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Abstract: Accurate classification of tree species is essential for forest resource monitoring, man-
agement, and conservation. Based on the classification of tree species, the biomass model at the
individual-tree scale of each tree species can be accurately estimated, which can improve the es-
timation efficiency of individual-tree biomass. In this study, we first extracted four categories of
indicators: canopy height model, spectral features, vegetation indices, and texture features from
airborne-laser-scanning (ALS) data and hyperspectral data. We used these features as inputs to
the random forest algorithm and screened out the optimal variable combination for tree-species
classification, with an overall accuracy of 84.4% (kappa coefficient = 0.794). Then, we used ALS data
to perform tree segmentation in forest plots to extract tree height, crown size, crown projected area,
and crown volume. According to multivariate nonlinear fitting, the parameters of the individual-tree
structure were introduced into the constant allometric ratio (CAR) biomass model to establish the
biomass models of three tree species: Douglas fir, Red alder, and Bigleaf maple. The results showed
that the model-fitting effects were improved after introducing the crown parameters. In addition, we
also found that better tree segmentation results led to more accurate structural parameters.

Keywords: airborne-laser-scanning data; hyperspectral image; tree-species classification; tree
segmentation; individual-tree-biomass model

1. Introduction

Understanding the composition of forest tree species can provide valuable information
for estimating the economic value of forests and studying forest ecosystems [1]. Correct
identification of forest tree species was of great significance for rational planning and utiliza-
tion, sustainable forest management, biodiversity monitoring, and ecological environment
protection [2]. Meanwhile, the accurate identification of forest tree species also provided
reliable help for the estimation of forest biomass. Accurate estimation of forest biomass
played a crucial role in afforestation planning and design, forest resource monitoring, forest
ecological-value assessment, and climate-change impacts [3,4]. Therefore, efficient and
practical ways of classifying tree species and constructing a single-tree-level biomass model
based on the structure information of each tree species were highly desirable.

Traditional field surveys consumed a lot of manpower and material resources, the
cost of which was too high to be implemented in a large area [5]. At present, various
remote-sensing data have been used for tree-species classification such as multispectral,
hyperspectral, and light detection and ranging (LiDAR) data [6,7]. Hyperspectral remote-
sensing technology was a breakthrough in the field of remote sensing, which realizes the
acquisition of a continuous and large range of spectral feature information. Compared
with multi-spectrum remote-sensing data, hyperspectral data have the characteristics of
high spectral resolution and continuous bands, which greatly reduces the phenomenon of
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“same object different spectrum” and “foreign body same spectrum”, and greatly improves
the ability of ground object recognition [8,9]. Airborne laser scanning (ALS) can extract
high-precision forest-tree height, while also providing information on the forest canopy
surface’s horizontal distribution and vertical structure [10–13]. Alonzo et al. [5] extracted
all spectra exceeding the normalized vegetation index threshold from hyperspectral data
and crown structural metrics from ALS data for classification to map the distribution of
29 common tree species in Santa Barbara, California, USA. From this, it can be known that
the classification of multiple tree species can be achieved only by using optical remote-
sensing data to extract vegetation indices. Liu et al. [14,15] used the method of combining
ALS and hyperspectral data to classify tree species, which had higher accuracy than
only using hyperspectral data. This indicated that adding vertical structure information
can effectively improve the accuracy of tree-species classification. Based on the accurate
classification result of tree species, it was helpful to determine the tree species corresponding
to a single tree in the region, so as to build the biomass model of different tree species.
Therefore, the combination of hyperspectral data and ALS data can obtain better tree-
species-classification results and improve the efficiency of forest-resources monitoring in
remote-sensing forestry to a certain extent.

LiDAR data can be used to obtain tree structure information, such as the tree height,
diameter at breast height (DBH), and crown diameter, so as to fit the appropriate biomass
model. Kankare et al. [16] constructed a new biomass model based on tree height and canopy
structure extracted from terrestrial laser-scanning data and individual-tree-component
biomass, which showed that LiDAR data could improve accuracy for biomass model
construction. It indicated that this method greatly reduced the fieldwork of tree biomass
measurement. After the establishment of the model, the biomass of standing forest can
be estimated. Usoltsev et al. [17] constructed the new allometric equation with virtual
variables to estimate birch’s individual-tree and stand biomass. When estimating the
biomass model of individual-tree levels, the commonly used parameters were height and
DBH. However, it was difficult to guarantee the estimation accuracy with only two variables
in the biomass model [18]. Liu et al. [19] added two parameters of crown projected area
and crown volume to build the biomass model on the basis of the above two parameters.
The results showed that the accuracy of models was improved. For the research of biomass
models, scholars have proposed many biomass models which were summarized into
three types: linear model, nonlinear model, and polynomial model. Nonlinear models
are the most widely used, of which the relative growth model, constant allometric ratio
(CAR) model, and variable allometric ratio (VAR) model were the most representative.
By resampling and comparing the two types of model, the CAR model had not only a
stable parameter-estimation value but also strong estimation ability [20]. Feng et al. [21]
believed that the crown factor must be taken into account when building a biomass model,
because the crown is an important part of the whole tree. Thus, they introduced crown
volume and surface area into the biomass model. The results showed that the introduction
of crown parameters into the biomass model could obtain higher accuracy compared with
the traditional CAR model. Therefore, to build a high-precision biomass model, it was
necessary to consider the crown factor as a parameter and select the CAR model for fitting
the model.

According to the above, most studies [8–21] have focused only on tree-species clas-
sification or biomass model estimations by combining optical remote-sensing data and
LiDAR data, while they have rarely paid attention to linking the two. In this study, we first
combined active and passive remote-sensing data to realize tree-species classification. We
then segmented individual trees according to the distribution range of trees and extracted
individual-tree structural parameters. Finally, biomass models of each tree species were
estimated at the individual-tree level. Therefore, the specific goals of this study were that
we first investigated the optimal variable combination of tree-species classification based
on ALS and hyperspectral data. Then, we developed a practical parameter-extraction algo-
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rithm for individual-tree structural parameters based on the results of tree segmentation.
Finally, the estimation results of biomass models of three species were discussed.

