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Abstract: Aerosol optical depth (AOD) is the key parameter for determining the aerosol radiative
effects and air quality variation. It is important to quantify nighttime aerosols using satellite-based
night light images to understand their diurnal variations. This study selected high-resolution low
light images from the Glimmer Imager (GLI) aboard the SDGSAT-1 satellite to examine spatial–
temporal changes in night light emitted from the urban surface of Beijing. The radiance observed
by SDGSAT-1/GLI was used to discern the AOD changes using the radiance background method
(RB) and standard deviation method (SD) based on the characterization of the radiance from artificial
light sources. Cloud cleaning processes were conducted to reduce the influence of the cloud cover
in the glimmer images of the derived AOD. The results showed that there are good consistencies
between the derived AOD results from the remote sensing and nighttime site observations. The
radiance background method is better than the standard deviation method for deriving AOD using
SDGSAT-1/GLI with the RMSE of its RB (0.0984) being greater than that of the SD (0.7653). The
influence of moonlight, atmospheric absorption, and positioning errors on the results is briefly
discussed. This paper shows that SDGSAT-1 can obtain relatively reliable night AOD values based
on our investigations using the available satellite images taken in winter and spring, and that it has
the potential to provide the scientific products of nighttime AOD.

Keywords: nighttime aerosol; aerosol optical depth; SDGSAT-1/GLI; night light; urban

1. Introduction

SDGSAT-1, launched on 5 November 2021, is the first scientific satellite dedicated to
serving the United Nations 2030 Agenda for Sustainable Development Goals (SDG) [1].
Three key payloads are carried by SDGSAT-1, including a thermal infrared spectrometer
(TIS), a glimmer imager (GLI), and multispectral imager (MII) [2]. SDGSAT-1 is operational
at the height of 505 km with its inclination of 97.5◦. The satellite’s swath width reaches
300 km, and its repetitive Earth coverage is about 11 days. SDGSAT-1 aims to detect human
activities in detail at a higher spatial resolution day and night under the collaborative
operation of three key payloads, further providing satellite images and scientific products
supporting the Sustainable Development Goals (SDG) evaluations related to the intensive
interaction between human activities and environmental changes [3].

SDGSAT-1/GLI can efficiently detect the intensity and distribution of ground low
lights, which can be used to examine the details of urban spatial patterns, populations, or
economic development levels. GLI can provide night light images at a spatial resolution
of 10 m for panchromatic bands and of 40 m for three visible bands (red, green and blue),
respectively, and it represents a great improvement in the detection of night light at higher
spatial resolutions to examine detailed urban structures by comparing the data obtained by
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it with the popular night light datasets from VIIRS/DNB (nearly 742 m). RGB channels
could detect the color variation of night light to understand the transformation of energy
consumption modes [4].

Aerosols consist of very finely subdivided liquid or solid particles suspended in the
atmosphere, which can maintain in the air for a long time [5]. Aerosol optical depth (AOD)
is the key parameter for measuring the extinction effect of atmospheric aerosols, mainly
characterized by the integration of the extinction coefficient of the medium in the vertical
direction, which is widely used to assess the degree of air pollution [6]. The content of
aerosols in the atmosphere is small, but they play an important role in climate change and
atmospheric radiation balance due to their participation in many physical and chemical
processes [7–9]. According to the processes of scattering, absorption, and transmission of
solar radiation adopted by the algorithm, AOD could be detected from satellite platforms
based on the characterization of sensitive wavelengths or the multiple observation angles
adopted by their carried sensors [5], as is possible with Moderate Resolution Imaging Spec-
troradiometer (MODIS) [10], Advanced Very High Resolution Radiometer (AVHRR) [11],
and Multi-angle Imaging Spectroradiometer (MISR) [12]. However, it is a big challenge
to retrieve AOD at night due to the lack of appropriate satellite-based observation data.
Meanwhile, there are big differences of aerosol optical depth values between day and
night due to their rapid change rate and short life cycle. The diurnal variations of atmo-
spheric aerosols are important for understanding climate change, air quality, and weather
forecasts [13,14]. Nighttime aerosol information would further improve the prediction of
aerosol visibility and air quality [15,16].

