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Abstract: Ground-penetrating radar (GPR) is an important nondestructive testing (NDT) tool for
the underground exploration of urban roads. However, due to the large amount of GPR data,
traditional manual interpretation is time-consuming and laborious. To address this problem, an
efficient underground target detection method for urban roads based on neural networks is proposed
in this paper. First, robust principal component analysis (RPCA) is used to suppress the clutter in the
B-scan image. Then, three time-domain statistics of each A-scan signal are calculated as its features,
and one backpropagation (BP) neural network is adopted to recognize A-scan signals to obtain
the horizontal regions of targets. Next, the fusion and deletion (FAD) algorithm is used to further
optimize the horizontal regions of targets. Finally, three time-domain statistics of each segmented
A-scan signal in the horizontal regions of targets are extracted as the features, and another BP neural
network is employed to recognize the segmented A-scan signals to obtain the vertical regions of
targets. The proposed method is verified with both simulation and real GPR data. The experimental
results show that the proposed method can effectively locate the horizontal ranges and vertical depths
of underground targets for urban roads and has higher recognition accuracy and less processing time
than the traditional segmentation recognition methods.

Keywords: ground-penetrating radar; underground target detection; urban road; neural network;
robust principal component analysis; fusion and deletion algorithm

1. Introduction

Underground target detection plays an important role in urban road exploration and
can be used to conduct road maintenance and management. Underground targets of
urban roads mainly include voids, pipes, and cables. Due to its advantages of having
a nondestructive nature, high scanning efficiency, and penetration, ground-penetrating
radar (GPR) has been widely used in urban road exploration [1–5]. Because of the complex
structures of underground targets, the interpretation of GPR data still mainly relies on
skilled operators. In general, the time needed for analyzing GPR data is considerably
longer than the time taken for data acquisition. When long-distance urban roads need
to be surveyed, the amount of GPR data is very large and manual handling is appar-
ently powerless. Therefore, it is necessary to develop automatic target detection methods,
which can not only increase the interpretation efficiency, but also avoid the influence of
subjective factors.

At present, automatic target detection methods in GPR data can be divided into
two categories: machine learning methods and deep learning methods [6,7]. Automatic
detection methods based on machine learning generally include three stages: preprocessing,
feature extraction, and signal classification [8]. Preprocessing mainly performs clutter and
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noise suppression. Feature extraction reduces the preprocessed data to form a set of
measures that represent the data. Signal classification uses classifiers to recognize the object
according to its features. Al-Nuaimy et al. [9] proposed a method based on a neural network
to recognize buried objects in GPR B-scan images. The method employs ensemble mean
subtraction to remove the background clutter and uses the Welch power spectra of A-scan
signal segments as the features. However, the ensemble mean subtraction fails to remove the
non-horizontal clutter, which causes some incorrect identification for sections of the targets.
Wu et al. [10] presented a method based on a support vector machine (SVM) to detect
holes under a railway with GPR signals. The method uses dyadic wavelet transform to
extract the energy features of A-scan signals and reaches a high recognition rate, but it only
recognizes the whole A-scan signal and cannot provide the depth information of the holes.
Frigui et al. [11] proposed an algorithm for landmine detection based on K-nearest neighbor
(KNN) using the GPR data. The method uses edge histogram descriptors (EHD) for feature
extraction and obtains better performance than the hidden Markov model (HMM) because
EHD applies fuzzy techniques to distinguish true detection from false alarms. Torrione
et al. [12] developed a method based on the histogram of oriented gradients (HOG) features
and the random forest method to detect landmines in the GPR data. The results indicate
that HOG features provide better target classification performance than EHD and HMM.
Xie et al. [13] used SVM to recognize RC structure voids in GPR images. The predictive
deconvolution process is used to suppress clutter and three time-domain statistical features
are extracted for each segmented A-scan signal. The method achieves high accuracy in
depth and lateral range locations, but the accuracy is strongly affected by the noise level.
Núez-Nieto et al. [14] presented a method based on neural networks to detect the landmines
and unexploded ordnance (UXO) in GPR images and demonstrated that the neural network
was superior to logistic regression. However, the method adopts A-scan signals within a
window as the features. It also only recognizes the lateral ranges of targets and lacks the
depth location of targets. Harkat et al. [15] presented a binary radial basis function (RBF)
neural network based on the multiobjective genetic algorithm (MOGA) to detect targets in
GPR images. The method uses high-order statistical cumulants of a segmented image with
41*41 pixels as the features and obtains better classification performance than convolutional
neural network (CNN) and SVM. However, the MOGA framework is time-consuming due
to the large size of the features. Recently, image target detection methods based on depth
learning have gradually become more popular in the field of image recognition [16–18].
Deep learning methods learn the feature representations directly from the original image
instead of traditional manual feature extraction in machine learning methods, which have
high robustness in the detection task. As the most popular deep learning network, CNN
uses multiple convolutional layers and pooling layers to extract features and uses the
fully connected layer and the softmax layer to perform the classification. CNN has been
proposed for the interpretation of GPR images such as concealed crack detection in asphalt
pavement [19], rebar detection and localization in concrete [20,21], material type and shape
classification and soil type classification [22], and internal defect detection in roads [23].