2. Materials and Methods
2.1. Study Area

We selected a natural forest area in Panther Creek (PC, 45.28◦N, 123.37◦W) in Oregon,
USA (Figure 1a). PC is located on the northwestern coast of the USA, with an altitude
range of 90.44 m to 703.14 m. The climate is a temperate maritime climate, with an average
annual temperature of 15 ◦C. The total area of the study area is about 2580 ha. The types
of vegetation in the study area are diverse, of which most of the vegetation is tall trees,
and a few is understory vegetation such as shrubs and grasses. The study area contains
13 tree species, of which three tree species account for more than 88%, including Douglas
fir (Genus Pseudotsuga), Red alder (Alnus rubra), and Bigleaf maple (Acer macrophyllum) [22].
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Figure 1. (a) The location of the study area was in Panther Creek, Oregon in northwest USA; (a) also
had sample area’s point clouds, (b) was the hyperspectral image, (c) was the digital elevation model
(DEM), and (d) was the canopy height model (CHM) of the sample area.

2.2. Datasets
2.2.1. Airborne-Laser-Scanning Data

The ALS data were acquired by a Leica ALS60 sensor (Leica Geosystems AG, Heer-
brugg, Switzerland) mounted in a small multipurpose aircraft to undertake the flight
mission on July 15, 2010. The data-acquisition day was clear and not very cloudy. The pro-
jection coordinate system of the data was set as UTM10N with the horizontal and vertical
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datums as NAD83 and NAVD88 (unit: meters), respectively. Each laser point contains the
coordinates, height, intensity, classification, and echo-type information.

2.2.2. Remotely Sensed Optical Image

The hyperspectral remote-sensing image (Figure 1b) was acquired by a HyMap hyper-
spectral imager (HyVista Corporation, New South Wales, Australia) on 15 August 2010,
including 125 bands with a spectral range from 400 nm to 2500 nm (Table 1).

Table 1. ALS and hyperspectral data-acquisition parameters.

Category Parameter Name and Value

ALS data

Sensor Leica ALS60
Field of view (◦) 28
Flight height (m) 900
Pulse rate (kHz) 105

Accuracy (m) 0.03
Overlap 100% (50% side-lap)

Average point density (points/m2) 20

Hyperspectral data

Sensor HyMap
Spectral range (nm) 400~2500

Spectral resolution (nm) 15~16
Spatial resolution (m) 2.9

Field of view (◦) 61.3
Note: ALS: airborne laser scanning.

2.2.3. Field-Measured Data

In July 2009, we obtained some trees’ actual data including tree species, tree num-
ber, DBH, height to live crown base (HTLB), coordinates, and tree-height information
in PC (Table 2). We selected a total of 19 circular forest plots with a radius of 16 m in
PC. The measured trees were located in these plots. The forest types include coniferous
forest, broadleaf forest, and mixed coniferous and broadleaf forest. We selected a total of
90 (3 × 30) trees from three tree species in these forest plots to screen the optimal variables
for tree-species classification.

Table 2. Forest plot characteristics in the PC study area.

Plot Tree Number Forest Type Mean DBH (cm) Mean Height (m) Mean HTLB (m)

PC-1 65 C 13.85 9.88 1.19
PC-2 44 M 10.38 7.43 1.37
PC-3 43 M 20.27 17.36 9.94
PC-4 43 C 29.56 25.14 13.56
PC-5 28 M 31.19 25.65 15.99
PC-6 78 M 16.04 7.34 5.86
PC-7 31 M 40.82 27.56 17.47
PC-8 38 M 31.52 21.13 11.94
PC-9 45 M 29.95 24.41 15.60

PC-10 46 M 39.42 26.93 16.39
PC-11 50 C 27.67 21.61 14.60
PC-12 73 C 6.66 5.23 0.02
PC-13 22 B 44.00 23.50 13.97
PC-14 43 M 24.16 20.96 12.28
PC-15 60 B 18.01 17.80 10.26
PC-16 49 M 21.88 13.60 7.79
PC-17 68 M 26.84 25.20 19.06
PC-18 73 M 18.99 17.26 9.63
PC-19 121 M 15.65 14.82 8.05
Mean 54 - 24.57 18.57 10.79

Note: C: conifer; B: broadleaf; M: mixed; DBH: diameter at breast height; HTLB: height to live crown base.
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2.3. Overall Work

The overall flowchart of the study is shown in Figure 2. We first preprocessed the
raw ALS data to obtain the canopy height model (CHM). In addition, the spectral features
(SF), vegetation indices (VI), and texture features (TF) were extracted from the high-spatial-
resolution hyperspectral image. The extracted four types of indicator were trained by
the random forest algorithm to obtain classification results and the evaluation of results.
Moreover, we mapped the distribution of tree species in the whole study area according
to the classification results of sample plots. After that, tree segmentation was carried
out to determine tree species corresponding to individual trees. Finally, we extracted
the structural parameters of various types of tree and built biomass models based on
individual-tree levels.
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Figure 2. The flowchart of tree-species classification and biomass model construction based on
airborne-laser-scanning data and hyperspectral image.

2.4. Data Preprocessing

The raw ALS data have been divided into ground and non-ground points by the data
provider. We extracted a DSM by extracting the first echo of the non-ground point in Cloud
Compare software (EDF, R&D, Paris, France), and its resolution was 0.5 m. Then, we used
the inverse-distance-weighted (IDW) algorithm to generate a DTM with 0.5 m resolution
from the last echo point of the ground point. The CHM was generated by the grid difference
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operation between DSM and DTM in ArcGIS 10.6 software (Environment Systems Research
Institute, Redlands, CA, USA). CHMs are able to show the spatial distribution of tree
height and canopy. Finally, to eliminate the effect of terrain, we obtained the normalized
non-ground point cloud by subtracting DTM from the z-coordinate of each non-ground
point [23,24]. In addition, we also resampled the hyperspectral image to 0.5 m resolution
using the nearest-neighbor method. We took a 500 × 500 m area as a sample area, and the
processing results of LiDAR data are shown in Figure 1c,d.