Many methods have been developed to derive aerosol optical depth using remote
sensing images since the 1980s [5]. However, there are many limitations to the inversion of
nighttime aerosol optical depth, especially the accuracy, spatial resolution, and universality
of inversion algorithms [17–19]. Traditional methods adopted by daily satellite images are
no longer applicable to retrieving nighttime aerosol optical depth due to the lack of solar
radiation observations at night. Investigations have found that the nights of our world
have been gradually lighted up along with intensive human activities and rapid economic
development, especially in urban areas. Recent studies have suggested that the observation
of night light can potentially allow the retrieval of nighttime aerosol optical depth [20–26].
The US Defense Meteorological Satellite Program(DMSP/OLS) was originally designed
to observe cloud coverage using the weak moonlight reflected from the top of the cloud
layer, and subsequently it was found to be appropriate for observing night light and
retrieving AOD, but it could not provide an accurate AOD value due to the lack of absolute
radiometric calibration and the saturation of the detector in the urban center [27]. Johnson
et al. (2013) proposed the use of VIIRS/DNB night light data to discern the presence of
aerosols according to the difference between urban lights and dark backgrounds. However,
this method is more suitable for AOD derivation in isolated small cities regarding the
inherent variation within an artificial light source. McHardy et al. (2015) proposed an
improved method by using the spatial difference of urban light sources in the selected
artificial light source area to retrieve the AOD value at night, and it is easier to obtain the
global nighttime AOD values without the manual selection of the surrounding contrast
area. Wang et al. (2016) found a good correlation between DNB observations and surface
PM2.5 at the urban scale through nighttime AOD values, but these algorithms ignored
multiple instances of scattering and gas absorption. Zhang et al. (2019) investigated
nighttime AOD in the United States, the Middle East, and India using VIIRS/DNB datasets,
and found that the derived nighttime aerosol value was mainly influenced by the satellite
observation angle rather than the moonlight. This algorithm has the potential to provide the
missing nighttime AOD with a relative low spatial resolution (1◦ × 1◦) at the regional and
global scales. Zhou et al. (2021) developed an algorithm to retrieve nighttime AOD from
the moonlight observations of VIIRS DNB, without the pollution of human lights, using
radiative transfer equations. However, the algorithm is mainly limited by the lunar phases
and cannot perform effective inversion in cities with dense human activity. Jiang et al. (2022)
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conducted the inversion of nighttime AOD for two pollution processes in East China by
combining the 6S radiative transfer model with synthetic nightlight background values
of multiple days by building a look-up table, and the retrieved AOD values were in good
agreement with the AOD values and site-observed air quality indices. Li et al. (2022)
further verified the potential of point light sources to derive nighttime AOD according to
the developed nighttime AOD inversion model based on observational experiments in
Dunhuang using VIIRS/DNB data and ground-based integrating sphere measurements.

Accurate AOD variation has been possible to detect by site observation and space-borne
Lidar systems in recent years. There are more than 200 Aerosol Robotic Network(AERONET)
sites in the world equipped with the Climel CE318-T instrument, which can adopt the moonlight
in photometer measurements to derive nighttime AOD information [28]. As the instrument’s
calibration and quality control methods are being improved, AERONET can only provide
temporary level 1.5 night AOD values at present. The ground-based laser system is another
way to actively detect aerosol backscattering and extinction profiles at night [29], but they
cannot provide full spatial coverage of the study area due to their isolated points of observation.
The active space-borne Lidar instrument (Cloud-Aerosol Lidar with Orthogonal Polarization,
CALIOP) is capable of more accurately exploring the global nighttime AOD [30]. However, it
can only detect a narrow strip with a width of 70 m on the ground, and the area that can be
detected every day is relatively limited [30,31].

The GLI imager aboard the SDGSAT-1 can capture low light signals at a spatial
resolution of 10 m (PAN) and 40 m (VIS), and it has the potential to identify the types of
urban light and reduce the error caused by different types of light sources. This study
tried to explore nighttime aerosol optical depth using SDGSAT-1/GLI images. Cloud-free
images were selected from the SDGSAT-1/GLI images to create clean background data.
The analysis of the atmospheric radiation transfer process and the characterization of low
light at night over an artificial light source were used to derive the spatial distribution of
nighttime AOD in Beijing. The possible factors affecting the AOD derivation were also
evaluated to further improve the aerosol optical depth inversion at night.

2. Study Area and Datasets
2.1. Study Area

Beijing, located in the North China Plain (115.4–117.6◦E, 39.4–41.1◦N), is a typical
mega-city with a population of 21.886 million and an urbanization level of 87.5% in 2021.
Beijing has complex terrain conditions with mountains and a natural surface mainly located
in the northern part and the western part of Beijing, while the southeast part, mainly
cropland and settlements, is flat and densely populated (Figure 1a) [32]. Beijing has
experienced rapid economic growth and urbanization in recent decades. The emission
of atmospheric pollutants from industrial production, vehicle exhaust, fuel combustion,
and other sources caused a change in the aerosol concentration [33]. Figure 1b shows a
true-color composite image of low light at night in Beijing on April 15, and we found that
the orange color appeared in the central urban area with there being many high-pressure
sodium lamps in this region, while LED lamps were mainly distributed in the eastern part
of the urban area with different colors.

2.2. SDGSAT-1 GLI Data

As SDGSAT-1/GLI can produce high spatial resolution images, it can clearly capture
nighttime city lights and their spatial distribution, further providing the details of urban
structure and street extension. The overpass time of SDGSAT-1 in Beijing is around 21:20
local time, about 4 h earlier than that of VIIRS/DNB [34], which may make it better for
monitoring local human activities. L4A images of SDGSAT-1 were selected from the satellite
data sharing service system (http://www.sdgsat.ac.cn/ (accessed on 1 August 2022)), and
they were systematically geographically corrected and radiometrically calibrated to create
highly consistent and continuous data products. This study selected 17 satellite images
from November 2021 to July 2022 (Table 1).

http://www.sdgsat.ac.cn/
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Figure 1. The location of the study area (Beijing) and the night light image of it acquired by SDGSAT-1.
The surface of Beijing can be characterized by the SDGSAT-1 daytime true-color composite image on
5 March 2022 (a) and the nighttime true-color composite image on 15 April 2022 (b). We selected five
Aeronet stations over the study area: site 1 is Beijing_RADI station, site 2 is Beijing station, site 3 is
Beijing_PKU station, site 4 is Beijing_CAMS station, and site 5 is Xianghe station.

Table 1. The selected L4A images of SDGSAT-1/GLI in Beijing.

