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Abstract: Since the 1990s, Morocco’s agriculture has been characterized by the co-existence and trans-
formation of both modern and traditional smallholder systems. In the Atlas Mountains, the effects of
rural–urban transformation have led to intensified irrigated agriculture in some agricultural areas,
while others were abandoned. To better understand these effects, this study aimed at (1) analyzing the
land use and land cover (LULC) changes, (2) assessing the structure and dynamics of vegetation, and
(3) comparing a Support Vector Machine (SVM) classification approach with a seasonal rules-based
approach. We, therefore, employed a semi-automatic supervised classification of LULC using Landsat
data from the 1990s to the 2020s to distinguish between Open Canopy Vegetation, Bareland, Forest,
and Water. Overall accuracies achieved ranged from 88% to 90% in 1990, 2000, 2010, and 2020. SVM
results indicated the share of Bareland as >80% of the landscape in all periods. With the seasonal
rules-based approach, 10% less Bareland was detected than with the SVM approach. Our findings
indicate the limitation of detecting vegetation reflectance in semi-arid mountainous regions such as
that prevailing in Morocco using a single machine learning method.

Keywords: season effect; remote sensing; land cover change; vegetation

1. Introduction

Changes in land use and land cover of rural and connected urban areas are a major
consequence of global environmental change [1], which itself is driven by population
growth that puts traditional land use, as well as land cover and related ecosystem services,
under pressure [2–4]. A central challenge for sustainable development and governance
policies at all levels is to effectively manage such transformation processes while main-
taining or even enhancing environmental quality, people’s livelihood strategies, and food
security [5]. In recent years, public awareness has risen for interdependencies between
resource use and sustainable development. With the formulation of the 17 UN (United
Nations) Sustainable Development Goals (SDGs) and the implementation of these goals
into the political agendas of many countries [6], the global commitment towards facing
these interdependencies has crystalized. During this process, it also became apparent that
research about sustainable development at the regional level remains very fragmented and
has a strong “northern” bias, with an underdeveloped assessment and mitigation capacity
in poorer tropical and subtropical countries, particularly in North and West Africa [4].

The High Atlas, with its many oases and abundant pastures, provides major ecosystem
services as it feeds many rivers in the country, harbors rich plant biodiversity, and preserves
traditional agricultural heritage as one of the “cradles” of Moroccan culture. The local
forests, comprising the world’s biggest area of holm oak (Quercus ilex L.) and juniper
(Juniperus phoenicea, J. oxycedrus) at high altitude (up to 2500m ASL) are associated with
rainfed agriculture dominated by olive trees (Olea europaea L.) and barley (Hordeum vulgare
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L.), combined with summer pastoralism. The irrigated terraces are limited to low altitudes
(about 500 m ASL) along valleys or at higher altitudes (up to 2500 m ASL) along oases with
permanent water sources [7]. The period since 2011 experienced prolonged droughts with a
precipitation decline by 5 to 30%, which makes the ecosystems in the High Atlas increasingly
vulnerable to climate change [8,9]. These droughts also affect oasis agriculture in the Atlas
Mountains, which for many centuries have resisted climate irregularities and are presently
facing additional challenges from rampant rural–urban transformation. This leads to the
emigration of the young generation to Morocco’s major cities or even to Europe. Oasis
populations suffer from poor educational opportunities, limited infrastructure, and often
lack access to countrywide and global value chains for their agricultural products, which
makes income generation for sustainable livelihoods difficult. While farmers’ agricultural
basis rapidly erodes, their economic survival often depends on remittances transferred
from relatives migrated to urban areas as well as on governmental subsidies. A more
reliable quantification of the LULC changes in the High Atlas Mountains may facilitate the
understanding of transformation processes at the oasis level and their effects on livelihood
strategies and food security of local farming communities.