Though deep learning methods have gained increasing attention in GPR target detec-
tion, they still have two main limitations. One limitation is that they need a large amount
of labeled data to train the deep learning models. Another limitation is that deep learning
models have complex network structures, and the training and testing of deep learning
models require high-performance graphical processing units (GPUs). Therefore, this re-
search still focuses on machine learning methods. To obtain the locations of underground
targets for urban roads, traditional machine learning methods need to recognize each
segmented A-scan signal in the B-scan image. However, it is not necessary to identify all
segmented signals for classifiers due to the sparse distribution of underground targets in
B-scan images. Therefore, reducing the number of segmented signals to be recognized is a
potential approach to improve detection efficiency.

According to the above analysis, an efficient method based on neural networks is
proposed for underground target detection of urban roads in GPR images. The proposed
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method first uses robust principal component analysis (RPCA) to eliminate the clutter
in the B-scan image and then divides the target detection into whole recognition and
segmentation recognition of A-scan signals in the B-scan image. The whole recognition of
A-scan signals is used to obtain the horizontal regions of targets, while the segmentation
recognition of A-scan signals is used to obtain the vertical regions of targets, which can
decrease the recognition for segmented A-scan signals not from targets. In addition, the
fusion and deletion (FAD) algorithm is used to optimize the horizontal regions of targets.
The experimental results with simulation and real GPR data demonstrate the effectiveness
of the proposed method in underground target detection of urban roads.

The remainder of this paper is organized as follows. Section 2 describes the proposed
method in detail. Section 3 presents the experimental results and discussion. Section 4 lists
the conclusion.

2. Theory and Method
2.1. Detection Model of GPR

GPR data may be composed in three different forms: A-scans, B-scans, and C-scans.
The A-scan signal is presented in the form of a time-series signal, the B-scan image is
constructed by stacking multiple A-scan signals, and the 3D C-scan data cube is formed
by stacking multiple B-scan images. This paper mainly researches target detection in
B-scan images.

A simple detection model of a buried target for GPR [24] is shown in Figure 1. When
GPR antennas scan the target along the horizontal axis, the antenna position xn and the
time delay tn corresponding to the target approximately satisfy the hyperbolic equation:

t2
n

t2
0
− 4(xn − x0)

2

(vt0)
2 = 1 (1)

where x0 is the horizontal position of the target, t0 is the time delay at the position x0, and
v is the wave velocity in the underground medium. Therefore, the target detection in the
B-scan image mainly refers to the recognition of hyperbolic patterns.
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Figure 1. Detection model of a buried target for GPR.

2.2. Detection Method

A flowchart of the proposed target detection method for GPR images based on neural
networks is shown in Figure 2. First, the preprocessing stage employs RPCA to suppress
clutter in the original B-scan image. Second, three time-domain statistics of each A-scan
signal in the image are selected to form the feature vector, and one back-propagation (BP)
neural network is used to recognize the horizontal regions of targets. Third, the recognized
horizontal regions are optimized by the FAD algorithm. Finally, the same three statistics
of each segmented A-scan signal in horizontal regions are used to form the feature vector,
and another BP neural network is used to recognize the vertical regions of targets, and then
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the final target regions can be obtained from the horizontal and vertical regions. The main
stages of the proposed method are described in detail in the following sections.
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2.2.1. Preprocessing

The original GPR B-scan image contains background clutter, target response, and noise.
The background clutter can be caused by direct waves from the ground, reflections from
the underground layer and non-targets, and multiple reflections from the target, which has
a great impact on the target detection in the B-scan image. Therefore, the preprocessing
stage mainly involves suppression of background clutter.

The two-dimensional GPR B-scan image can be denoted by X =[x1, x2, · · · , xN ] ∈ RM×N,
where M is the number of sampling points in each trace (A-scan) and N is the number of traces.
The ith A-scan signal xi ∈ RM×1(i = 1, 2, · · · , N) is composed of the background clutter ai, the
target response si, and noise ei. Therefore, the B-scan image can be expressed as [25]

X = A + S + E (2)

where A =[a1, a2, · · · , aN ] is the low-rank clutter matrix, S =[s1, s2, · · · , sN ] is the sparse
target response matrix, and E =[e1, e2, · · · , eN ] is the full-rank noise matrix. The low-rank
and sparse property of the B-scan image can be utilized to discriminate the clutter A and
the target response S by RPCA decomposition.

RPCA is proposed to overcome the drawback of classical principal component analysis
(PCA), which is that it is sensitive to outliers. RPCA aims to find a low-rank structure in
high dimensional data by solving a convex optimization problem [26]:

min
A,S
‖A‖∗ + λ‖S‖1 s.t. X = A + S (3)

where ‖ • ‖∗ is the nuclear norm of the matrix argument (the sum of its singular values),
‖ • ‖1 is the l1-norm of the matrix (the sum of the absolute values of matrix entries), λ is a
positive regularization parameter, and s.t. is the abbreviation of “subject to”.

Instead of directly solving the optimization problem in (3), an augmented Lagrangian
function is constructed as follows:

L(A, S, Y, α) = ‖A‖∗ + λ‖S‖1 + 〈Y, X− A− S〉+ α

2
‖X− A− S‖2

F (4)

where Y is the Lagrange multiplier matrix, 〈•〉 is the inner product, and α > 0 is the penalty
factor. The optimization problem can be solved by minimizing the function L(A, S, Y, α)
with the augmented Lagrange multipliers (ALM) algorithm.

After RPCA decomposition, the sparse matrix S is used as the target image, and the
low-rank matrix A is removed as the clutter.