Number Date Overpass Time (UTC) Number Date Overpass Time (UTC)

1 10 November 2021 13:10:52 10 14 March 2022 13:22:30
2 26 November 2021 13:17:02 11 30 March 2022 13:23:26
3 3 January 2022 13:18:49 12 4 April 2022 13:29:17
4 25 January 2022 13:13:45 13 5 April 2022 13:11:52
5 4 February 2022 13:27:33 14 10 April 2022 13:17:27
6 5 February 2022 13:10:33 15 15 April 2022 13:23:28
7 15 February 2022 13:24:13 16 26 April 2022 13:16:18
8 20 February 2022 13:30:45 17 1 May 2022 13:21:17
9 21 February 2022 13:13:30

2.3. VIIRS/DNB Data

NASA’s Black Marble product suite consists of the daily at-sensor TOA nighttime
radiance product (VNP46A1) and the daily moonlight-adjustment nighttime lights (NTL)
product (VNP46A2) (https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 15 July 2022)).
The spatial resolution of VNP46A1 and VNP46A2 products is 15” (about 500 m at the equa-
tor) [35]. According to the quality control information (QC) of the datasets, we selected high
quality images to minimize the data uncertainty by excluding pixels with missing values
or damaged calibration data, such as pixels contaminated by stray lights and clouds. Here,
the parameters, TOA, UTC, ANG, and QF of VNP46A1 and VNP46A2 are selected. They
mainly delineate the radiance, time, satellite azimuth angle, and quality control (including
cloud mask), respectively. VIIRS/DNB images were also used to derive nighttime AOD
to compare it with that from SDGSAT-1/GLI. Table 2 provides the comparison of satellite
specifications of VIIRS/DNB and SDGSAT-1/GLI.

https://ladsweb.modaps.eosdis.nasa.gov/
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Table 2. The difference of night light images from VIIRS/DNB and SDGSAT-1/GLI.

Satellite NPP-VIIRS/DNB SDGSAT-1/GLI

Orbit height 750 km 505 km

Spatial resolution 740 m Panchromatic: 10 m
RGB: 40 m

Bands Panchromatic: 500–900 nm

Panchromatic: 444–910 nm
Blue: 424~526 nm

Green: 506~612 nm
Red: 600~894 nm

Swath width 3060 km 300 km
Revisit cycle 1 d 11 d

Overpass time
(Local time) About 1:30 About 21:20

Available Period 2021-present 2012-present

2.4. AERONET Data

Aerosol observation datasets were selected in this study from the AERONET (Aerosol
Robotic Network) website, a global aerosol monitoring network jointly established by
NASA (National Aeronautics and Space Administration) and LOAPHOTONS (CNRS).
AERONET has collected daytime aerosol information since 1993, while it began to conduct
nighttime aerosol measurements, using moonlights as the light source, in 2015 [24,28]. Cur-
rently, about 200 AERONET stations are capable of monitoring nighttime AOD. Generally,
the total calibration uncertainty of the AERONET radiance measurement ranges from 5% to
12% when the wavelength and the lunar phase angle varies from 440–1640 nm and 0–90 de-
grees, respectively. The uncertainty of nighttime AOD from AERONET observations is less
than 0.03, which makes it more accurate than other AOD products. Therefore, it is widely
used in the validation or verification of satellite-derived AOD datasets [24,36]. Due to the
lack of nighttime Level 2 AOD data from AERONET products, we mainly selected the
latest AOD datasets from AERONET Level 1.5 products to conduct a quality assessment of
satellite-based AOD datasets. Due to there being no AOD products at the wavelength of
550 nm in AERONET, band interpolation based on the Ångström index estimation model
was used to calculate AOD 550 nm from the AOD at 500 nm and 675 nm to compare the
results with the satellite-based AOD results:

α = − ln(τ1/τ2)

ln(λ1/λ2)
(1)

where τ1 and τ2 are the AOD at wavelengths λ1(500 nm) and λ2(675 nm), respectively, and
α denotes the Ångström index.

3. Aerosol Inversion Methods
3.1. Theoretical Basis

According to Johnson et al. (2013) and Li et al. (2022), the upward radiance of the
target pixel at the bottom of the atmosphere at night is contributed by the radiance from
the artificial light source and the lunar light source, which can be expressed as:

Is =
rs

(
µ0F0e−τ/µ0 + µ0F0T(µ0)

)
+ πIa

π(1 − rsr)
(2)

F0 is the incident light from the Moon, µ0 is the cosine of the Moon’s zenith angle, rs is
the surface reflectance, and r is the aerosol reflectance. T(µ0) is the scattered transmittance,
Ia is the radiance emitted by the surface source, (rSµ0F0e−τ/µ0 ) denotes the reflected direct
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Moon radiance, and (rSµ0F0T(µ0)) denotes the scattered Moon radiance. The observed
radiance from the satellite in the visible band at night can be expressed as:

Isat = Ise−τ/µ + µIsT(µ) + IP (3)

where Isat is the radiance observed by the satellite, IS is the radiance from the surface
upward, τ is the total optical thickness, µ is the cosine of the zenith angle observed by the
satellite, and IP is the path radiance (at night, IP mainly refers to the radiance that reaches
the sensor directly after the scattering by the components of the atmosphere and aerosol
particles during the moonlight transmission). Ise−τ/µ and µIsT(µ) represent the direct and
surface diffuse emission term radiance upward from the surface source.