2.5. Tree-Species Classification
2.5.1. Feature Extraction

Before the extraction of various features, we distinguished vegetation and non-vegetation
in the study area. In this study, multiple vegetation samples and non-vegetation samples
were extracted. By comparing their NDVI values, the threshold was determined as 0.45;
that is, the pixels with NDVI ≥ 0.45 were vegetation, otherwise they were non-vegetation.
Then, vegetation areas were extracted using ArcGIS10.6 software through the mask.

The data provider has performed systematic radiometric calibration and atmospheric
correction on HyMap. Therefore, further parameter extraction can be carried out directly
on the image. Different tree species can be distinguished according to their spectral
characteristics. We extracted the reflectance values of sample points on each band as
their SF in the ENVI 5.3 software (Exelis Visual Information Solutions, Boulder, CO, USA).
Additionally, four vegetation indices (VI) were considered for the random forest algorithm,
including the normalized difference vegetation index (NDVI1) using a near-infrared short
band (NIR1) [25], NDVI2 using a near-infrared long band (NIR2) [26], green normalized
difference vegetation index (GNDVI) [27], and enhanced vegetation index (EVI) [28]. The
details of the VI are shown in Table 3.

Table 3. List of vegetation indices and texture features.

Parameter Category Index Formula Name and Description

Vegetation indices

NDVI1 (NIR1 − RED)/(NIR1 + RED) Normalized Difference Vegetation Index-NIR1.
NDVI2 (NIR2 − RED)/(NIR2 + RED) Normalized Difference Vegetation Index-NIR2.
GNDVI (NIR1 − GREEN)/(NIR1 + GREEN) Green Normalized Difference Vegetation Index.

EVI 2.5 × (NIR1 − RED)/(NIR1 +
6 × RED − 7.5 × BLUE + 1) Enhanced Vegetation Index.

Texture features

Energy ∑
a,b

P2
φ,d(a, b) A measure of the stability of grayscale changes.

Entropy ∑
a,b

Pφ,d(a, b)log2Pφ,d(a, b) Randomness measures the amount of information
contained in an image.

Contrast ∑
a,b
|a− b|kPλ

φ,d(a, b)
Grooves that reflect the clarity and texture of

the image.

IDM ∑
a,b;a 6=b

Pλ
φ,d(a,b)

|a−b|k
Reflect the homogeneity of the image texture and
measure the local changes in the image texture.

Note: NIR1: near-infrared short band (924 nm); NIR2: near-infrared long band (1700 nm); RED: the red band
(708 nm); GREEN: the green band (546 nm); BLUE: the blue band (472 nm); a: the row number; b: the column
number; Pφ,d: the normalized value in the cell.

Table 3 shows four texture features including contrast, energy, entropy, and inverse
differential moment (IDM) extracted from the hyperspectral image. These parameters can
reflect the difference in different tree species’ canopy contours [29]. This study obtained
texture features from the Gray-Level Co-occurrence Matrix (GLCM). GLCM indicates the
frequency at which different combinations of gray levels of two pixels at a fixed relative
position occur in an image object [30]. The grayscale co-occurrence matrix is able to provide
changes in the gray value of the image, including direction, interval, and magnitude of
change. In practical applications, the extraction effect of texture features had a very good
relationship with the image resolution. At the same time, the extraction of texture features
needed to set different distance directions. Generally, the distance was set unchanged, and
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the texture information in different directions was calculated or the texture information in
multiple directions was calculated. The average value was taken as the gray value [31].

2.5.2. Optimal Variable Selection

In this paper, we extracted four types of feature, CHM, SF, VI, and TF, which increased
the dimension of classified data. SF variables may be highly correlated or redundant due
to the large number of bands that may increase the complexity of calculation. This made
the classifier unable to play its role and even caused accuracy degradation [32,33]. The
main feature of the random forest (RF) algorithm is that it does not produce an overfitting
phenomenon when processing high-dimensional data. The RF algorithm is a classifier with
multiple decision trees, which has a high classification accuracy. For this reason, we chose
the RF algorithm to screen variables.

We used the RF function in the R language to implement tree-species classification.
Through experiments, the number of features of each node used the square root of the total
number of features. The number of binary tree variables and decision trees were the default
values. We first used four types of feature indicator as categorical variables separately to
classify tree species, and then sorted all feature variables by the importance indicator—the
Gini index. The low-importance-ranked feature variables were removed.

2.6. Individual-Tree Biomass Model
2.6.1. Tree Segmentation

We obtained the DTM from the data-preprocessing section and then used FUSION
software to normalize the forest heights. Tree discrete point clouds were divided into
individual tree crowns using the crown-segmentation algorithm proposed by Li et al. [34].
Therefore, we could obtain structural information about each tree, such as coordinates
and tree height. The tree-crown-segmentation algorithm was a top-down region-growing
method based on raw 3-D point cloud data. Minimum distance threshold (DT) and search
sphere radius (SSR) for finding local maxima are two key parameters. In this study, we
determined the DT and SSR as 2 m for plots [35].

In order to verify the results of tree segmentation, the visual tree crown with the
location of the measured tree as a center point was obtained through visual interpretation.
The x and y coordinates of the highest points of each segmentation tree were taken as the
center point to draw the segmentation tree crown.

2.6.2. Crown Parameter Extraction

According to the results of tree segmentation, the crown diameters in east–west and
north–south directions were extracted. We calculated the average value as the individual
tree-crown size. The tree-crown projection plane was the set of all points within a certain
range, and the Graham two-dimensional convex hull was used to connect the most edge
points of the point set to construct a convex polygon [36]. We estimated the projected
area of the tree crown based on the area of the convex polygon (Figure 3). The calculation
Formula (1) was as follows.