During recent decades, remote sensing has become a powerful tool to analyze changes
in LULC. Its value is further increased by the recent incorporation of machine learning,
such as Support Vector Machine (SVM) and artificial intelligence approaches for image
analysis and the classification of features using machine learning. These methods allow
automatic classification with higher speeds, but require major sampling and training efforts.
The detection and monitoring of vegetation cover, particularly forest cover in arid and
semi-arid regions (often referred to as dryland forests), differs from that it tropical forests.
Different mixtures of deciduous and evergreen plant populations at a variety of stand
densities may lead to an underestimation of the vegetation cover using remote sensing
techniques [10–13]. Thus, using vegetation indices with temporal greenness rules was
found useful to assess heterogeneous vegetation areas with their own characteristics.

In view of the above, this work aims to analyze the extent of LULC changes of
Morocco’s High Atlas Mountains. The specific objectives are to (i) quantify major landscape
transformation processes between 1990, 2000, 2010, and 2020, (ii) assess the structure
and dynamics of vegetation in this region, (iii) compare a SVM classification approach
with a seasonal rules-based approach to understand the spatial and temporal distribution
of vegetation communities, and (iv) establish cause–effect relationships of changes in
ecosystem services in a social-ecological framework.

2. Materials and Methods
2.1. Study Area

The High Atlas Mountains in northern Morocco stretch across an area of about
55,351 km2 from the country’s Atlantic Coast in the West to the Algerian border (Figure 1).
They cover an altitude from 598 m to the summit of Jbel Toubkal at 4167 m. The area has a
semi-arid climate, with two contrasting seasons: a wet period from October to May and a
dry period from June to September with a total annual rainfall from 150 mm in the plain
to about 800 mm in the high mountains [14,15]. The High Atlas also provides 85% of the
irrigation water for the large plains surrounding the mountains, including Haouz in the
north, and Souss, Drâa, and Dades in the south [14]. In 2020, the total population of the
High Atlas amounted to 5.2 million, compared with 3.9 million in 1994 (HCP 1994), of
which around 90% are Amazigh (Chleuhs) and 10% speak Arabic (Darija). Family incomes
are largely based on agriculture and pastoralism [16], whereas tourism plays an increasing
role in areas such as the Ourika Valley near Marrakech of nearby Jbel Toubkal.
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Figure 1. Study area, elevation, and boundaries of the High Atlas Mountains in Morocco (Sources:
Country boundaries and digital elevation model: “Humanitarian Data Exchange”, accessed
20 January 2022, https://data.humdata.org/).

2.2. General Framework

In this study we employed an SVM approach, a common and powerful method,
to distinguish four vegetation classes, and an evidence-developed method, here named
as a “rules-based classification”, with four seasons defined by a Normalized Difference
Vegetation Index (NDVI; Figure 2). Data analysis comprised a compilation of remote
sensing imagery and fieldwork, followed by image processing, a comparison of both
approaches, and the harmonization of the classifications.
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2.3. Data Processing and Analysis
2.3.1. Imagery Acquisition and Pre-Processing

Free Landsat images of four periods with ten years intervals each, 1990, 2000, 2010,
and 2020, were downloaded from the United States Geological Survey (USGS, accessed
20 January 2022, “earthexplorer.usgs.gov/”). We used images for the dry season months
between July and September with < 10% cloud cover, whereby the time gap between
the images needed to be > 10 days. This led to a total of 37 images (Dataset 1, Table 1).
To obtain seasonal NDVI within a year, an additional 127 Landsat images (Dataset 2,
Table S4) in four periods of each year (1990, 2000, 2010, and 2020) were collected to calculate
comparative NDVI values. We omitted Landsat 7 data due to their sensor errors; the
correction process showed a large gap in our study area. Instead, we used Landsat Level 1
for time series analyses. This avoided errors of processed Level 2 products that contain two
different surface reflectance algorithms.

Table 1. Data of Landsat images (Dataset 1) used for classification of land use land cover changes in
the High Atlas Mountains of Morocco.