3.2. AOD Derivation Using Standard Deviation Method (SD Algorithm)

According to McHardy et al. (2015), assuming that Ia remains constant throughout the
observations and city light pixels are contiguous, all pixels have the same total optical thickness,
scattered radiance, path radiance, reflected direct lunar radiance (rSµ0F0e−τ/µ0), and scattered
lunar radiance (rSµ0F0T(µ0)). When AOD is 1, r is about 0.1, and multiplying it by the surface
reflectance, rs, will make it even smaller, so the effect of rsr in the denominator can be neglected.
Taking the spatial derivative of Equation (3) yields Equation (4):

∆Isat = ∆Iae−τ/µ (4)

∆Ia is the intrinsic spatial deviation of the ground source and ∆Isat is the spatial
deviation observed by the satellite. Assuming that aerosol optical depth is the total optical
thickness, τ, under cloud-free conditions, it can be expressed as:

τ = −µ ln
(

∆Isat

∆Ia

)
(5)

3.3. Radiance Background Method for AOD Inversion (RB Algorithm)

The radiance received by satellites can be expressed as:

Isat = (Ia + Im) ∗ PS + IP (6)

Ia is the radiance emitted from the surface light source, Im is the radiance of moonlight
reflected by the surface, and PS is the total transmittance (usually the convolved spectral
atmospheric transmittance of each band with the spectral response function). IP is the
nighttime atmospheric path radiance, which mainly refers to the radiance that reaches the
sensor scattered by the components of the atmospheric and aerosol particles during the
moonlight transmission. The observed radiance of the satellite at the top of the atmosphere
without considering moonlight can be expressed as:

Isat = Ia ∗ PS (7)

The simulation of the atmospheric radiative transfer model can provide atmospheric
transmittance, and the total atmospheric transmittance is established in this study using
MODTRAN 5.2.2. We created a lookup table to conduct the AOD derivation according to
the satellite zenith angles, AOD values, and the simulated total atmospheric transmittance.
We selected the standard atmospheric profile of mid-latitude winter from MODTRAN and
the urban aerosol type in the model simulation. Then, the AOD interval of 0.1 within the
range of 0–3 and the satellite zenith angle, 0–18◦ with the interval of 2◦, were also adopted
in the simulation.

The flow chart of RB and SD algorithms provides the details of our nighttime AOD
retrieval using SDGSAT-1/GLI images (Figure 2). According to the relative information
from the lookup table simulated by the MODTRAN radiative transfer model, the images
could delineate AODs under different satellite observation situations, including the corre-
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sponding atmospheric transmittance under different aerosol states and different satellite
observation angles.
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3.4. VIIRS/DNB Data Pre-Processing

The creation of an appropriate and stable nightlight background from the multi-day
synthetic artificial light radiance was used to conduct the aerosol inversion. However, we
found that artificial light sources are usually affected by human activities, especially abrupt
changes in local light sources detected in a short period, for example, their brightness
increases during holiday celebrations [25]. These big changes in surface light are not
applicable to AOD derivation algorithms. The coefficient of variation (Cv), reflecting the
diffusion degree in a specific region, is used to identify and remove inappropriate signals.
Here, we quantify the coefficient of variation as the ratio between the standard deviation
(σ) and the averaged value (M) of a data sequence:

Cv =
σ

M
(8)

The VIIRS/DNB data in the study area were divided into 5 × 5 pixel grids. The city
light pixels in the grid were selected to calculate the standard deviation. First, these grids,
with cloud cover detected by quality control information, were removed. We calculate
the coefficient of variation of these grids using the monthly data sequences from selected
images. Then, the regions could be divided into stable and unstable light source areas using
the maximization of inter-class variance method (Otsu) [37].

We synthesized monthly background data using the maximum radiance value of
the time series of cloud free data within a month and selected the pixels with radiance
values greater than 1.5 times the average value as urban pixels. This method can identify a
relatively stable urban area using night light signals [20]. Figure 3 shows the synthesized
radiance value and the variation coefficient figure calculated on March 2022; we found that
there was no light in the mountain area and that the change in its radiance was mainly
affected by moonlight. The variation coefficient is relatively stable except for the urban
center, which is suitable for the inversion of aerosol optical depth at night. Figure 3g,i
shows the selected region used in the AOD derivation. In order to reduce the error created
by possible abnormal changes, the inversion process was canceled to maintain the stability
of the results when the urban light pixel in the grid was less than 4.
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3.5. SDGSAT-1/GLI Data Preprocessing 

Figure 3. The selection of urban nightlight regions for AOD derivation based on the coefficient of
variation (CV). Regions with high CV values were not used in AOD inversion due to the unstable
light variation. (a,d,g) show the radiance background from VIIRS/DNB in March 2022, the variation
coefficient image, and the selected area for AOD derivation at night, respectively. (b,e,h) provide the
background light synthesized by SDGSAT-1/GLI images, the variation coefficient image, and the
selected area for AOD derivation based on the radiation transfer method, respectively. (c,f,i) are the
background light synthesized by SDGSAT-1/GLI images, the coefficient of variation images, and the
selected area for AOD derivation based on the standard deviation method, respectively.

3.5. SDGSAT-1/GLI Data Preprocessing

According to radiometric calibration coefficients and a spectral response function
of the panchromatic band of SDGSAT-1, the DN values from the GLI L4A images were
converted to radiance (unit: W/m2/sr/µm) accoriding to the absolute radiometric calibra-
tion coefficient released by the International Research Center of Big Data For Sustainable
Development Goals (http://www.sdgsat.ac.cn/ (accessed on 1 August 2022)).

