matching using multi-core CPU and GPU. The software package exploits a hierarchical
strategy for SfM reconstruction. The other parameters were set as default values.

COLMAP is an open-source software package widely used by the research community
for image matching, sparse reconstruction, and dense reconstruction [26]. Match pair
selection based on position was used for the experiments. The search radius and number of
neighbors for the position-based match pair selection were set as 300 m and 150, respectively.
To speed up the pairwise image matching process, down-sampled images were used for
the experiments. Image matching in the software package was accelerated using multi-core
CPU and GPU. Both incremental and hierarchical strategies for SfM reconstruction were
available in the software package. In this study, the hierarchical strategy was used for
experiments. Bundle block adjustment was performed every time 30 images were added.
The other parameters were set as default values.

The same dataset was processed with the software packages mentioned above. The
experimental results of SfM reconstruction are listed in Table 10. It can be seen that
both Metashape and COLMAP registered all of the aerial images, which showed the ro-
bustness of these software packages. Metashape reconstructed about nine millions of
tracks at the cost of about three hours of processing time. COLMAP reconstructed more
than four millions of tracks, while its time efficiency was much lower than Metashape.
Both software packages achieved pixel-level accuracy in the reconstructions. In compar-
ison, the proposed methodology reconstructed the scene in less than an hour based on
the adaptively selected tracks. It was about 22.37 and 3.52 times faster than COLMAP
and Metashape, respectively. Specifically, the proposed methodology spent 15 s, 11 min,
19 min, and 23 min on image grouping, adaptive track selection, submap reconstruction,
and submap merging, respectively. Reconstructing the five submaps took 19, 18, 11, 12,
and 15 min, respectively. The proposed methodology was the most accurate on the exper-
imental dataset. According to the basic principle of adjustment computation, assumed
observations are independent and of the same accuracy, and more observations lead to
more accurate estimation. However, the proposed method achieved more accurate estima-
tion with far less image observations. This means that images observations were not of the
same accuracy. The key is the number of redundant observations. As shown by Table 4,

https://www.agisoft.com/
https://github.com/colmap/colmap
https://github.com/colmap/colmap
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the selected tracks had a large number of redundant observations. For a single track, more
redundant observations generally led to more accurate estimation. This is because less
accurate observations and outliers could be effectively detected and removed with the
help of a large number of redundant observations during the optimization of a scene. As a
result, the accuracy of the image observations improved on the whole. Furthermore, more
accurate image observations generally led to more accurate SfM reconstruction. To the
best of our knowledge, Metashape and COLMAP did not force a threshold of minimum
number of observations on tracks. A significant number of tracks with a few, and even no,
redundant observations were reconstructed during SfM. In this situation, it was difficult to
detect less accurate observations and outliers, reducing the overall accuracy of the image
observations. Consequently, the SfM reconstruction was less accurate, although many more
image observations were used.

Table 10. Comparison of SfM reconstruction.

Software
Package

Registered
Images

Reconstructed
Tracks RMSE (Pixel) Time Efficiency

Metashape 9775 8,970,391 1.00 3 h 10 min
COLMAP 9775 4,612,725 1.72 20 h 8 min
Proposed 9767 102,148 0.45 54 min

4. Discussion

The proposed image grouping method is based on match pair selection and requires
precision in the selected match pairs. The used match pair selection method generated
match pairs using the position of images, the observation directions of images, and the
terrain of the survey area. The pair-wise image matching results show that the generated
match pairs are precise. The proposed image grouping method exploits the structure
underlying an aerial survey which is generally based on regularly distributed exposures
located in the parallel strips. The regularity of exposure also guarantees that images are
acquired by two oblique cameras with opposite observation directions that overlap well
with each other. The grouping procedure divides the images to non-overlapping groups
instead of overlapping groups. This strategy avoids setting the overlapping ratio parameter
which defines the ratio of images that two overlapping groups have in common. If the
overlapping ratio parameter is set too high, the size of the generated image groups will
increase. The efficiency of the submap reconstruction and merging will decrease. If the
ratio parameter is set too low, the common images must lie at the boundary of the image
groups. Then, the robustness and the accuracy of the submap reconstruction and merging
will probably decrease as the estimated orientations of images at the boundary of an image
network are generally of low accuracy.

The proposed method iteratively selects tracks using a series of 2D grids. The proposed
method uses a series of grids instead of a single grid with a constant GSD for several reasons.
Experimental results have shown that the density of tracks is highly correlated with the
land cover of the survey area. It can be expected that the number of observations of an
image acquired over a building-covered area is larger than that of an image acquired over
a farm field. If a grid with a large GSD is used for track selection, images acquired over a
farm field may fail in registration due to the lack of sufficient observations. If a grid with a
small GSD is used, the efficiency of reconstruction will decrease as a large number of tracks
are selected. On the contrary, the proposed method iteratively selects tracks until all images
reach the MNO threshold. The MNO threshold is more meaningful than a constant GSD
for image registration as the robustness of registration generally depends on the number
of observations. Moreover, the iteratively halved GSD makes the track selection process
converge fast as the number of selected tracks theoretically quadruples in each iteration.
Therefore, the proposed iterative track selection method is effective and efficient.

As the selected tracks are used by the reconstruction of submaps, common tracks
between the reconstructed submaps can be determined without difficulty. To detect outliers
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in the common tracks, the three-sigma rule is performed based on the positional difference
in the common tracks. The proposed outlier detection method insists that the submaps are
reconstructed in the object space. The experiments show that the proposed outlier detection
model fits well with the data. The detected outliers show that the classical robust image
matching technique cannot remove all the outliers from the matches. Image matching
techniques taking into account relationship among feature points could be used to solve
this problem.

Five submaps were reconstructed in parallel from corresponding image groups. The
experimental results show the high performance of the parallel reconstruction. Although
the image groups could be further divided to smaller ones, the time efficiency of the submap
reconstruction might not be further improved as CPU usage had already approached 100%
during the experiments. The nadir submap reconstructed from the nadir images was the
only submap that had common tracks with the other four submaps. Moreover, Figure 6
shows that the mean track length and mean image observations of the nadir submap were
larger than those of the oblique submaps, which indicates that the image network of the
nadir submap was more stable than that of the oblique submaps. Therefore, the nadir
submap was used as the base map during the submap merging process in favor for its
stable network and high connectivity. The accuracy of the final map reflects the high inner
consistency of the proposed submap merging method. However, the proposed submap
merging method was suboptimal as the oblique submaps were optimized with common
tracks fixed to their positions in the nadir submap. The absolute positioning accuracy of
the final map will be systematically investigated in future work.

5. Conclusions

As a core technique, SfM is crucial for the accuracy, robustness, and efficiency of
the image-based 3D modelling pipeline. A hierarchical SfM reconstruction methodology
for large-scale oblique images is proposed in this paper. Based on match pair selection,
images were divided into five image groups. After pairwise image matching, tracks were
decimated using the adaptive track selection method. Then, incremental SfM was per-
formed on the image groups in parallel to generate submaps in the object space. The
three-sigma rule was performed on the positional difference between common tracks to
detect the outliers. Finally, the reconstructed submaps were incrementally merged. The
proposed methodology was experimented on a large dataset. Experimental results of
the proposed methodology were fully explored. The proposed methodology was com-
pared with COLMAP and Metashape. The experimental results reveal that the proposed
methodology outperformed the software packages in terms of accuracy and efficiency. The
experimental results demonstrate that the proposed hierarchical SfM methodology was
accurate and efficient for large-scale oblique images.
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