S =
1
2

n

∑
i=2

[Xi(Yi+1 −Yi)−Yi(Xi+1 − Xi)] (1)

where S represented the area, m2 ; i represented the point number, i = 2, 3, . . . , n.
The calculation method of tree-crown volume was based on integration [37]. The

calculation was as follows in Formulaes (2)–(4). First, we divided the tree crown into
several parts by layers, and a two-dimensional convex hull algorithm was implemented
for each layer to calculate the cross-sectional area. The height between layers and cross-
sectional area were used to calculate the volume of each part (Figure 3). Finally, all slice
volumes were accumulated and summed to obtain the crown volume. The number of layers
was determined according to the specific conditions of the crown of different tree species.
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VTc =
1
3

(
Sj +

√
SjSj+1 + Sj+1

)
Hj (2)

VCc =
1
3

SjHj (3)

V = ∑n
c=1(VTc + VCc) (4)

where j represented the section number, j = 1, . . . , n; Sj, Sj+1 represented cross sectional
area, m2; Hj represented height between two adjacent layers after segmentation; VTc was
the circular truncated cone; VCc was the circular cone.
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Figure 3. Individual tree’s point cloud and crown projection convex hull of target trees in forest
plots. Their crown stratification and cross-section are shown. (a) Douglas fir, (b) Red alder, and
(c) Bigleaf maple.

2.6.3. Multivariate Nonlinear Fitting

The CAR model was stable and had good estimation accuracy [20,21]. Therefore, we
chose it to study and construct biomass models of different tree species at the level of
individual trees. The allometric equations for Douglas fir [38], Red alder [39], and Bigleaf
maple [40] are shown in Table 4. In this study, based on the CAR model, we added tree
height, crown size, crown projected area, and crown volume to construct biomass models.
Since each crown parameter satisfied the relative growth relationship, the CAR model was
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expressed as the multiplication of power functions of individual variables or combined
variables. From the above, the biomass model including tree height, crown size, crown
projected area, and crown volume was obtained as follows:

W = a1Ha2 Ca3 (5)

W = a1Ha2 Ca3 Sa4 (6)

W = a1Ha2 Ca3 Va4 (7)

W = a1Ha2 Ca3 Sa4 Va5 (8)

where W was biomass, H was tree height, C was crown size, S was crown projection area, V
was crown volume, and a1, a2, a3, a4, a5 were model parameters.

Table 4. Allometric equations of the tree species.

Tree Species Allometric Equation

Douglas fir (Genus Pseudotsuga) WD = 0.085982× DBH1.743391 × H0.588628

Red alder (Alnus rubra) WR = 0.4026× DBH1.90612 × H0.97674

Bigleaf maple (Acer macrophyllum Pursh)

WB−bark = 2.338× DBH2.574

WB−stem = 3.4148× DBH2.723

WB−lea f = 0.4159× DBH2.5033

WB−live branch = 2.6718× DBH2.43

WB−dead branch = 4.7918× DBH1.092

Note: W: biomass of individual tree; DBH: diameter at breast height; H: tree height.

2.7. Accuracy Assessment

We used a confusion matrix to assess the classification accuracy of sample tree species.
The producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA), and kappa
coefficient (Kappa) were used for accuracy assessment. The coefficient of determination
(R2) and the root-mean-square error (RMSE) were used to assess the fitting accuracy and
predictive ability of models [41]. For the results after tree segmentation, we used three
indicators: tree detection (TD), tree location RMSE, and crown radius RMSE to verify the
segmentation accuracy of a single tree’s point cloud. Tree detection was used to check
the overall segmentation effect, as shown in Formula (11). We computed the standard
deviations of the X- and Y- coordinates on the two-dimensional plane using Equation (12).
By comparing the crown radius of visual interpretation with that of segmentation, we used
Formula (13) to calculated the crown radius RMSE.

R2 =
∑n

i=1(xi − x̂i)
2

∑n
i=1(xi − xi)

2 (9)

RMSE =

√
∑n

i=1(xi − x̂i)
2

n
(10)

TD =
Ntrue

Nseg−trees
× 100% (11)

RMSE(X) =

√
∑n

i=1
(
Xi − X′i

)2

n
(12)

RMSE(r) =

√
∑n

i=1
(
ri − r′i

)2

n
(13)

where x̂i was model prediction, xi was measured value, xi was sample mean value, Ntrue
was the number of perfect segmentation trees, Nseg−trees was the number of segmentation
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trees, Xi was the x coordinate of a field-measured tree’s crown vertex, X′i was the x coordi-
nate of a single tree’s crown vertex obtained by segmentation, ri was a measured value by
visual interpretation, r′i was the crown radius of a single tree obtained by segmentation.

3. Results
3.1. Results of Optimal Variable Selection

The spatial resolution of CHM used in this study was 0.5 m, and the resolution of
the hyperspectral image was also 0.5 m. According to the position information of the
measured tree, CHM can accurately express the tree height corresponding to each pixel
on the hyperspectral image. The first column of Figure 4 shows the accuracy assessment
results of Douglas fir, Red alder, and Bigleaf maple were classified with only CHM.
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(Kappa: kappa coefficient; PA: producer’s accuracy; UA: user’s accuracy; OA: overall accuracy.)

The band characteristic curves of three tree species are shown in Figure 5a. From
the difference and trend between the reflectivity curves, we selected the band values
in the four ranges of band 1~15 (472~678 nm), band 22~52 (779~1206 nm), band 60~67
(1317~1462 nm), and band 100~112 (2062~2276 nm) to sort the variable’s importance in
the RF algorithm. According to the results of multiple tests and MDG, band 1 (472 nm),
band 7 (561 nm), band 11~15 (620~679 nm), band 64~66 (1419~1448 nm), and band 102
(2098 nm) were initially selected. Moreover, in order to avoid the redundancy of variables
with similar wavelength, we used Pearson correlation [42] to test band 11~15 and band
64~66. There was significant correlation (p < 0.001) between variables. According to the
ranked importance by using spectral variables alone (Figure 6a), band 12 and band 66 were
selected. Finally, band 1 (472 nm), band 7 (561 nm), band 12 (635 nm), band 66 (1448 nm),
and band 102 (2098 nm) were selected to participate in classification. Using SF only as the
classification variable, the accuracy is in the second column of Figure 4, which was more
effective than using CHM alone.