Image Sensor Month/Year Resolution Cloud Cover Nr. of Images

Landsat 5 TM July–September 1990 30 m <10% 10
Landsat 5 TM June–August 2000 30 m <10% 9
Landsat 5 TM June–September 2010 30 m <10% 10
Landsat 8 OLI June–September 2020 30 m <10% 8

The radiance measured by any given system from any object is influenced by factors
such as changes in scene illumination, atmospheric conditions, viewing geometry, and
instrument response characteristics [17]. Radiometric calibration of satellite-acquired
data is therefore essential for quantitative scientific studies, as well as for a variety of
image-processing applications [18]. The objective of atmospheric correction is to retrieve
the surface reflectance (which characterizes the surface properties) from remotely sensed
imagery by removing atmospheric effects.

Using a Dark Object Subtraction (DOS) approach during pre-processing, all images
were corrected for atmospheric and radiometric errors. This allowed the removal of haze
values caused by scattering of the remote sensing data [19], and the effects of water vapor
in the atmosphere, that can absorb the radiation in a specific area [20]. After correction, the
images of each year were mosaicked using the Seamless Mosaic tool of ENVI 5.3 (Exelis
Visual Information Solutions, Boulder, CO, USA) and clipped to the study area of the High
Atlas Mountains.

2.3.2. Classification and Accuracy Assessment

Approach 1. Support Vector Machine
Field dataset: The first of the four vegetation classes, referred to as “Open Canopy

Vegetation”, represented agricultural lands, grasslands, and tundra. The second class,
referred to as “Water”, represented artificial lakes, rivers, dams, streams, and reservoirs.
The third class, “Forest”, included woody and other wild vegetation, while “Bareland”
referred to sand dunes, exposed rocks, deserts, and uncultivated areas (Figure 3). Those
classes derived from separation [21] after inspecting them using Google Earth 7.1.

The training dataset was collected from the Google Earth Imagery and examined for
spectral signatures of each land-use class across images of 2000, 2010, and 2020. We first
used a visualization of land cover classes in the most recent year, 2020, employing Google
Earth Imagery, and then re-inspected the land cover type for a single point in 2010 and 2010
to build the training set of 2010 and 2000. Moreover, we used false color images of 1990 to
inspect land use classes. A small polygon was generated for each class in combination with
the false color in the historical imagery of 1990. In total, 482 samples averaging 4000 m2 in
size were collected for all periods (Figure 3). Overall, we collected 482 samples, of which

earthexplorer.usgs.gov/
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177 referred to Open Canopy Vegetation, 12 to Water, 95 to Forest, and 198 to Bareland
(Table 2, Figure S3). During fieldwork conducted in February 2022, we collected 215 GPS
points for validation based on Google Earth online images. These points were converted
from the Keyhole Markup Language (KML) to shapefile format. On the other hand, we
randomly identified a number of points for each class in ArcGIS and exported them in
KML format into Google Earth. These points allowed us to verify each class and to conduct
an accuracy assessment.
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Table 2. Type of classes used for the classifications, and detailed descriptions of what each class covers,
with the samples collected for the SVM classification of vegetation in the High Atlas Mountains of
Morocco.

Land Cover Class Name Description Samples

Open Canopy Vegetation Agriculture lands, grass lands, tundra 177
Water Artificial lakes, rivers, dams, streams, reservoirs 12
Forest or Closed Canopy Vegetation Woody vegetation, wild vegetation with closed canopy and dense tree 95
Bareland Sand dunes, exposed rocks, deserts, uncultivated areas 198

Classification and accuracy assessment: The SVM classification was performed through
ENVI classic version 5.3 (Exelis Visual Information Solutions, Boulder, CO, USA). This
method is considered as a supervised learning system based on statistical learning to iden-
tify and distinguish an optimal separation between the classes [21] based on the training [22].
The SVM approach was introduced first in the late 1970s [21]. It is an efficient classifier
in high-dimensional spaces, which makes it particularly applicable to multi-dimensional
remote sensing data [23]. Classification accuracy was determined by calculating the overall
accuracy and the Kappa index [19,24]—a commonly employed index—whereby we used
our ground truthing points from the field visit as an independent dataset.