2.2.2. Feature Extraction of A-Scan Signals

Feature extraction is a crucial aspect of target recognition. Here, the features extracted
from the A-scan signal are used to identify the horizontal regions of targets. Features based
on the A-scan signal include frequency-domain spectral features, wavelet-domain features,
and time-domain features. Compared with the other types of features, time-domain feature
extraction from the A-scan signal requires less computation. Time-domain features can be
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extracted from the original signal, as well as from various transformations of the original
signal, such as absolute value, envelope of Hilbert transform, and the short-term average
to long-term average (STA/LTA) ratio [27]. The three transformations of the original signal
can strengthen the description for the variation in signal energy but weaken the description
for the variation in signal oscillation. For GPR, target reflections and non-target reflections
can be better distinguished from the variation in signal oscillation. Therefore, considering
the feature representation capability of signal oscillation and the number of features, three
time domain statistics of the original A-scan signal are selected as the features, which are
expressed as follows:

(1) Mean absolute deviation

MADi =
1
M

M

∑
m=1
|xi(m)− xi| (5)

(2) Standard deviation

STDi =

√√√√ 1
M

M

∑
m=1

(xi(m)− xi)
2 (6)

(3) Fourth root of the fourth moment

FRFMi =
4
√

E(xi − xi)
4 (7)

where xi(m) is the mth element in the ith A-scan signal xi, xi is the mean value of xi, and
E(•) is the expected value function.

2.2.3. Target Horizontal Region Recognition

Target horizontal region recognition aims to obtain lateral ranges of targets by classify-
ing A-scan signals. Here, the neural network is chosen as the classifier because it has high
robustness to noise and is available for recognizing target reflections in A-scan signals [28].

The neural network is an information processing technology similar to the human
nervous system, which can solve complex problems through nonlinear mapping [29]. The
neural network consists of many basic computing neurons that are mesh-connected to each
other for learning. A training algorithm is used to update the weights and biases until the
actual output of the multi-layer perceptron (MLP) overlaps the desired output.

The neural network used here is a standard three-layer feedforward network trained
with the backpropagation (BP) algorithm. The architecture of the BP neutral network is
shown in Figure 3. The input layer consists of three neurons (one neuron per feature),
and the output layer contains two neurons (target reflection or non-target reflection). The
number of neurons in the hidden layer is basically of the same order of magnitude as
the mean term of the proportion between the number of neurons in the input and output
layers [30]. By means of the least-squares method, the number of neurons in the hidden
layer is determined approximately by the empirical formula:

l <
√
(p + q) + a (8)

where p is the number of neurons in the input layer, q is the number of neurons in the
output layer, and a is constant with 0 < a < 10. Here, the number of neurons in the hidden
layer is set to 10 according to several simulations, which can provide high accuracy and
low computational complexity.
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In the BP neural network, the output of the jth neuron in the kth layer is given by

yk, j = f

(
Lk−1

∑
i=1

wijyk−1, i + bk, j

)
(9)

where j = 1, 2, · · · , Lk and Lk is the number of neurons in the kth layer, f (•) is the activation
function, wij is the weight, and bk, j is the bias.

The activation functions mainly include the logsig function, tansig function, and
purelin function. The first two are nonlinear functions, and the latter is a linear
function. Here, the hidden layer adopts the logsig function and the output layer adopts
the purelin function.

In the BP algorithm, the gradient of the error function with respect to each weight
is computed, and the weights are adjusted along the downhill direction of the gradient
in order to reduce the error. Generally, such a learning scheme is slow, so a momentum
term is introduced to increase the convergence rate [31]. The weight adjustment with a
momentum term can be expressed as follows:

∆wij(n) = −η
∂E(w)

∂wij(n)
+ α∆wij(n− 1) (10)

where n is the index of iterations, η is the learning rate, ∂E(w)
∂wij(n)

is the gradient of the error

function with respect to the weight, and α is the momentum factor.
Based on the BP neural network designed above, the steps of target horizontal regions

recognition are as follows:

1. Training set construction. Km1 A-scan signals with target reflections and kn1 A-scan
signals without target reflections are selected from the B-scan images for training,
and three features of each selected A-scan signal are extracted. Then, the features are
normalized to construct the training set TR1, including km1 positive samples and kn1
negative samples. The output of the positive sample is set to [1 0], and the output of
the negative sample is set to [0 1].

2. Network training. The training set TR1 is used to train the designed BP neural
network, and the network model NET1 is obtained.

3. Horizontal region recognition. The three features of all A-scan signals in the test
B-scan image are extracted and normalized to construct the test set TE1. Then, the
model NET1 is used to classify the samples in TE1. Assuming that K1 samples
are identified as positive samples, the corresponding A-scan signals can be writ-
ten as xi (i = i1, i2, · · · , iK1). Then, the target horizontal regions can be denoted as
H1 = {ik∆d, 1 ≤ k ≤ K1}, where ∆d is the trace interval.
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2.2.4. Optimization of Target Horizontal Regions

Due to the influence of residual clutter and target reflection amplitude fluctuation, false
detection and missing detection are inevitable in target horizontal region recognition. In
general, the projection of the target reflection hyperbola in the horizontal direction should
be continuous and have a certain width. Based on the characteristics of target reflections, a
fusion and deletion (FAD) algorithm is proposed to optimize the target horizontal regions.