Remote Sens. 2023, 15, 1341 11 of 22

Remote Sens. 2023, 15, x FOR PEER REVIEW  12  of  24 
 

 

EVI, and NDVI1. At the same time, four TF variables were selected: contrast, energy, en‐

tropy, and  inverse difference matrix. Three  tree species were also classified using only 

these four textural variables. The result of importance screening for the two types of var‐

iable separately  is shown  in Figure 6a. According to the accuracy result of variables of 
each type separately classified (Figure 4), VI was applied to classification, Kappa = 0.633 

was the highest, followed by CHM, then SF and TF. We further screened the optimal var‐

iable combination by introducing variables step by step. Firstly, the importance of varia‐

bles obtained by VI + CHM is shown in Figure 6b, the result of VI + SF is shown in Figure 

6c, the result of CHM + SF is shown in Figure 6d, the result of VI + CHM + SF is shown in 

Figure 6e, and the result of VI + CHM + SF + TF is shown in Figure 6f. Next, we used the 

RF algorithm to classify tree species by combining the four categories of indicators from 

two data sources. The result is shown in Figure 4. The accuracy of Kappa, PA, OA, and 

UA obtained by the combination of VI + CHM + SF variables was the highest. Therefore, 

we concluded that VI + CHM + SF was the optimal combination of variables. 
After obtaining  the vegetation area, we  further extracted CHM, VI, and SF corre‐

sponding to the location of each pixel according to the best combination of variables. The 

classification results of tree species in the whole study area were obtained (Figure 5b). It 

can be seen that roads, bare land, lakes, and a few buildings were well removed. By com‐

paring the classification results with the measured samples, the overall classification ac‐

curacy of three tree species was 81%. Of these, the classification accuracy of Douglas fir 

was the highest at 93.3%, while that of Red alder was the lowest at 66.7%. The possible 

reason was that Red alder was mostly mixed with Bigleaf maple and the vegetation den‐

sity of sample plots was very high. The leaves often overlapped, and the spectral infor‐

mation of Red alder was similar to that of Bigleaf maple. Therefore,  it was not easy  to 

distinguish Red alder from Bigleaf maple. 

 

Figure 5. (a) The spectral reflectance of three tree species  in PC. (b) The tree‐species distribution 

map was derived from the optimal variable combination. (c) The classification result of tree species 

in sample plot. 
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was derived from the optimal variable combination. (c) The classification result of tree species in
sample plot.

In addition, NDVI1, NDVI2, GNDVI, and EVI were also screened according to order of
importance. This indicated that NDVI2 was the most important, followed by GNDVI, EVI,
and NDVI1. At the same time, four TF variables were selected: contrast, energy, entropy,
and inverse difference matrix. Three tree species were also classified using only these
four textural variables. The result of importance screening for the two types of variable
separately is shown in Figure 6a. According to the accuracy result of variables of each
type separately classified (Figure 4), VI was applied to classification, Kappa = 0.633 was
the highest, followed by CHM, then SF and TF. We further screened the optimal variable
combination by introducing variables step by step. Firstly, the importance of variables
obtained by VI + CHM is shown in Figure 6b, the result of VI + SF is shown in Figure 6c,
the result of CHM + SF is shown in Figure 6d, the result of VI + CHM + SF is shown in
Figure 6e, and the result of VI + CHM + SF + TF is shown in Figure 6f. Next, we used the
RF algorithm to classify tree species by combining the four categories of indicators from
two data sources. The result is shown in Figure 4. The accuracy of Kappa, PA, OA, and UA
obtained by the combination of VI + CHM + SF variables was the highest. Therefore, we
concluded that VI + CHM + SF was the optimal combination of variables.

After obtaining the vegetation area, we further extracted CHM, VI, and SF corre-
sponding to the location of each pixel according to the best combination of variables. The
classification results of tree species in the whole study area were obtained (Figure 5b). It can
be seen that roads, bare land, lakes, and a few buildings were well removed. By comparing
the classification results with the measured samples, the overall classification accuracy of
three tree species was 81%. Of these, the classification accuracy of Douglas fir was the
highest at 93.3%, while that of Red alder was the lowest at 66.7%. The possible reason was
that Red alder was mostly mixed with Bigleaf maple and the vegetation density of sample
plots was very high. The leaves often overlapped, and the spectral information of Red alder
was similar to that of Bigleaf maple. Therefore, it was not easy to distinguish Red alder
from Bigleaf maple.
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Figure 6. Variable importance ranking based on Mean Decrease Gini (MDG); (a) the variables’
importance ranking results of using spectral features (SF), vegetation indices (VI), and texture features
(TF), separately; (b) the canopy height model (CHM) combined with VI; (c) VI combined with SF;
(d) CHM combined with SF; (e) CHM combined with VI and SF; and (f) the combination of four types
of variables. (Note: NDVI1: normalized difference vegetation index using a near-infrared short band;
NDVI2: normalized difference vegetation index using a near-infrared long band; GNDVI: green
normalized difference vegetation index; EVI: enhanced vegetation index; IDM: Inverse Differential
Moment; Bx: the reflectance value on band-x.)
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3.2. Tree Segmentation and Validation

From the classification result map (Figure 5b), it can be seen that some regions of
the single tree species can be seen. Then, we obtained tree segmentation results from the
tree-species distributed area for seven types (Figure 7): medium-density conifer (MC), high-
density conifer (HC), low-density mixed forest (LM), medium-density mixed forest (MM),
high-density mixed forest (HM), low-density broadleaf (LB), and high-density broadleaf
(HB). At the same time, we verified the segmentation results of an individual tree.
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Figure 7. Height-normalized airborne-laser-scanning data (insets a,c,e,g,i,k,m) and corresponding
tree-segmentation results (insets b,d,f,h,j,l,n) of seven types of forest plot. Different colors represented
different trees in the tree-segmentation results.