Due to the diffusion effect of night light, changes city light may modify the radiance of
their adjacent pixels. Generally, urban lights are complex and dynamic with many different
point light sources over the urban surface. The brightness of the light center greatly differs
from that of the surrounding area, and large changes in pixel radiance could be caused
by small positioning errors. Due to the improved spatial resolution of SDGSAT-1/GLI
data compared with that of VIIRS/DNB data, the ratio of the positioning error to the pixel
resolution also increased, which led to difficulties when comparing the multi-temporal

http://www.sdgsat.ac.cn/
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light data of the same geographical location. In order to select stable urban lights from the
SDGSAT-1/GLI low light images, we further expanded the selected window to search for
more urban light pixels. The central area of Beijing (116.264–116.490◦E, 39.825–39.995◦N)
was selected to explore the appropriate window size selection, and we found that there is
positive relationship between selected window size and data stability. The investigation of
the panchromatic glimmer images from SDGSAT-1 showed that the maximum positioning
error range was about 4–5 pixels (40–50 m). Therefore, we explored window size using
the displacement of 1–5 pixels of panchromatic band data and the 10 × 10 window. The
radiance values of the window were obtained as the original radiance, Rraw. Then, the
window, moved by 1 pixel, 3 pixels, and 5 pixels, was used to calculate the total radiance
values, Rmove. We analyzed the relationship between Rraw and Rmove to evaluate the impact
of geographical positioning errors on the background windows (Figure 4). The increase in
position deviation was negative and related to the correlation coefficient of Rraw and Rmove
in the same window size. One pixel positioning error at 10 × 10 window would cause the
mean relative deviation (MRD) to be 12.62%, with R2 by 0.975 and the scale coefficient, K,
by 0.9921, while the MRD increased to 87.25% when the positioning error reached 5 pixels.
Meanwhile, the determination coefficient and the scale coefficient also decreased to 0.6352
and 0.8051, respectively. Figure 4b,e,h shows that the scale factor would approach 1 when
the window size increased with a 3-pixel deviation, with R2 increasing from 0.8296 to
0.9882 and MRD decreasing from 47.97% to 8.58%, which indicated that the data stability
improved along with the increasing window size.
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Figure 4. Relationship between selected grid size and positioning error. (a–c) are the regression
diagrams of the total radiance of light pixels in the grid when the grid size was 10 pixels and the
position moved by 1, 3, and 5 pixels, respectively. (d–f) are the regression graphs of the total radiance
of the light pixel in the grid when the grid size was 30 pixels and the position moved by 1, 3, and
5 pixels, respectively. (g–i) are the regression graphs of the total radiance of the light pixel in the grid
when the grid size was 50 pixels and the position moved by 1, 3, 5 pixels, respectively.
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Similar to VIIRS/DNB, AOD inversion using SDGSAT-1/GLI data also requires the
appropriate pre-processing of city lights. Due to the influence of atmospheric conditions,
radiometric calibration, moon phase, and observation geometry, the radiance value of
the same pixel may vary on different days. Light pixels with a DN value greater than 20
were considered relatively stable and were classified as urban light pixels based on the
characteristics of the SDGSAT-1/GLI night light data. Here, the number of stable light
pixels in the same window was considered a constant, which can be quantified by the
median of the multi-day observation. The median number of urban light pixels observed
from multiple days in each window was considered to be the total number of real urban
light pixels in the window in Nm. This method could maintain the stability of the selection
and enhance the comparability of the low light data.

The night light images of Beijing were divide into grids with 50 × 50 pixels, and the
Nm pixels with the largest brightness value of each grid were considered as the city light
pixels in the grid. We calculated the standard deviation, ∆Isat−GLI , of all the light pixels in
the grid for the SD algorithm, and selected the grid with the maximum standard deviation
across multiple days as the standard deviation background grid, ∆Ia−GLI (without aerosol
influence). The total radiance, Isat−GLI , of all the light pixels in the grid was calculated by the
RB algorithm. For the same grid, the maximum radiance across multiple days was selected
to delineate the grid as the radiance background grid, Ia−GLI (without aerosol influence).

In order to maintain the stability of the data in the grid and enhance their comparability,
the grid of less than 10 Nm was defined as a dark grid without retrieving nighttime AOD.
The coefficient of variation was quantified using the radiance, Isat−GLI , and the standard
deviation, ∆Isat−GLI . The regions with rapid changes in night lights were defined as about
1.5 times greater than the averaged CV values. The rapid change area was identified on
1 May 2022 in Beijing (Figure 5), and many purple landscape lights have been detected
on both sides of a river in the east of Beijing. Light brightness enhancement also occurred
in a nearby commercial area. They are the typical unstable light areas, which needed to
be identified and eliminated to reduce the large errors would have created in the AOD
results. Meanwhile, a manual visual inspection of the SDGSAT-1 low light images was also
conducted to detect cloud cover. When the urban areas were completely or mostly covered
by clouds, the images were not used for the retrieval of aerosol optical depth at night.
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Figure 5. The identification of the unstable nightlight areas in Beijing. Higher variation coefficient
area (b) in Beijing was identified according to the variation coefficient synthesized using radiance
value for many days (a), and the nightlight images obtained on 15 April 2022 (c) and 1 May 2022
(d) by SDGSAT-1 could identify the abrupt-change regions.
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3.6. Nighttime AOD Derivation

An SD algorithm was used to derive the nighttime AOD in Beijing using VIIRS/DNB
datasets from 1 July 2021 to 30 June 2022. In order to compare those with AOD retrieved
by the SDGSAT-1 satellite, the spatial deviation observed by the VIIRS/DNB (∆Isat−DNB)
calculated from cloudless night light data and the inherent spatial deviation of light observed
by VIIRS/DNB (∆Ia−DNB) were selected to calculate the nighttime aerosol optical depth, τDNB.