The illustration of target horizontal region recognition is shown in Figure 4. The
recognized target A-scan signals are marked in black, and the recognized non-target A-scan
signals are marked in white. For the target horizontal regions H1 = {ik∆d, 1 ≤ k ≤ K1},
the steps of the FAD algorithm are described as follows:

1. Fusion processing. Fusion processing refers to further judgment for non-target A-scan
signals between two adjacent target regions, which aims to reduce the false negative
rate (missing detection). The judgment can be expressed as{

xi is the target signal, 1 < ik+1 − ik ≤ dth/∆d
xi is the non− target signal, else

(11)

where xi (i k+1 ≤ i ≤ ik+1−1) is the non-target A-scan signal between two discon-
tinuous target A-scan signals xik and xik+1

in H1 and dth is the horizontal interval
threshold. Through the processing, the two adjacent target regions with intervals less
than dth will be fused together. Then, the horizontal region after fusion processing
can be described as H2 = {ik∆d, 1 ≤ k ≤ K2}, where K2 ≥ K1.

2. Deletion processing. Deletion processing further judges the target horizontal regions
after fusion processing, which aims to decrease the false positive rate (false detection).
The judgment can be represented as{

xi is the non− target signal, ik − i1 = k− 1 ≤ wth/∆d
xi is the target signal, else

(12)

where xi (i 1 ≤ i ≤ ik) is the continuous target A-scan signal in one target region in
H2 and wth is the horizontal width threshold. Through the processing, the target
region with width less than wth in H2 will be deleted. If ik= i1, xik is an isolated
target signal, and the location point ik will also be deleted. Then, the final opti-
mized horizontal regions after fusion and deletion processing can be denoted as
H3 = {ik∆d, 1 ≤ k ≤ K3}, where K3 ≤ K2.

Remote Sens. 2023, 14, x FOR PEER REVIEW 8 of 22 
 

 

1i dΔ ki dΔ 1ki d+ Δ Ki dΔ

 
Figure 4. Illustration of target horizontal region recognition. 

2.2.5. Feature Extraction of Segmented A-Scan Signals 
After the target horizontal regions are obtained from the recognition of A-scan sig-

nals, the vertical regions of targets need to be further determined from the recognition of 
segmented A-scan signals in the horizontal regions H3. The segmentation of one A-scan 
signal is shown in Figure 5. Assuming that the segment length is ml and the 
time-sampling interval is Δt , the corresponding number of segments in one A-scan 
signal can be written as: 

 =  
 

MKL floor
ml

 (13)

where ( )floor  is the round down function. The basic selection principle of segment 
length ml is that the length should be as short as possible and the segment can contain 
enough information about the target reflection. Generally, the range of ml is 

,
 
 Δ Δ c c

0.5 1.5 
f t f t

, where cf is the antenna central frequency.  

Then, the segmented A-scan signal can be expressed as 

( ), ( ) ( 1)i r ixs j x r ml j= − +  (14)

where 1 2 3, , ,=  Ki i i i , 1,2, ,= r KL , and 1, 2, ,= j ml . 
Similar to feature extraction of the A-scan signal, the same three time domain statis-

tics of the segmented A-scan signal are chosen as the features, which are expressed as: 

(1) Mean absolute deviation 

, , ,
1

1 ( )
=

= −
ml

i r i r i r
j

MAD xs j xs
ml

 (15)

(2) Standard deviation 

( )2
, , ,

1

1 ( )
=

−
ml

i r i r i r
j

STD = xs j xs
ml

 (16)

(3) Fourth root of the fourth moment 

44
, , ,( )= −i r i r i rFRFM E xs xs  (17)

where ,i rxs is the mean value of ,i rxs . 

Figure 4. Illustration of target horizontal region recognition.



Remote Sens. 2023, 15, 1346 8 of 22

2.2.5. Feature Extraction of Segmented A-Scan Signals

After the target horizontal regions are obtained from the recognition of A-scan sig-
nals, the vertical regions of targets need to be further determined from the recognition
of segmented A-scan signals in the horizontal regions H3. The segmentation of one A-
scan signal is shown in Figure 5. Assuming that the segment length is ml and the time-
sampling interval is ∆t, the corresponding number of segments in one A-scan signal can be
written as:

KL = f loor
(

M
ml

)
(13)

where f loor(•) is the round down function. The basic selection principle of segment length
ml is that the length should be as short as possible and the segment can contain enough
information about the target reflection. Generally, the range of ml is

[
0.5
fc∆t , 1.5

fc∆t

]
, where fc

is the antenna central frequency.
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Then, the segmented A-scan signal can be expressed as

xsi ,r(j) = xi((r− 1) •ml + j) (14)

where i = i1, i2, · · · , iK3, r = 1, 2, · · · , KL, and j = 1, 2, · · · , ml.
Similar to feature extraction of the A-scan signal, the same three time domain statistics

of the segmented A-scan signal are chosen as the features, which are expressed as:

(1) Mean absolute deviation

MADi,r =
1

ml

ml

∑
j=1
|xsi,r(j)− _

xsi,r| (15)

(2) Standard deviation

STDi,r =

√√√√ 1
ml

ml

∑
j=1

(xsi,r(j)− _
xsi,r)

2 (16)
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(3) Fourth root of the fourth moment

FRFMi,r =
4
√

E(xsi,r −
_

xsi,r)
4 (17)

where
_

xsi,r is the mean value of xsi,r.

2.2.6. Target Vertical Region Recognition

After feature extraction from all segmented A-scan signals, another BP neural network
is used as the classifier to recognize each segment to obtain the vertical regions of targets.
The BP neural network also consists of three layers. The input layer contains three neurons,
the hidden layer contains ten neurons, and the output layer contains two neurons.