As shown in Table 5, the tree location RMSE based on ALS increased with an increase
in forest density in the sample plots with the same forest type. The RMSE of medium- and
low-density coniferous forest, broadleaf forest, and mixed forest were between 0.72 m and
1.47 m, of which the RMSE of coniferous forest was the smallest. In addition, by comparing
the canopy size of plots with different densities and forest types, it can be observed that
the R2 of plots with higher densities in the same forest type was smaller than that of plots
with lower densities. The mixed forest of the same density was smaller than that of the
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single-species stand. In this study, coniferous forests had well-separated crowns, while
broadleaf forests and mixed forests often overlapped each other due to large crown sizes.
Therefore, the RMSE of the tree location would be larger. Visually interpreted crown size
based on CHM was used as validation data for individual-tree segmentation. According
to the comparison results of tree species after tree segmentation, we selected a total of
90 (3 × 30) sample trees.

Table 5. Characteristics of the individual trees for forest plots.

Plot ID Density Tree Forest
Type

Segmented
Tree

Tree-
Detection

Rate

Tree
Location

RMSE (m)

Crown
Radius

RMSE (m)

PC-MC Medium 181 C 167 90% 0.72 1.88
PC-HC High 50 C 46 87% 1.52 2.3
PC-LB Low 22 B 18 89% 1.47 1.77
PC-HB High 60 B 50 90% 1.95 1.83
PC-LM Low 72 M 66 92% 1.32 1.65
PC-MM Medium 78 M 56 89% 1.40 1.2
PC-HM High 557 M 468 84% 2.65 1.73

Note: C: conifer; B: broadleaf; M: mixed; RMSE: root-mean-square error.

The regression relationship between the extracted tree height and the measured tree
height of the three types of tree are shown in Figure 8. The results showed that there was a
good correlation between the height of a single tree extracted by the proposed algorithm
and the measured value. In summary, the correlation between the tree height from tree
segmentation and the measured tree height of Douglas fir was the best, and Red alder had
the least good results. Due to the large spacing between Douglas fir trees in the sample
plot, there was not much overlap between trees. Therefore, good results would be obtained
during tree segmentation, and the tree height would be closer to the true value. Most of the
plots of Red alder were mixed forest with high vegetation density and overlapping trees.
Thus, the tree height of individual trees was different from that of field-measured trees.

Remote Sens. 2023, 15, x FOR PEER REVIEW  15  of  24 
 

 

that the R2 of plots with higher densities in the same forest type was smaller than that of 

plots with lower densities. The mixed forest of the same density was smaller than that of 

the  single‐species  stand.  In  this  study,  coniferous  forests  had well‐separated  crowns, 

while broadleaf forests and mixed forests often overlapped each other due to large crown 

sizes. Therefore, the RMSE of the tree location would be larger. Visually interpreted crown 

size based on CHM was used as validation data for individual‐tree segmentation. Accord‐

ing to the comparison results of tree species after tree segmentation, we selected a total of 

90 (3    30) sample trees. 

The regression relationship between the extracted tree height and the measured tree 

height of the three types of tree are shown in Figure 8. The results showed that there was 

a good correlation between the height of a single tree extracted by the proposed algorithm 

and the measured value. In summary, the correlation between the tree height from tree 

segmentation and the measured tree height of Douglas fir was the best, and Red alder had 

the least good results. Due to the large spacing between Douglas fir trees in the sample 

plot,  there was not much overlap between  trees. Therefore, good results would be ob‐

tained during tree segmentation, and the tree height would be closer to the true value. 

Most of the plots of Red alder were mixed forest with high vegetation density and over‐

lapping trees. Thus, the tree height of  individual trees was different from that of field‐

measured trees. 

Table 5. Characteristics of the individual trees for forest plots. 

Plot ID  Density  Tree 
Forest 

Type 

Segmented 

Tree 

Tree‐ 

Detection 

Rate 

Tree   

Location 

RMSE (m) 

Crown   

Radius 

RMSE (m) 

PC‐MC  Medium  181  C  167  90%  0.72  1.88 

PC‐HC  High  50  C  46  87%  1.52  2.3 

PC‐LB  Low  22  B  18  89%  1.47  1.77 

PC‐HB  High  60  B  50  90%  1.95  1.83 

PC‐LM  Low  72  M  66  92%  1.32  1.65 

PC‐MM  Medium  78  M  56  89%  1.40  1.2 

PC‐HM  High  557  M  468  84%  2.65  1.73 

Note: C: conifer; B: broadleaf; M: mixed; RMSE: root‐mean‐square error. 

 

Figure 8. The regression relationship between the tree height extracted by tree segmentation and 

the measured tree height. (a) Douglas fir, (b) Red alder, and (c) Bigleaf maple. 

   

Figure 8. The regression relationship between the tree height extracted by tree segmentation and the
measured tree height. (a) Douglas fir, (b) Red alder, and (c) Bigleaf maple.