Approach 2. Rules-based using Normalized Difference Vegetation Index
The NDVI was calculated using the following equation for the Normalized Difference

Vegetation Index (NDVI, [25]:

NDVI = (NIR − RED)/(NIR + RED)

where NIR refers to spectra reflectance of the Near Infrared.
NDVI values range from −1 to 1. The highest value (NDVI =1) represents a fully

healthy vegetation, while the lowest NDVI value (NDVI = −1) indicates non-vegetative
land cover [25].
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To investigate the correlation between the NDVI and the land-use types in the High
Atlas Mountains, we analyzed Landsat images for the four seasons of each year using the
criteria presented in Table 1 [26]. Hereby, Dataset 2 consisted of 127 Landsat images of 1990,
2000, 2010, and 2020 in Period 1 (December–January), Period 2 (March–April), Period 3
(July–August), and Period 4 (Oct–November) within periods < 60 days depending on the
availability of historical images (Supplement Tables S1 and S4). All datasets were corrected
and mosaicked before calculating NDVI. We randomized 150 points inside the boundaries
of the study site area, which we virtually visited using Google Earth Pro 7.1. At each ‘virtual
ground truthing point’, we labeled the class as in the land cover classification of 2020.
Vegetation types such as cropping system (mono-cropping, crop and tree), and tree density
were determined for the same periods. The NDVI value of each point in the four periods
was recorded using the identification function in QGIS. Due to the dominance of Bareland
in the High Atlas regions, we collected 88 additional stratified ‘virtual ground truthing
points’ for vegetative areas. To this end, we identified land cover and vegetation type in
each of the four periods (four NDVI values of 238 points) to compare the greenness of each
land-use/or vegetation type using pairwise comparisons. The distribution and vegetation
status allowed us to build rules to distinguish land cover types and to compare them
with the results from the first approach using the SVM method. While NDVI represents a
consistent index based on the reflectance of greenness in the ground retrieved from remote
sensing data, we applied the same rules-based approach built for 2020 to classify land,
using the historical NDVI of 1990, 2000 when no field data were available. The Landsat
data of 2010 displayed a line error between single images during the mosaicking process;
we therefore excluded this period in this approach. We assume this error may be the result
of the limited mosaicking capacity in the software used.

To assess the accuracy of our method, we simplified the accuracy assessment by
using a qualitative approach with semi-random windows visualization, comparing the
classified map versus available high-resolution based maps in QGIS. For this purpose, we
randomized seven windows with an average size of 5 × 5 km and subsequently visually
compared classified maps of the two approaches versus a true color base map. Finally, we
employed a harmonization process to group the equivalent class of both approaches. The
equivalent land-use type in the SVM approach and the vegetation type (NDVI approach)
were grouped into a generic class to compare both approaches using visualization. This
allowed the verification of the vegetation differences between both approaches and the
vegetation dynamics in the High Atlas Mountains.

3. Results and Discussion
3.1. Land-Use Classification Using the SVM Method

The results of the classification showed that the High Atlas is largely characterized by
Bareland, followed by Forest, Open Canopy Vegetation, and Water. The latter accounted
for <0.5% throughout the studied periods. Accuracy assessments obtained through the vali-
dation process of the land-use classification and the overall accuracy and Kappa coefficient
were satisfactory (Table 3).

Table 3. Accuracy assessment in (%) from 1990 to 2020 land-use classification using the SVM method
in the High Atlas Mountains of Morocco.

Year 1990 Year 2000 Year 2010 Year 2020

Land-Use Class User Producer User Producer User Producer User Producer

Open Canopy Vegetation 86% 100% 80% 82% 100% 92% 100% 92%
Water 85% 100% 98% 100% 100% 100% 100% 100%
Forest 85% 87% 81% 64% 97% 96% 85% 85%
Bareland 100% 82% 100% 100% 84% 100% 94% 89%

Overall accuracy 88%,
Kappa coefficient 0.8

Overall accuracy 85%,
Kappa coefficient 0.7

Overall accuracy 90%,
Kappa coefficient 0.8

Overall accuracy 90%,
Kappa coefficient 0.8
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Our classification method showed an increase in Forest in 2010 by +1662 km2, which
strongly shrunk by −5135 km2 in 2020. During the same period, Bareland was reduced by
−1737 km2 followed by an expansion of + 5049 km2 (Table 4, Figure 4). The Open Canopy
Vegetation was more than halved from 315 km2 in 1990 to 137 km2 in 2000 and rose again
to 217 km2 in 2020. The results indicated only minor changes in Water during 40 years
(Table 4).