SDGSAT-1/GLI data were used to retrieve nighttime AOD using the SD and RB
algorithms, respectively. The standard deviation, ∆Isat−GLI , standard deviation background
value, ∆Ia−GLI , of the light pixel in the daily retrieval window, and the zenith angle of the
satellite observation were adopted by the SD algorithm to retrieve the nighttime aerosol
optical thickness according to Equation (5). Similarly to the SD algorithm, the RB algorithm
used the daily retrieval of radiance, Isat−GLI , radiance background value, Isat−GLI , of light
pixels in the window, as well as the satellite observation zenith angle, combined with the
lookup table established by MODTRAN to retrieve the nighttime aerosol optical thickness.

Clouds cause the attenuation of the brightness of city lights detected by satellites.
Therefore, if the pixel value of urban light participating in the calculation in the inversion
window was lower than the minimum value of the detection range of the SDGSAT-1/GLI
sensor, it was considered that this window may have been affected by thick clouds, and
the AOD inversion was not performed. The median filtering method was used to optimize
the AOD inversion results of the SDGSAT-1 low light data, and it could efficiently remove
outliers (maximum or minimum) to improve the stability of the AOD inversion value.

4. Results
4.1. The Nighttime AOD from SDGSAT-1/GLI

We compared the derived nighttime AOD results of Beijing from the SDGSAT-1
panchromatic low light images using RB and SD algorithms (Figure 6). Here, we selected the
nighttime AOD to examine their spatial variations under three typical weather conditions,
including the clear skies on 26 November 2021 and 15 April 2022 and the polluted sky
on 30 March 2022. Figure 6d,i shows the spatial distribution of the AOD obtained by
the two algorithms on 26 November 2021, 30 March 2022, and 15 April 2022. The spatial
distribution of the AOD values obtained by the two algorithms is relatively consistent. We
compared the AOD values obtained by the two inversion algorithms using a 3 × 3 filtering
grid. For the same grid, the comparable inversion pixels were marked as the two inversion
algorithms carried out, and the averaged AOD values were calculated when more than half
of the pixels were identified. There is a good correlation between the AOD data from the
SD and RB algorithms, with their correlation coefficient, R, ranging from 0.6782 to 0.8534.
We quantified the overall difference in the AOD obtained by the RB and that obtained
by the SD algorithm and found that the AOD values from the SD algorithm are larger
than those from the RB algorithm, with their deviation being 52.18%, 38.29%, and 59.95%.
According to the investigation of the true-color low light level image, the high AOD value
on 30 March 2022 was possibly caused by some clouds or fog over urban area. There were
similar patterns of AOD variation retrieved by the RB and SD methods, with a consistent
position and degree of light blur in the color image (Figure 6). Clear skies, which were the
conditions on 26 November 2021 and 15 April 2022, could provide more details on urban
light, and they usually have low AOD values for understanding the spatial distribution of
aerosols and urban air pollution.
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Figure 6. Spatial patterns of AOD in Beijing derived from SDGSAT-1/GLI images. Each row lists
AOD results from RB and SD method under three typical weather conditions on 26 November 2021,
30 March 2022, and 15 April 2022, respectively. (a–c) are the night color low-light level images of
SDGSAT-1/GLI, (b–f) are the AOD results obtained by inversion of the RB algorithm, (g–i) are the
AOD results obtained by inversion of the SD algorithm, and (j–l) are the correlation analyses of AOD
values obtained by SD and RB inversion algorithms.

4.2. The Verification of Satellite-Based AOD Using Nighttime AERONET Observations

Observation records from AERONET stations are important data sources of surface
verification in understanding the accuracy of aerosol retrieval results [38]. Beijing-CAMS,
the AERONET station in the study area, can provide continuous AOD measurements at
night. In order to eliminate the uncertainties, the mean value from a 3 × 3 grid close to
the site was derived from a VIIRS/DNB image, then it was evaluated or verified using
AERONET site data (Figure 7). We found that the Pearson correlation coefficient, R, reached
0.7603, which indicated that VIIRS/DNB has the ability to obtain AOD values at night
(Figure 7a). Meanwhile, the derived AOD values from VIIRS/DNB are overestimated when
AOD is lower than 0.5, which may be related to changes in background value, such as the
increase of brightness of nightlight during holidays [34].
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Figure 7. The comparison between AOD values from SDGSAT-1/GLI and AERONET site. (a) is the
correlation analysis of AOD from nighttime stations and VIIRS/DNB images, (b) is the linear regression of
AOD from nighttime stations and SDGSAT-1/GLI images based on RB algorithm, and (c) is the linear
regression of AOD from nighttime stations and SDGSAT-1/GLI images based on SD algorithm.