3.3. Results of the Tree-Crown-Parameter Extraction

We obtained the crown projection area and crown-volume data statistics of Douglas fir,
Red alder, and Bigleaf maple (Figure 9). On the whole, the crown projection area of Douglas
fir was the smallest, with an average of 11.87 m2 in the sample trees. Its crown size was
relatively smaller than that of Red alder and Bigleaf maple belonging to the broad-leaved
forest. The projection area of Red alder was 22.97 m2, and the average projection area
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was the largest of the three tree species. Moreover, the frequency of the projection area of
Bigleaf maple was the largest at nearly 30 m2. Thus, the crown size of Bigleaf maple was
the largest, relatively. According to the results of crown volume, the mean value of Bigleaf
maple was the largest. The distribution of the crown volume of Douglas fir in each interval
was relatively uniform. This indicated that the sample tree size of this tree species was
similar. Most of the Red alder’s crown volumes were less than 60 m3, and the maximum
value of 80.6 m3 corresponded to only one tree. There was no centralized area for the
volume distribution of Bigleaf maple. There are five and eleven trees at the maximum and
minimum volume values, respectively, and seven trees near the median of 200 m3.
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3.4. Results of Individual-Tree-Biomass Model

The biomass was calculated based on the allometric-growth equation provided in
Table 4. Combined with the single-tree parameters extracted from ALS data, and according
to the biomass model Formulae (5)–(8), the nonlinear least-squares-regression method
was used to analyze three tree species. According to the formulae, the tree height and
crown size were first introduced into the model as independent variables, and the biomass
as dependent variables. Then the projected area and volume of crown were introduced,
respectively, and finally both were introduced at the same time.

Table 6 shows the fitting results of the biomass-estimation model, and the parameter
estimation and accuracy evaluation. The goodness of fit of the three tree species increased
with an increase in parameters. For Douglas Fir, when only tree height and crown size were
involved in the fitting, the fitting accuracy was already good. However, when the crown
projection area and crown volume were added, especially when the crown volume was
added, R2 increased by 0.031 and RMSE decreased by 1 kg·plant−1. The same was true
for Red alder. The optimal fitting results were obtained when we used Formula (8) in the
fitting model, when R2 increased by 0.082 and RMSE decreased by 0.95 kg·plant−1. For
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Bigleaf maple, R2 significantly increased after the crown volume was added to the fitting
model. R2 increased by 0.294, and the RMSE decreased by 11.21 kg·plant−1.

Table 6. Parameter estimation and goodness of fit of biomass models.

Tree Species Biomass Models
Parameter Estimation Goodness of Fit

a1 a2 a3 a4 a5 R2 RMSE (kg·Plant−1)

Douglas fir

1 0.923 1.576 0.134 - - 0.84 6.472
2 0.78 1.607 0.105 0.055 - 0.843 6.083
3 0.962 1.206 0.157 0.191 - 0.871 5.514
4 0.888 1.232 0.141 0.185 0.027 0.871 5.477

Red alder

1 1.835 1.523 0.336 - - 0.637 9.06
2 2.52 1.412 0.355 −0.065 - 0.654 9
3 1.119 1.706 0.208 0.127 - 0.68 8.8
4 0.028 1.559 0.165 0.182 1.241 0.709 8.11

Bigleaf maple

1 16.058 −0.094 0.787 - - 0.496 29.26
2 6.453 0.002 0.336 0.422 - 0.601 27.71
3 0.184 0.144 0.318 1.062 - 0.724 19.1
4 0.008 −0.383 0.075 −0.038 2.184 0.790 18.05

Note: a1, a2, a3, a4, a5 were derived from Formulaes (5)–(8); RMSE: root-mean-square error.

4. Discussion
4.1. Feature Determination

Hollaus et al. [43] extracted single-tree-canopy height from LiDAR data, and the results
showed that there was a good correlation between LiDAR tree height and field-measured
tree height. Zhao [44] proposed an optimization method of CHM combined with canopy
control, which made the accuracy of tree-height extraction greater than 90%. In this study,
the study area was a large natural forest area. We extracted CHM from ALS data, which
provided canopy distribution information. Accuracy results (Figure 4) were obtained when
only using CHM for classification. Height information obtained with LiDAR data may not
be enough to get good classification results, and large data samples combining multi-source
remote-sensing data and deep learning will open up new possibilities for tree-species
identification [45].

Hyperspectral remote sensing can provide rich spectral information to improve the
discrimination ability of tree species [6]. HyMap can be used for tree-species classification
and forest age division in coniferous forests in western Germany [46]. Li et al. [25] extracted
multiple vegetation indices from high-resolution satellite imagery to classify tree species at
the single-tree scale based on CNN. This study also considered spectral information for
implementing tree-species classification. For the 125 bands of HyMap, we first divided
three tree species into four band intervals with obvious distinctions, which were located
in the green band, the red-band near-infrared short wave, and near-infrared long wave,
respectively. Through the ranking of importance, multiple tests in the RF algorithm, and
correlation tests, five bands, band 1 (472 nm), band 7 (561 nm), band 13 (650 nm), band 65
(1434 nm), and band 102 (2098 nm), were finally selected for classification. Through the
above methods, the redundancy of variables could be reduced further. In the process of
using each type of feature separately for classification, we first used all variables contained
in the feature for tree-species classification, but the results were unsatisfactory. Then,
according to the importance ranking, the variables with high importance have priority
to participate in the classification, and the accuracy was significantly improved. Since
low-importance variables did not help improve the classification accuracy, we strictly
removed them. When we used the spectral information, VI, and the combination of the
two, the classification accuracy results were better (Figure 4), which showed that the use of
hyperspectral images was very beneficial for tree-species classification.

Pu et al. [30] calculated nine texture features including six GLCM and three GLDV
based on band four of pan-sharpened multispectral images. In this study, we calculated
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four GLCM textures based on the optical image. The lowest accuracy was obtained when
only TF was used as classification metrics. When we used VI + SF + CHM + TF, the accuracy
was improved, but it was not the optimal variable combination (Figure 4). We compared the
crown shapes of the three tree species on the optical images. It was found that Douglas fir’s
shape and outline were more obvious in contrast to Red alder and Bigleaf maple, as it is a
coniferous species. However, it was hard to distinguish in the areas with high forest density
mixed between Red alder and Bigleaf maple. In short, TF as a single variable for tree-species
classification may have low accuracy, but it can be used in combination with other types of
variable to achieve better results. Therefore, when obtaining poor classification results by
using only TF, other parameters should be considered to be introduced.