Table 4. Land-use types in the High Atlas Mountains of Morocco classified from Landsat imagery
using the SVM method.

Year Area (km2)

Open Canopy Vegetation Water Forest Bareland Total area

1990 314 59 9350 45,619 55,342
2000 137 59 9414 45,732 55,342
2010 186 78 11,080 43,998 55,342
2020 281 28 3278 51,755 55,342
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Detecting changes in forest cover is a challenge in drylands and has received high
attention in recent decades [10,11,13]. In these studies, forest degradation was reported
largely quantitatively [11,13], and only rarely both quantitatively and qualitatively [10], as
we have done. The degradation of forest can be explained by (1) a neo-Malthusian overuse
of recourses driven by population increase and concomitant higher demand for firewood
and grazing lands, (2) climate change effects such as longer droughts and declining rainfall,
(3) consequences of urbanization and the related expansion of intensive agriculture and
rangeland, and (4) neoliberal economics promoting agriculture or mining [10,27,28].

Accuracy is a critical aspect of remote sensing image classification, and is typically
assessed using User’s Accuracy (UA) and Producer’s Accuracy (PA). In the case of the
forest class, a lower value of UA or PA in the year 2000 compared to other years raises
questions about the reliability of the classification results. One possible reason for the lower
accuracy in the year 2000 is the similarity in classes, especially in the classification of Forest
as Open Canopy Vegetation in some parts of the area. This similarity can lead to confusion
in the classification process, resulting in lower accuracy values. It is essential to take this
into account when evaluating the results of the classification process.
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3.2. The Complex Vegetation Landscape Structure in the High Atlas Mountains

Bareland was consistent in color and well distinguishable from other land-use types.
The Forest class had a wide range of density due to its scatter and different ages of trees.
It comprises (1) dense tree cover (leading to an almost closed canopy), (2) very dense
tree cover (closed tree canopy), and (3) coarse tree cover (with scattered tree cover and
a widely open canopy). However, using the SVM approach described above, the “Open
Canopy Vegetation” class referred to either monocrop stands, mixed crop and tree stands,
grass/bushes, and very coarse trees (Figure 5).
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Figure 5. Eight vegetation types classified in the High Atlas Mountains of Morocco. The yellow
points represent the location of ‘virtual ground truthing points’. All images were downloaded from
Google Earth Pro7.1 in 2019 and 2020 at the same scale.

All NDVI values had high deviations within each land cover type and across seasons
(Figures 6, 7 and S4). The dominance of values <0.2 through the year indicated large
land shares without vegetation cover, even at the end of the rainy seasons in April. The
distribution of high NDVI values was quite similar across all four periods, regardless of the
season (Figure 6). Statistical analyses (t-test) confirmed significantly different NDVI values
in April compared with January (p < 0.001), August (p < 0.001), and October (p = 0.005),
while NDVI values for the three other periods were statistically not significantly different
(p = 0.324, 0.323, and 0.844, respectively; Table 5).
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Figure 6. Histogram showing distributions of greenness from vegetation for four periods of 2020 in
the High Atlas Mountains of Morocco. NDVI was calculated from Landsat 8 (USGS).
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Table 5. Statistics of NDVI values for the High Atlas Mountains of Morocco in four periods of 2020.
The NDVI was calculated from Landsat 8 data. To separate means a pairwise multiple comparison
procedure (Holm–Sidak Method) was used (n = 239).