The procedure of target vertical region recognition based on the BP neural network is
summarized as follows:

1. Training set construction. Km2 segments with target reflections and kn2 segments
without target reflections are selected from the segmented A-scan signals for training,
and three features of each selected segment are extracted. Then, the features are
normalized to construct the training set TR2, including km2 positive samples and kn2
negative samples. The output of the positive sample is set to [1 0], and the output of
the negative sample is set to [0 1].

2. Network training. The training set TR2 is used to train the BP neural network, and
the network model NET2 is obtained.

3. Vertical region recognition. The three features of all segments in the optimized horizon-
tal regions H3 of the test B-scan image are extracted and normalized to form the test
set TE2. Then, the model NET2 is used to classify the samples in TE2. Assuming that
Ji samples are identified as positive samples in the A-scan signal xi (i = i1, i2, · · · , iK3),
the corresponding segments can be written as xsi ,r

(
r = r1, r2, · · · , rJi

)
. Then, the tar-

get vertical regions in the A-scan signal xi can be denoted as
V1i =

{[(
(rp − 1)ml + 1

)
∆t, rpml∆t

]
, 1 ≤ p ≤ Ji

}
.

4. The recognized segments are arranged in the two-dimensional image, and then the
final target regions can be obtained.

3. Results

To evaluate the proposed target detection method, both numerical simulations and
field experiments are carried out. The simulation data are generated using the “gprMax”
simulator based on the finite-difference time-domain (FDTD) method [32], and the real
field data are obtained from a road evaluation using a commercial impulse GPR system
with a central frequency of 400 MHz. All the programs are executed on a 3.60-GHz CPU
and 16 GB-memory computer.

3.1. Numerical Simulations

Figure 6 shows the geometry of the simulation model. The model has a depth of 1.6 m
and a width of 12.0 m. The model consists of three layers: 0.1 m thick air (εr = 1, σ = 0),
0.2 m thick concrete (εr = 6, σ = 0.01), and 1.3 m thick soil (εr = 8, σ = 0.003). The model
contains three targets: one circular void, one metal pipe (εr = 300, σ = 108), and one PVC
pipe (εr = 3, σ = 0.01). The radius of the void is 0.1 m, the outer radius of the two pipes is
0.1 m, and the inner radius of the two pipes is 0.05 m. The inside of two pipes is filled with
water (εr = 81, σ = 0.001). The three targets are buried at the same depth of 0.4 m. The
lateral distances of the three targets are 3.0 m, 6.0 m, and 9.0 m, respectively.
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The parameters of FDTD simulation are listed in Table 1. To verify the performance
of RPCA, noise and clutter are added to the original GPR image. First, Gaussian white
noise is added to the original GPR image. Then, the low-frequency components of three
A-scan signals with target reflections are added to all A-scan signals as horizontal clutter.
Finally, five small regions containing target reflections extracted from the image are added
to different positions in the image as the point clutter. Figure 7 shows the simulated
GPR image.

Table 1. Parameters of FDTD simulation.

Parameter Value

Antenna central frequency 400 MHz
Excitation waveform Ricker wavelet

Time window 20 ns
Number of time samples 848

Trace interval 0.02 m
Number of traces 590
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The signal-to-clutter ratio (SCR) [33] is used to measure the quality of the GPR image,
which is defined as

SCR =

Nc ∑
p∈Rt

|I(p)|2

Nt ∑
p∈Rc

|I(p)|2
(18)
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where I(p) is the p-th pixel in the image, Rt is the target region, Rc is the clutter region, and
Nc and Nt are the number of pixels in the clutter and target regions, respectively. The target
region is indicated by a box containing the target, and the clutter region is defined as the
entire image excluding the target region.

As shown in Figure 7, the strong direct wave almost masks the effective reflection
signals of targets, and the SCR values of the original image and the image with clutter
and noise are −10.3 dB and −12.5 dB, respectively. Because the ratio of the direct wave
energy to total image energy is very large, the difference in SCR between the two images is
not obvious.

First, RPCA is applied to the simulated image with clutters and noise, and the ex-
perimental results of RPCA are compared with those of PCA. Figure 8 shows the clutter
suppression results of the two methods. As shown in Figure 8a, PCA eliminates the direct
wave, but it retains the point clutter, some horizontal clutter, and some noise. As shown in
Figure 8b, RPCA can remove the direct wave and horizontal clutter completely, but it also
retains the point clutter and some noise. The SCR of PCA and RPCA is 4.4 dB and 6.6 dB,
respectively. The results show that RPCA has better clutter suppression performance than
PCA, especially for horizontal clutter. Similar to target reflection signals, the point clutters
in the image are sparsely distributed, so they cannot be removed by the two methods. The
noise still exists in the sparse matrix of RPCA and the target component of PCA after the
decomposition, so the two methods are not available for noise suppression.
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Figure 9. Three features of all A-scan signals in the test image: (a) mean absolute deviation; (b) 
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Figure 8. Clutter suppression results of two methods for the simulated GPR image: (a) PCA
(SCR = 4.4 dB); (b) RPCA (SCR = 6.6 dB).

In the simulation model, the main parameters of the underground target include
depth, lateral distance, and radius. Nine simulation models are established by setting
different target parameters, and nine simulated GPR images are obtained from the nine
models. Table 2 lists the parameters of the three targets in the nine models.

Then, 400 A-scan signals with target reflections and 400 A-scan signals without target
reflections are selected from the nine simulated images after clutter suppression. The three
features of the 800 A-scan signals are extracted to construct the training set TR1, in which
each sample is a vector with three features. Similarly, the three features of all A-scan signals
in the test image in Figure 8b are extracted to construct the test set TE1.
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Table 2. Parameters of the three targets for different simulation models.