Due to the influence of the revisit cycle, amount of clouds, and changes in moon phase,
there were limited AERONET AOD data to be used in a data verification analysis across all
night stations during the study period. We conducted a correlation analysis of the AOD results
from the SDGSAT-1/GLI images and observation records from Beijing-CAMS close to the
satellite overpass. Figure 7b,c examined the difference in the AOD values derived from the
SDGSAT-1/GLI images by the RB algorithm and SD algorithm and the reference data acquired
by the AERONET site at night at 550 nm and 675 nm. The results show that the AOD inversion
results of the two methods have a good correlation, with the observed values of the station and
the correlation coefficients, R, reaching 0.9847 and 0.9907, respectively, indicating that the two
algorithms can well capture the changing trend of AOD values. The RMSE obtained by the
RB algorithm and SD algorithm were 0.0984 and 0.7653, respectively. The mean absolute error
(MAE) can represent the absolute error of remote sensing inversion results. The MAE of τGLI−RB
is significantly smaller than that of τGLI−SD (0.56) with a difference of 0.47. The AOD values
obtained by the SD method are about twice the observed value from the AERONET site, while
those obtained by the RB method are very close to the observed value from the AERONET site.
Therefore, the inversion method based on RB has higher reliability for deriving AOD values
than the SD method.

4.3. The Difference of AOD from SDGSAT/GLI and Daytime Stations

In order to collect more reference data for the verification analysis of the satellite-based
AOD, we selected the AERONET AOD value of daytime observations before and after
the satellite overpass, including the evening observation closest to the overpass and an
observation of the next morning for daytime aerosol. Previous investigations suggested
that the daytime AERONET AOD observations could be used to semi-quantitatively verify
satellite-based nighttime AOD results, assuming the aerosol conditions during the night
are relatively stable [21]. Therefore, the average value of the AERONET observation in
the afternoon and the first observation in the morning of the next day was considered
as the reference data for reducing possible uncertainties. Certainly, the AOD value was
also influenced by cloud cover during the selected period, which may have caused larger
AOD variations. Five daytime stations in Beijing were selected to conduct the verification
(Figure 1a), and the results show that the satellite-based AOD using the SD algorithm is
approximately twice the site-observed AOD from AERONET (Figure 8). We also found
a similar phenomenon at night, with the slope of τGLI−SD from SD and the nighttime
AERONET AOD being 0.4618 (Figure 7c). McHardy et al. (2015) assume that the surface
diffuse emission term (µIsT(µ)) is spatially invariant in the SD algorithm, but that it
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will be affected by the ground light source, which may have a large impact on the SD
algorithm [21,23].

Figure 8. Comparison of AOD values obtained by SDGSAT-1/GLI data and daytime AERONET
stations using RB (a) and SD algorithm (b), respectively.

5. Discussion

We could examine the spatial difference in the AOD values derived from the SDGSAT-
1/GLI panchromatic bands using two inversion methods, and it was found that the RB
algorithm based on the atmospheric radiative transfer model could capture more appropri-
ate nighttime AOD than the SD algorithm could. The analysis of 999 cities in the Middle
East by Zhang et al. (2019) shows that the slope from the correlation analysis between the
derived AOD values from VIIRS/DNB and AERONET AOD values will increase from
0.36 to 0.61 after the correction of the surface diffuse emission term. Meanwhile, the slope
between the derived AOD values from VIIRS/DNB and CALIOP AOD will also increase
from 0.33 to 0.48. Another investigation in India also found that surface diffuse emission
correction played an important role in reducing the deviation between the derived AOD
values from VIIRS/DNB and AERONET AOD [23].

We examined the influence of moon illumination under different moon phase con-
ditions on the derived AOD in the selected transection area (116.357–116.361◦E, 39.711–
40.118◦N) across Beijing (Figure 9). Higher radiance was detected on 26 November 2021,
15 April 2022, 3 January 2022, and 4 February 2022 along with lunar illumination fraction
of 63%, 97%, 0%, and 11%, respectively, while the lowest radiance was detected on 10
April 2022 with a 59% lunar illumination fraction. According to the variation patterns
of the radiance under different moon phases, there was no correlation between the lunar
illumination fraction and the mean radiances. The range of the statistical distribution of
radiances of each day is positive related to the average radiance of the lights in the area,
such as the largest radiance on 26 November 2021, with the highest average radiance of
0.95 × 104 nW/cm2/sr (the height of the box in Figure 9). The magnitude of the change
in radiance in the selected area is usually positively related to its discrete pattern, which
suggests that the RB algorithm based on the radiance value and the SD algorithm based on
the radiance standard deviation selected in this paper change by the sa,e amount under
different atmospheric conditions [23,31].
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26 April 2022. Marker ‘+’ represents the outlier above the upper boundary line, marker ‘*’ represents
the mean of the group of data, and the red line in the box is the median of the group of data.

The spectrum of urban nightlight sources was investigated to better understand
the potential impact of atmospheric absorption on the inversion results (Figure 10). We
analyzed the difference in the atmospheric spectral transmittance from 350–950 nm (without
aerosol), the spectral characterization of the three main light sources in cities, and the
relative spectral response of the SDGSAT-1/GLI panchromatic bands. The spectral ranges
of three main urban light sources mainly cover 300–700 nm, which means that a large part
of the atmospheric absorption can be avoided in AOD inversion [39]. The light source
datasets were collected from the light spectrum database (https://lspdd.org/app/en/home
(accessed on 13 July 2022)). In addition, some trace gases, such as ozone and nitrogen
dioxide, may slightly alter the derived AOD values in the aerosol retrieval processes [40,41].
This effect can be quantified by the detailed simulation of the atmospheric transfer model in
combination with the reasonable atmospheric observations from the reanalysis datasets. An
increase in water vapor will alter the size of aerosol particles, causing changes in the optical
properties of aerosol [42], which will lead to changes in AOD values. We also found that
the wavelengths of three main urban light sources mainly cover 450–700 nm. Therefore, the
AOD obtained by the SD algorithm may not be accurate if we choose the central wavelength
of the panchromatic band 675 nm to derive the AOD, and the characteristics of ground
light sources may be one of the factors that make the SD algorithm overestimate the AOD.