Comparison Diff of Means t p-Values

April vs. January 0.0889 4.812 <0.001
April vs. August 0.0853 4.615 <0.001
April vs. October 0.0603 3.265 0.005

October vs. January 0.0286 1.547 0.324
October vs. August 0.0249 1.35 0.323
Augustvs. January 0.00364 0.197 0.844

High NDVI deviations are in accordance with the findings of [10,29]. They were caused
by the diverse forest structure and the complex pattern of cropping and tree plantation
in High Atlas Mountains, as described by [30]. The species composition of most forest,
composed of oak, cedar (Cedrus atlantica (Endl.) Manetti ex Carrière) and sometimes
argan (Argania spinose (L.) Skeels), was highly heterogeneous, comprising pure stands
of deciduous and semi-deciduous trees and mixed stands with evergreen species. Its
composition was often hard to determine on Landsat datasets [11]. Moreover, tree density
was reported as the main cause of underestimated deforestation from 1970 to 2007 [10].
Changes in forest stands are often reported in terms of area, thereby neglecting changes
in density caused by grazing and harvesting of non-timber forest products. This leads to
high NDVI dynamics in forest areas, as confirmed by [28] using monthly and annual NDVI
data. For agricultural areas, ancient intensive terracing with a combination of different tree
species such as almond (Prunus amygdalus Batsch), walnut (Juglans regia L.), fig (Ficus carica
L.), and olive (Olea europaea L.) at different densities causes highly variable NDVI values
within and across seasons. The same applies to irrigated terraces, where the available water
not only allows the cultivation of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.),
and recently alfalfa (Medicago sativa), but also that of tomato (Solanum lycopersicum L.), with
maize (Zea mays L.), pea (Pisum sativum L.), bean (Phaseolus vulgaris L.), onion (Allium cepa
L.), and eggplant (Solanum melongena L.) on the same terrace [11]. All of this leads to a wide
range of spectrum reflectances in Landsat imagery.

NDVI values were highest for April, whereby monocropped areas, crops mixed with
trees, and very dense tree areas had the largest NDVI values during the greenest period,
which confirmed the accuracy of our inventory. The SVM approach did not indicate distinct
NDVI differences between Forest and Open Canopy Vegetation classes. As for Bareland,
the NDVI of grass/bushes, very coarse trees, and coarse tree areas did not allow separation
even between dry and rainy seasons (Figure 8).
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The statistics did not indicate significant spectral differences between closed canopy
forest and open canopy vegetation, between Bareland versus Open Canopy Vegetation,
or vice versa (Table 6). In particular, the low-density forest even had a numerically lower
greenness compared with crops or crops mixed with trees during three of four examination
periods (Figure 7).

Table 6. Statistics of NDVI values for eight vegetation types (no vegetation, crop, crop and tree,
grass/bushes, tree coarse, tree dense, tree very coarse, and tree very dense) in the High Atlas
Mountains of Morocco. To separate means a pairwise multiple comparison procedure (Holm–Sidak
Method) was used.

January

No
vegetation Crop Crop and

tree Grass/bushes Tree coarse Tree dense Tree very
coarse

Tree very
dense

No vegetation x <0.001 <0.001 <0.001 <0.001 <0.001 0.054 <0.001
Crop <0.001 x 0.106 <0.001 <0.001 0.111 <0.001 0.442

Crop and tree <0.001 0.631 x <0.001 <0.001 0.991 <0.001 0.886
Grass/bushes <0.001 <0.001 <0.001 x 0.957 <0.001 0.972 <0.001

Tree coarse <0.001 <0.001 <0.001 1 x <0.001 0.927 <0.001
Tree dense <0.001 <0.001 <0.001 <0.001 <0.001 x <0.001 0.953

Tree very coarse <0.001 <0.001 <0.001 0.632 0.551 <0.001 x <0.001
Tree very dense 0.578 0.895 <0.001 <0.001 <0.001 <0.001 x

April

August

No
vegetation Crop Crop and

tree Grass/bushes Tree coarse Tree dense Tree very
coarse

Tree very
dense

No vegetation x <0.001 <0.001 <0.001 <0.001 <0.001 0.132 <0.001
Crop <0.001 x <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Crop and tree <0.001 <0.001 x <0.001 <0.001 <0.001 <0.001 0.087
Grass/bushes <0.001 <0.001 <0.001 x 1 <0.001 0.084 <0.001

Tree coarse <0.001 <0.001 <0.001 1 x <0.001 0.111 <0.001
Tree dense <0.001 0.999 <0.001 <0.001 <0.001 x <0.001 <0.001