Model
Number

Void Metal Pipe PVC Pipe

Depth Lateral
Distance Radius Depth Lateral

Distance
Radius

(Outer/Inner) Depth Lateral
Distance

Radius
(Outer/Inner)

1 0.30 m 3 m 0.10 m 0.30 m 6 m 0.10 m/0.05 m 0.30 m 9 m 0.10 m/0.05 m
2 0.50 m 3 m 0.10 m 0.50 m 6 m 0.10 m/0.05 m 0.50 m 9 m 0.10 m/0.05 m
3 0.70 m 3 m 0.10 m 0.70 m 6 m 0.10 m/0.05 m 0.70 m 9 m 0.10 m/0.05 m
4 0.35 m 3 m 0.15 m 0.35 m 6 m 0.15 m/0.10 m 0.35 m 9 m 0.15 m/0.10 m
5 0.55 m 3 m 0.15 m 0.55 m 6 m 0.15 m/0.10 m 0.55 m 9 m 0.15 m/0.10 m
6 0.75 m 3 m 0.15 m 0.75 m 6 m 0.15 m/0.10 m 0.75 m 9 m 0.15 m/0.10 m
7 0.40 m 3 m 0.20 m 0.40 m 6 m 0.20 m/0.15 m 0.40 m 9 m 0.20 m/0.15 m
8 0.60 m 3 m 0.20 m 0.60 m 6 m 0.20 m/0.15 m 0.60 m 9 m 0.20 m/0.15 m
9 0.80 m 3 m 0.20 m 0.80 m 6 m 0.20 m/0.15 m 0.80 m 9 m 0.20 m/0.15 m

Figure 9 shows the three features of all A-scan signals in the test image, which are the
samples in test set TE1. As shown in Figure 9, the amplitude of the three features increases
significantly in the horizontal regions of three targets, as well as in the horizontal regions
of the five-point clutter regions. The results show that the three features can distinguish
target reflections and non-target reflections but fail to distinguish target reflections and
point clutter reflections.
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Figure 9. Three features of all A-scan signals in the test image: (a) mean absolute deviation;
(b) standard deviation; (c) fourth root of the fourth moment.

The training set TR1 is used to train one BP neural network with the structure of 3-10-2
(number of neurons in the input-layer–hidden-layer–output-layer) to obtain a network
model NET1, which is used to recognize the samples in the test set TE1 to obtain the target
horizontal regions. Then, the FAD algorithm is used to further optimize the recognized
horizontal regions. The horizontal interval threshold dth is determined according to the
target region width in the features of A-scan signals in the nine training images, which is
generally 1/10 of the average width of the target region. The horizontal width threshold
wth is determined according to the clutter region width in the features of A-scan signals
in the training images, which is generally twice the maximum width of the clutter region.
Here, dth and wth are set to 0.1 m and 0.3 m, respectively.

Figure 10 shows the recognized original target horizontal regions and optimized
target horizontal regions. As shown in Figure 10a, the original target horizontal regions
contain multiple regions. Five-point clutter regions have a width of less than 0.3 m, which
represents false detection. In addition, there are several intervals with widths less than
0.1 m on the sides of the three target regions, which represent the missing detection. As
shown in Figure 10b, the FAD algorithm can effectively overcome false detection and
missing detection and obtain more accurate horizontal regions for the three targets.
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Figure 10. Target horizontal region recognition results for the simulated GPR image: (a) original
horizontal regions; (b) optimized horizontal regions.

Here, three metrics, accuracy, false positive rate (FPR), and false negative rate (FNR)
are used to quantitatively measure the horizontal region recognition performance of the
proposed method. The three metrics are given by

Accuracy =
TP + TN

TP + TN + FP + FN
(19)

FPR =
FP

FP + TN
(20)

FNR =
FN

TP + FN
(21)

where TP is the number of targets that are correctly classified, TN is the number of non-
targets that are correctly classified, FN is the number of targets that are incorrectly classified,
and FP is the number of non-targets that are incorrectly classified.

The accuracy indicates the proportion of correctly classified samples to the total
samples, which reflects the overall recognition performance. FPR indicates the proportion
of incorrectly classified non-targets to the total non-targets, which reflects the false-detection
performance. FNR indicates the proportion of incorrectly classified targets to the total
targets, which reflects the missing detection performance.

Figure 11 shows the confusion matrices of target horizontal region recognition before
and after optimization with the FAD algorithm. Table 3 shows the three metrics before
and after optimization with the FAD algorithm. It can be seen that after optimization, the
accuracy is improved by 9.5%, FPR is reduced by 10.8%, and FNR is reduced by 6.1%. The
results show that the FAD algorithm can effectively improve the recognition performance
of target horizontal regions.

Table 3. Recognition performance of target horizontal regions for the simulated GPR image.

Method Accuracy FPR FNR

BP neural network 87.6% 13.8% 8.6%
BP neural network + FAD 97.1% 3.0% 2.5%
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Finally, 800 previously selected A-scan signals are segmented. Considering the size of
the target hyperbola in the vertical direction, the segment length is set to 64. Thus, each
A-scan signal is divided into 13 segments, and a total of 10,400 segments are obtained.
The three features of the 10,400 segments are extracted to construct the training set TR2.
Similarly, all 163 A-scan signals in the optimized horizontal regions are also segmented,
and the total number of segments is 2119. The three features of the 2119 segments are
extracted to construct the test set TE2.