The satellite viewing zenith angle (VZA) usually has great impacts on the observation of
NTL [4,43]. The investigation carried out by Tan et al. (2022) suggested that the change in light
radiance at night was mainly caused by the blocking effect of buildings and the change in light
visibility [44]. The ground lights observed from tall buildings are gradually blocked along with
VZA increase, but more lights on the side of buildings will be detected. In order to explore the
impact of the observation VZA on NTL, we selected radiance changes around four AERONET
stations obtained from different observation zenith angles under clear weather (Figure 11). In
order to reduce the possible uncertainties, 3 × 3 inversion windows were selected to derive the
radiance around the inversion window of the station. Figure 11a shows that the light radiation
observed by satellite decreases with the increase of the VZA at the Beijing-PKU station with a
relatively strong blocking effect, while the positive angle effects could be detected over the other
three sites with light radiance increases along with increases in the VZA, which indicates that
the increased light radiance on the side of the buildings was greater than the blocked radiance.
Therefore, the NTL data also need to be corrected according to the VZA for AOD derivation,
even for the relatively small zenith angle range of SDGSAT-1/GLI. However, the difference or

https://lspdd.org/app/en/home
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inconsistency in the angle’s effects between SDGSAT-1/GLI and VIIRS/DNB also suggest that
the quantification of spatial resolution gaps and the detailed urban morphology used in the
analysis of the relationship between NTL and VZA may be helpful for improving derived AOD
results in the future.
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Figure 10. Satellite spectral response function, the emission spectrum of main ground light sources,
and the relationship between atmospheric spectral transmissivity and wavelength under clear
weather, including the atmospheric spectral transmittance (blue curve), the spectral response function
of SDGSAT-1/GLI panchromatic band (black curve), the normalized LED lamp spectral curve (green
curve), the normalized high-pressure sodium lamp spectral curve (yellow curve), and the normalized
fluorescent lamp spectral curve (red curve).

Due to the lack of cloud detection, the visual inspection in our study did not perfectly
distinguish cloud boundaries, especially those of thin and cirrus clouds. In order to implement
AOD derivation at the regional or global scale, an automated cloud screening scheme needs to
be conducted in place of the manual cloud screening performed in this study.
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viewing zenith angle. The analysis results were derived from four AERONET station, including
Beijing_PKU (a), Beijing_CAMS (b), Beijing_RADI (c), and Beijing station (d). The solid orange line is
the regression line.
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6. Conclusions

SDGSAT-1/GLI has provided the latest low-light images at a spatial resolution of
10 m, and these images were used in this study to detect detailed urban surface light and
to monitor the optical aerosol depth at night. The nighttime AOD values in the mega-city
area were derived using the SDGSAT-1/GLI panchromatic band data from November 2021
to May 2022 using RB and SD algorithms, respectively. The correlation coefficients, R, of
the RB algorithm and SD algorithm with the night AERONET site were 0.9847 and 0.9907,
respectively, while they slightly decreased to 0.9168 and 0.9318, respectively when the
daytime AERONET site was used in the verification analysis. Both of the AOD inversion
methods based on the SDGSAT-1 low light level data have a good correlation with the
AOERONET AOD values used for verification. The RMSE of the radiance background
method is 0.0984, and the RMSE of the standard deviation method is 0.7653. The radiance
background method is better than the standard deviation method for AOD derivation using
SDGSAT-1/GLI images. Generally, SDGSAT-1 low light data has the potential to provide
high-resolution urban nighttime AOD data for studying the distribution characteristics
and diurnal variation of nighttime aerosols. Compared with the VIIRS/DNB data, the
SDGSAT-1 data could identify the details of abrupt bright spots at a local scale, such as
those of rural areas and small roads. AOD values from SDGSAT-1/GLI were also of higher
precision and higher resolution than the derived AOD values from VIIRS/DNB.

One aerosol type in our study (city-type aerosols) was included in the RB algorithm
during the AOD analysis. This would have had a negative impact on the accuracy of the
aerosol retrieval results. In the future, it is necessary to use ground-based observation
data to build more aerosol models to improve the accuracy of aerosol inversion results.
The algorithm for AOD derivation in our study was conducted based on urban night
light images from SDGSAT-1. Theoretically, the latter cannot be used for the inversion of
non-urban areas with limited or unstable night lights, such as sparse light areas in rural
regions. Previous research has tried to develop a nighttime AOD inversion algorithm
using moonlight in non-urban areas. This may be a better way to expand the application
of SDGSAT-1/GLI data to derive nighttime AOD. This study investigated the ability to
retrieve of nighttime AOD values from SDGSAT-1/GLI images using different inversion
algorithms. Moreover, they can be used to obtain a larger scale and higher precision
nighttime AOD value. Furthermore, RGB images from SDGSAT-1 GLI may play important
roles in AOD value inversion in terms of reducing the dependence on multi-day synthetic
background data.
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