Tree very coarse <0.001 <0.001 <0.001 0.261 0.331 <0.001 x <0.001
Tree very dense <0.001 <0.001 0.053 <0.001 <0.001 <0.001 <0.001 x

October

3.3. Rules-Based Classification Using NDVI

The SVM solely used the spectral band property, which may lead to misclassification
given the vegetation structure of the scattered forests and admixture of trees in agricultural
areas of this arid region. Based on the understanding of four seasons NDVI dynam-
ics (Figure 7, Tables 5 and 6), and following a similar approach of Krishnaswamy et al.
(2004) [31], we developed a rules-based classification approach. We used similar land-use
classes as for the SVM approach, but employed rules-based NDVI slices. The threshold
value was defined by the dominant value of 70% of all examined values (Table S2).

When analyzing the variance of the high NDVI group, forest and crop areas could be
better distinguished as they showed a significantly different peak value in April (p = 0.013;
Supplement Table S3). However, the high variance did not allow for further classification;
thus, we grouped them into one class equivalent with closed canopy vegetation. Imple-
menting the outcomes from vegetation above, we employed rules-based classification for
the most consistent season based on the scatter distribution (Supplement Figure S2) and
the relation of greenness to season in order to analyze land-use in the High Atlas as follows
(Figure 8):

• Very low NDVI values that represented either Water or Bareland without vegetable
cover especially during the dry season: NDVI < 0 represented Water, while ranges
of 0 < NDVIJan <= 0.17 represented Bareland, equivalent to previous classifications.
We used values in January and April that showed more consistent values than other
seasons (Figure S2);



Remote Sens. 2023, 15, 1366 12 of 16

• High NDVI values that represented Forest or agriculture areas: NDVIJan > 0.38 and
NDVIApr > 0.59 and NDVIOct > 0.46 (Table S2). We excluded values in August, as their
distribution had high variances (Figure S2). Values of NDVIApr − NDVIAug >0.15
represented agricultural areas. They were assigned as Forest with little differences in
NDVI values between the greenest season and the dry season (Table S3);

• Medium value of NDVI represented an Open Canopy Vegetation, which in this case
comprised bushes, small and scatter trees except for agricultural areas. This class is
denominated as “others”.

Despite the strong correlation of NDVI values with precipitation and temperature,
they are considered an adequate indicator to detect spatio-temporal changes in land-use
(in our case, land cover), especially if they refer to more than one period within a year [28].

3.4. Comparison of the Two Classification Approaches

SVM classification techniques often have a high classification accuracy and require
only small training data sets while generating satisfying results [32] for heterogeneous
areas. In our study, the results of the rules-based vegetation index yielded different areas for
each land-use type compared with the SVM approach. Kappa statistics are commonly used
to determine the classification accuracy, but their limitations have recently been discussed,
especially for mountainous, semi-arid regions. Some authors suggested not using Kappa
statistics as the accuracy assessment after Pontius and Millones [33] suggested abandoning
the use of this index. However, it is still widely used. Visually, the rules-based vegetation
index showed a more compact pattern with the ground rather than SVM in all seven
windows. Large areas of forest and agriculture were detected as Bareland according to
the results of the SVM approach. Those areas were less green during the dry season (July
to September). Forest areas with scattered trees were classified into Bareland, while crop
plantations and croplands with mixed trees were identified as Forest (Figure 9).
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of Morocco.
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As the area of Water is very small in the semi-arid study region and the definition of
forest and agriculture were inconsistent in both approaches, we harmonized the land-use
classes into two classes: Vegetation and Non-vegetation cover (or Bareland). The compari-
son showed larger vegetation areas using the NDVI rules-based approach than using the
SVM approach. Using the NDVI rules-based approach, the Bareland class was assigned
a lower proportion than in the SVM approach: 72.0% versus 82.5% in 1990, and 63.3%
versus 88.8% in 2020 (Table 7). In 2000, both approaches yielded similar results, which con-
firmed the high impact of rainfall on vegetation cover [29] as 2000 was a drought year [12]
(Figure 10). The rules-based approach considered four vegetation periods rather than
including the off-season cropping or vegetation status of deciduous and semi-deciduous
trees. Hence, vegetation areas were higher than using the SVM approach [28].