Figure 12 shows the three features of segments in one A-scan signal in the horizontal
region of the PVC pipe, which are also the samples in the test set TE2. As shown in
Figure 12, the amplitude of the three features of the segments with target reflections is
higher than that of the segment without target reflections, which shows that the three
features are also applicable to the segmented A-scan signals.
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The training set TR2 is used to train one BP neural network with the structure of 3-10-2
to obtain another network model NET2, which is used to recognize the samples in the
test set TE2 to obtain the target vertical regions. The target regions are obtained from the
recognized target segments in the vertical regions.
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For comparison, the traditional segmentation recognition methods based on the BP
neural network [9] and SVM [13] are also adopted to process the image in Figure 8b. The
method based on the BP neural network uses twelve spectral values of segments as features,
and the method based on SVM uses three time-domain statistics of segments as features.

Figure 13 shows the target recognition results of the three methods. As shown in
Figure 13a,b, some point clutter regions are identified as target reflections, and several
clutter regions near the hyperbolas of targets are also identified as target reflections. As
shown in Figure 11c, the hyperbolic reflections of targets are identified clearly, and only
a few clutter regions are recognized as target reflections. The results show that the pro-
posed method has better target recognition performance than traditional segmentation
recognition methods.
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metrics of the three methods. The FPR of the proposed method is much lower than that of 
the other two methods, which shows that the proposed method can greatly reduce false 
detection. However, the FNR of the proposed method reaches 18.9%, which indicates that 
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number of non-target segments in the GPR image, the influence of FNR on the recogni-
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method can achieve higher accuracy than the other two traditional methods. As shown in 
Figure 11c, the small amount of missing target reflections will not affect the final detec-
tion of target regions. 

Figure 13. Target recognition results for the simulated GPR image: (a) traditional segmentation
recognition method based on BP neural network; (b) traditional segmentation recognition method
based on SVM; (c) proposed method.

Figure 14 shows the confusion matrices of the three methods. Table 4 lists the three
metrics of the three methods. The FPR of the proposed method is much lower than that of
the other two methods, which shows that the proposed method can greatly reduce false
detection. However, the FNR of the proposed method reaches 18.9%, which indicates that
the proposed method still has a small amount of missing detection in the recognition of
target vertical regions. Because the number of target segments is much lower than the
number of non-target segments in the GPR image, the influence of FNR on the recognition
accuracy is much less than that of FPR, which also explains why the proposed method can
achieve higher accuracy than the other two traditional methods. As shown in Figure 11c,
the small amount of missing target reflections will not affect the final detection of target
regions.
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Table 4. Target recognition performance of the three methods for the simulated GPR image.

Method Accuracy FPR FNR

Traditional
segmentation

recognition method
based on BP neural

network

95.1% 4.4% 15.5%

Traditional
segmentation

recognition method
based on SVM

96.6% 2.6% 20.6%

Proposed method 98.7% 0.4% 18.9%

Table 5 lists the processing times of the three methods. The processing time refers to
the time consumption of processing the test image, which includes a clutter suppression
stage and a target-recognition stage. The clutter suppression time of the three methods is
the same. The target recognition time of the traditional two methods consists of the con-
struction and classification time of the test set. The target recognition time of the proposed
method consists of the construction and classification time of the test set TE1 (horizontal
region recognition time), the horizontal region optimization time, and the construction and
classification time of the test set TE2 (vertical region recognition time). Compared with
the two traditional methods, the target recognition time and total processing time of the
proposed method are reduced by about 30% and 20%, respectively. The results show that
the proposed method achieves higher detection efficiency than the two traditional methods.

Table 5. Processing time of the three methods for the simulated GPR image.

Method
Processing Time (s)

Clutter
Suppression

Target
Recognition Total

Traditional
segmentation

recognition method
based on BP neural

network

0.38 0.63 1.01

Traditional
segmentation

recognition method
based on SVM

0.38 0.65 1.03

Proposed method 0.38 0.44 0.82

3.2. Field Experiments

A field experiment is conducted with the GPR system on a road in Wuhan (China).
The space sampling step length (trace interval) is 0.05 m. The time window is 90.74 ns, and
the number of time samples is 512. Figure 15a shows one original B-scan image containing
551 A-scan signals. The image contains the reflections of two targets, the direct wave,
horizontal clutter, and a lot of irregular clutter.

First, RPCA is used to suppress the clutter in the original image, and the result is
shown in Figure 15b. As shown in Figure 15b, the direct wave is completely removed, most
horizontal clutter and irregular clutter is also eliminated, and the reflections of the two
targets are well preserved. After clutter suppression, the SCR is improved by 16.9 dB. The
result also demonstrates the excellent clutter-suppression performance of RPCA for the
real GPR image.
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Figure 15. Real GPR image: (a) original image (SCR = 0.6 dB); (b) image after clutter suppression
(SCR = 17.5 dB).

Then, 200 A-scan signals with target reflections and 200 A-scan signals without target
reflections are selected from 25 real B-can images after clutter suppression. The three
features of the 400 A-scan signals are extracted to construct the training set TR1, and the
three features of all the A-scan signals in the test image in Figure 15b are extracted to
construct the test set TE1. The network model NET1 is obtained by training a neural
network with the structure of 3-10-2 using the training set TR1, which is used to recognize
the samples in TE1 to obtain the target horizontal regions. Subsequently, the recognized
horizontal regions are optimized by the FAD algorithm, and the two parameters dth and
wth are set to 0.1 m and 0.4 m, respectively.