Wu [47] combined hyperspectral and LiDAR data sources to discuss five tree-species-
classification schemes, each of which showed that applying multi-dimensional features
can effectively improve tree-species-classification accuracy. Therefore, in this article, we
extracted four types of parameter: SF, VI, TF, and CHM from HyMap and ALS with high
spectral resolution and high spatial resolution. Of these, ALS data belong to active remote-
sensing data, which can reflect the height information of the tree. Hymap’s excellent
characteristics enable the spectral information corresponding to each pixel to be well
reflected. The optimal combination of variables was CHM + VI + SF that could represent
the characteristics of each tree species from multiple dimensions. Thus, we can effectively
distinguish between different tree species and obtain better classification results. Based on
the results of tree-species classification, this study can provide a reliable reference for single-
tree-segmentation results. Then the biomass model can be fitted for different tree species to
facilitate the subsequent targeted estimation of the biomass of different tree species.

4.2. Tree-Segmentation Accuracy Analysis

The spacing distance threshold (SDT), search radius (SR), and overlap were important
parameters that affect the segmentation of individual trees. A relatively appropriate
threshold can be selected to segment trees in stands with large tree spacing. But it was
difficult to determine an appropriate threshold in denser forests. Too-large parameters will
result in under-segmentation, whereas smaller parameters will lead to over-segmentation,
according to Li et al. [34].

Wang et al. [48] found that the spacing threshold has a significant impact on individual-
tree segmentation results. At the same time, the influence of the search radius on canopy
segmentation was limited, so the search radius’ value should be smaller than the minimum
canopy diameter of the plot. Therefore, we adjusted the parameters according to the actual
situation of different types of forest plot. From the validation results (Figure 10), it can be
seen that the sample plots with high density had difficulties in visual interpretation, and the
crown size cannot be accurately depicted. Hamraz et al. [49] developed a generalized single-
tree-segmentation method based on small-footprint LiDAR data, which can be applied to
natural deciduous forests with complex vegetation structures. No prior knowledge about
the tree structure was required to obtain tree height detection. Hence, if a forest has a
complex structure in subsequent research, the generalized segmentation method could be
used to segment the trees. This will minimize the impact of overlapping leaves.

Besides SDT and SR, the density and integrity of tree point clouds were also important
factors that affect the segmentation results. This problem can be ameliorated to some extent
by increasing the laser pulse density or using ALS data from multiple overlapping flight
paths [50].
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Figure 10. The visual-based (i.e., orange circle) and airborne-laser-scanning-based (i.e., blue circle)
tree-crown-segmentation results with canopy height model (CHM) in the seven types of forest plot
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including PC-MC (a), PC-HC (b), PC-LM (c), PC-MM (d), PC-HM (e), PC-HB (f), PC-LB (g). Each
tree crown was approximated by a circle. (L: low density; M: medium density; H: high density; C:
conifer; B: broadleaf; M: mixed forest.)

4.3. Effects of Crown Parameters on Biomass Models

Nelson et al. [51] extracted tree height and canopy factors based on LiDAR data, and
then estimated forest biomass and stock volume to obtain better evaluation accuracy. With
the advent of commercial ALS [52,53], large-scale forest-resource surveys were convenient
and feasible. At present, ALS point cloud data can be used to obtain a high precision of
tree-segmentation results, and higher-precision single-wood factors can be extracted from
single-wood point cloud results [54]. Since the overall shape of the individual-tree-crown
point cloud after tree segmentation was very irregular, it was not possible to calculate it
by the approximate regular volume formula. After cutting it into several layers, we found
that the shape of each part was similar to a cone or a circular truncated cone. Therefore,
the volume of tree crown would be more accurately obtained by step calculation. When
crown projection area and crown volume were introduced into the model, the quality of
the biomass model can be significantly improved [19]. In this article, it can be seen from
Table 6 that the model R2 of Douglas fir, Red alder, and Bigleaf maple were all improved
when we added the crown factor to the model.

Douglas fir belongs to coniferous forest, and Red alder and Bigleaf maple belong to
broad-leaved forest. According to the results, it could be found that the addition of the
crown factor can significantly improve the accuracy of Red alder and Bigleaf maple. For
Douglas fir, there was also an increase, but only a small change. This showed that the crown
of a broad-leaved tree had a great impact on the biomass of the whole tree. In addition,
the biomass-model-fitting result of Douglas fir was excellent, and the RMSE was relatively
low, which may be due to its better tree-segmentation results. Due to the large undulating
terrain and the large vegetation density in the broad-leaved-forest and mixed-forest plots in
PC, the effect of tree segmentation will be worse than that of neatly distributed plantations.
Therefore, the precision in parameter extraction was relatively low.

5. Conclusions

In this study, we used the canopy-height model, spectral features, and vegetation
indices based on the random forest algorithm to classify tree species in PC. According
to the results of tree-species classification, the point cloud at the plot scale was further
segmented for an individual tree to produce structural parameters. Finally, biomass models
of three species were constructed. The importance of this study is to link tree-species
classification and biomass model construction, which can build models of different tree
species more accurately. It has the potential to be applied to large-scale forest-species
management and biomass dynamic monitoring. According to the research results, we
concluded the following.

1. The selection of classification variables was critical for tree-species classification. The
type and number of variables would affect classification results, and more variables
have not produced better results. Variables could be selected based on the realities of
the study area and the characteristics of trees.

2. The tree height and crown size extracted by the algorithm were compared with the
measured tree height and the results of visual interpretation. We found that they were
consistent with the actual situation of trees in PC. The individual-tree parameters
measured by ALS in this study could be used as variables in the biomass model.

3. When tree height, crown size, projected area, and volume were introduced as variables
into the biomass model, the fitting effects of the three tree species were all optimal.
Thus, the introduction of crown parameters into biomass model construction was a
feasible method to improve the estimation accuracy of forest individual-tree biomass.
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