Table 7. Difference of vegetation classes in 1990, 2000, and 2020 for two classification approaches of
land cover in the High Atlas Mountains of Morocco.

In 1990 *
NDVI Index Approach SVM Approach

km2 % km2 %

Vegetation 15,482 28.0 9667 17.5
Non-vegetation 39,904 72.0 45,684 82.5

In 2000 *

Vegetation 7764 16.4 9551 17.3
Non-vegetation 39,482 83.6 45,790 82.7

In 2020

Vegetation 20,279 36.7 6212 11.2
Non-vegetation 35,051 63.3 49,109 88.8

* Missing 1–2 scenes in 1990 and 2000 caused differences of total area in the comparison; hence, we showed
percentages rather than absolute values.
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3.5. Combination of Society and Climate Change on Vegetation Cover Dynamic

In Morocco, forest degradation is mainly caused by wildfires and human activity. Dur-
ing 2010–2015, approximately 1% of the forest burned each year, equaling 400,000 hectares,
causing, in addition to losses of human lives, enormous ecological and economic dam-
age. Unlike in other parts of the world, where wildfires are of largely natural origin

https://power.larc.nasa.gov
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(mainly lightning), 95% of the fires in Morocco are human-made (criminal, negligence;
http://www.eauxetforets.gov.ma, accessed on 15 October 2022). In addition, the removal
of firewood and non-timber forest products threaten forest areas and make them vulnerable
to dieback. Such regressions of forest ecosystems are particularly strong for cedar stands in
the High and Middle Atlas and for cork oak (Quercus suber L.) in the Maamora region.

The detected changes in the open vegetation class between 1990 and 2010 are mostly
due to variations in precipitation in this area and to urbanization effects. Climate records
show a decline in rainfall and a concomitant increase in average temperature between
1990 and 2010 (Figure 10), which is reflected in the vegetation changes indicated by our
analyses. Additionally, between 1970 and 2020 many oases in the High Atlas Mountains
experienced substantial losses in agricultural land and corresponding increases in fallow
and abandoned land. These changes reflect the effects of land abandonment after the
emigration of oasis inhabitants, leading to shortages of agricultural labor in irrigated oasis
agriculture [7,30].

4. Conclusions

Our study demonstrates the importance of understanding the temporal and spatial
vegetation dynamics of ecosystems in arid and semi-arid mountain regions. The results
show that classification of land cover based on machine learning does not always reflect
the dynamics of land cover changes, but rather reflects the effects of multiple factors includ-
ing those of local climate conditions on vegetation structure. Despite high classification
accuracy, as reflected in the Kappa statistics, our findings showed a large misclassification
in detecting forest areas. Ground validation using visualization methods to improve such
automatic classification is therefore highly necessary. Further research should be conducted
to better discriminate between agriculture, forests, and abandoned land, employing a
combination of vegetation, water, and moisture indices. This is a prerequisite to investigate
land use and land cover transformation processes and their effects on social-ecological
systems in the High Atlas Mountains of Morocco.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15051366/s1, Table S1. List of data sources using for SVM
method as Dataset 1. Table S2. Threshold of NDVI, sliced from range for low and high NDVI classes
at lowest or highest 70% to define the threshold as dominant values. Table S3. T-test between NDVI
in April and August, 2020 in High Atlas, Morocco. Table S4. List of Dataset 2 including Landsat 5 and
Land 8 (30 m × 30 m) WGS84, UTM 30, downloaded from USGS. Figure S1. Dynamic of land-use
classified from Landsat images in High Atlas, Morocco using SVM method. Figure S2. Distribution
of low and high NDVI values in four seasons in 2020 in High Atlas Mountainous, Morocco. Figure
S3.: Two examples of field data collection in High Atlas in 2020. Figure S4. Examples of NDVI maps
in 2020 in four seasons in High Atlas in 2020.
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