Figure 16 shows the target horizontal region recognition results. As shown in
Figure 16a, the original target horizontal regions contain two target regions with larger
width and several clutter regions with smaller width. As shown in Figure 16b, the FAD
algorithm eliminates the clutter regions and preserves the two target regions well.
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Figure 17 shows the confusion matrices of target horizontal region recognition before
and after optimization with the FAD algorithm. Table 6 lists the recognition performance
of target horizontal regions before and after optimization with the FAD algorithm. It can be
seen that after optimization, the accuracy is improved by 7.3% and FPR is reduced by 10%,
but FNR remains unchanged. The results again show that the FAD algorithm can effectively
improve the accuracy and decrease FPR for recognition of the target horizontal region.
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Table 6. Recognition performance of target horizontal regions for the real GPR image.

Method Accuracy FPR FNR

BP neural network 87.1% 10.8% 18.4%
BP neural network + FAD 94.4% 0.8% 18.4%

Finally, 400 previously selected A-scan signals are segmented, and the segment length
is 16. Thus, each A-scan signal is divided into 32 segments, and a total of 12,800 segments
are obtained. The three features of the 12,800 segments are extracted to construct the
training set TR2. The A-scan signals in the optimized horizontal regions are segmented,
and the three features of the segments are extracted to construct the test set TE2. The
network model NET2 is obtained by training another neural network with a structure of
3-10-2 using TR2. The target vertical regions are obtained by using NET2 to recognize the
samples in TE2, and the recognized target segments in the vertical regions represent the
target regions. Here, the experimental results of the proposed method are also compared
with those of traditional segmentation recognition methods.

Figure 18 shows the target-recognition results of the three methods. As shown in
Figure 18a,b, the two traditional methods generate several wrong misjudgments due to
the influence of residual clutter, and the two targets can hardly be identified. As shown in
Figure 18c, the proposed method can clearly identify the two targets with few misjudgments.
The results also show that the proposed method is superior to traditional segmentation
recognition methods.
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Figure 18. Target recognition results for the real GPR image: (a) traditional segmentation recognition
method based on BP neural network; (b) traditional segmentation recognition method based on SVM;
(c) proposed method.

Figure 19 shows the confusion matrices of the three methods. Table 7 lists the three
metrics of the three methods. The FPR of the proposed method is also much lower than
that of the two traditional methods, but the FNR of the proposed method is slightly higher
than that of the two traditional methods. The results show that the proposed method
greatly reduces the false detection but slightly increases the missing detection, which is
also consistent with the recognition results in Figure 19. As FPR is greatly reduced, the
proposed method still achieves higher accuracy than the two traditional methods.
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Table 7. Target recognition performance of the three methods for the real GPR image.

Method Accuracy FPR FNR

Traditional
segmentation

recognition method
based on BP neural

network

96.8% 2.8% 23.3%

Traditional
segmentation

recognition method
based on SVM

97.7% 1.8% 26.8%

Proposed method 99.1% 0.3% 28.4%

Table 8 lists the processing time of the three methods. Compared with the two
traditional methods, the target-recognition time and total processing time of the proposed
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method are reduced by about 20% and 14%, respectively. The results also show that the
proposed method is more efficient than the two traditional methods.

Table 8. Processing time of the three methods for the real GPR image.

Method
Processing Time (s)

Clutter
Suppression

Target
Recognition Total

Traditional
segmentation

recognition method
based on BP neural

network

0.54 0.93 1.47

Traditional
segmentation

recognition method
based on SVM

0.54 0.91 1.45

Proposed method 0.54 0.74 1.28

4. Discussion

This paper proposes an efficient GPR target-detection method based on horizontal
and vertical region recognition using a BP neural network. Preprocessing is executed
using RPCA, horizontal region recognition is based on the recognition of A-scan signals,
and vertical region recognition is based on the recognition of segments in A-scan signals.
The proposed two-stage recognition structure can reduce the recognition of segments of
A-scan signals in non-target regions in traditional methods. In order to better describe the
reflection characteristics of the target, three time-domain statistics are selected as features.
In addition, a simple FAD algorithm is proposed to optimize the horizontal region.

A series of simulated and real GPR data was used to verify the proposed method.
The results show that PRCA can effectively suppress non-sparse clutter, but it is not
suitable for sparse clutter and noise suppression. In the recognition of the simulated
image in the horizontal region, the three features can distinguish target regions and non-
target regions but cannot distinguish target regions and point clutter regions. The FAD
algorithm can effectively reduce the influence of point clutter and improve the recognition
accuracy of horizontal regions. The proposed method is also compared with two traditional
segmentation recognition methods. The comparison results show that the proposed method
can significantly reduce FPR and improve accuracy but cannot reduce FNR. In addition,
the results also show that the proposed method can effectively reduce the processing time.

5. Conclusions

In this paper, an efficient recognition method based on neural networks is proposed to
improve the detection performance of underground road targets in GPR images. RPCA is
first used to suppress the clutter in the image. Then, one BP neural network is adopted to
obtain the horizontal regions of targets by recognizing A-scan signals in the image, and
another BP neural network is used to obtain the vertical regions of targets by recognizing
segmented A-scan signals in the horizontal regions of targets, which provides a solution to
improve the recognition efficiency. Moreover, the FAD algorithm is presented to optimize
the horizontal regions of targets.

The effectiveness of the proposed method is verified by both simulated and real
GPR images. The experimental results show that the proposed method is superior to the
two traditional segmentation recognition methods in recognition accuracy and processing
time. Future work will study more efficient target recognition solutions to improve GPR
detection performance.
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