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Abstract: Spatial land surface heterogeneities are widespread at various scales and represent a great
challenge to leaf area index (LAI) retrievals and product validations. In this paper, considering
the mixed water and vegetation pixels prevalent at moderate and low resolutions, we propose a
methodological framework for conducting global comparisons of heterogeneous land surfaces based
on criterion setting and a global search of high-resolution data. We construct a global network,
Heterogeneous Surface Network aiming Water and Vegetation Mixture (HESNet-WV), comprised of
three vegetation types: grassland, evergreen broadleaf forests (EBFs), and evergreen needle forests
(ENFs). Validation is performed using the MCD15A3H Global 500-m/4-day and GLASS 500-m/8-day
LAI products. As the water area fraction (WAF), LAI values and LAI inversion errors increase in
the MODIS and GLASS products, the GLASS product errors (relative LAI error (RELAI): 94.43%,
bias: 0.858) are lower than the MODIS product errors (RELAI: 124.05%, bias: 1.209). The result
indicates that the proposed framework can be applied to evaluate the accuracy of LAI values in
mixed water-vegetation pixels in different global LAI products.

Keywords: validation; LAI; mixed pixel; spatial heterogeneity

1. Introduction

Leaf Area Index (LAI), which is defined as the ratio of the total plant leaf area to
land area [1], has been listed as an essential climate variable (ECV) by the Global Climate
Observation System [2]. Over the last decade, many global LAI products have become
available [3–6]. To better utilize these existing LAI products, it is imperative to evaluate
their accuracy and quantify the strengths and weaknesses of different products [7,8].

According to the definition of product validation output by the Land Products Vali-
dation Working Group under the Committee on Earth Observation Satellite, LAI product
validation methods are mainly divided into direct and indirect validation types [9]. Both
approaches are primarily conducted on pure pixels representing different vegetation types
on homogeneous land surfaces [9–12]. For example, the BELMANIP network, used for
intercomparison of biophysical products over specific homogeneous land surface types,
frequently appears in LAI product validation [9,11–13]. However, most LAI products are
generated from remotely sensed images with medium and low spatial resolutions [14,15],
such as 500 m, 1 km, and even coarser resolutions. An analysis of global land surface
heterogeneous characteristics at a 1-km resolution based on a 30-m landcover classification
map indicated that the proportion of pure pixels was only 35%. In comparison, the hetero-
geneous pixels reached 65% globally [16]. Therefore, conducting accuracy evaluations over
only homogeneous surfaces cannot represent the overall quality of LAI products. Widely
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heterogeneous pixel scenes in moderate- and low-resolution pixel grids cannot be neglected
in global LAI product validations.

As the scope and scale of the relevant research have deepened, a validation framework
that is specific to heterogeneous land surfaces has gradually been developed. The Validation
of Land European Remote Sensing Instruments (VALERI) project proposed a “bottom-up”
validation approach, based on a two-stage sampling strategy to reconcile the scale of LAI
ground measurements with that of the product pixels using high-resolution images [17].
Xu et al. [18] proposed a method for evaluating the spatial representativeness of station-
derived LAI observations by dividing the station observations into five representativeness
levels, based on three indicators. The spatial representativeness of the Chinese Ecosystem
Research Network (CERN) LAI observations was evaluated by applying this method to a 1
km pixel grid for the validation of 1 km resolution products. Additionally, Xu et al. [19]
further proposed the grading and upscaling of ground measurements (GUGM) approach
by integrating spatial representativeness grading and a spatial upscaling strategy to resolve
the scale mismatch issue. The validation methods developed for heterogeneous surfaces
have gradually improved. However, the existing ground measurements obtained over
heterogeneous surfaces are inadequate to assess the inversion accuracies of global LAI
products with heterogeneous pixels [20].

Among all kinds of mixed pixels, the mixture of water and vegetation land surfaces
is the most common mixing pattern found at the pixel scale [21]. To date, several studies
have shown that the presence of water-mixed heterogeneity has a significant impact on
LAI inversion [22–24]. Xu et al. [21] found that the LAI retrieval error is proportional to the
water area fraction (WAF) in pixels and that the average LAI calculated for all land surfaces
in Canada is 13% less than the correct LAI value obtained when the impact of open water is
not considered. The reflectance of mixed water-vegetation pixels is significantly lower than
that of vegetation alone, due to the strong absorption characteristics of water bodies in the
red and near-infrared bands, introducing errors of over 70% to LAI inversion results [25].
Based on the results obtained at the 500-m pixel scale with a 30-m land cover classification
map, mixed water-vegetation pixels are distributed across the main global continents,
and mixed pixels that contain water cover 13.9% of the global vegetation surface [19,26].
Therefore, it is necessary to consider the effects of water mixing during LAI inversions
and validations.

The study’s objective is to establish a validation framework over heterogeneous land
surfaces over mixed water-vegetation pixels, and evaluate the performance of global
land-based LAI products. In this study, the following tasks are undertaken: (i) a global
heterogeneous surface network aiming for water and vegetation mixture (HESNet-WV)
is constructed based on high-resolution datasets; (ii) a method based on a linear mixture
model is proposed for calculating the reference LAI values of the mixed scenes with the goal
of LAI product cross-validation; and (iii) the framework is applied to an intercomparison
of two global LAI products, to evaluate the products’ level of accuracy over mixed water-
vegetation scenes.

2. Datasets
2.1. Land Cover Maps

The Finer Resolution Observation and Monitoring of Global Land Cover (FROM-
GLC30) land cover map [27–29] analyzes heterogeneities within 500-m pixels and further
selects global EVUs. The 2015 FROM-GLC30 product (available online at http://www.
geodata.cn/, accessed on 1 September 2021) is available at a 30-m resolution and includes
10 categories, namely, croplands, forests, grasslands, shrublands, wetlands, water bodies,
tundra, impervious surfaces, bare ground, ice, and snow. This product has an overall
accuracy of 70.2%. The Moderate Resolution Imaging Spectroradiometer (MODIS) land
cover product (MCD12Q1) (available online at https://e4ftl01.cr.usgs.gov/, accessed on
1 September 2021) is used to determine the dominant vegetation type at the 500-m pixel
scale. MCD12Q1 is derived based on a supervised decision tree classification method from

http://www.geodata.cn/
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MODIS observations spanning a whole year [30]. The overall accuracy of the product is
75%. The LAI/FPAR classification scheme, including eight land cover types (grasses/cereal
crops, shrubs, broadleaf crops, savannas, evergreen broadleaf forests, deciduous broadleaf
forests, evergreen needleleaf forests, and deciduous needleleaf forests), is adopted in this
paper. All land cover data utilized in this work are preprocessed and undergo projection
conversions to ensure that their characteristics match during the analyses.

2.2. Joint Research Centre (JRC) Water Classification Dataset

The JRC provides monthly and yearly water classification datasets based on Landsat 5,
7, and 8 from 1984–2019 at 30-m spatial resolution (available at https://earthengine.google.
com, accessed on 1 September 2021). Each pixel in the monthly dataset is individually
classified into three categories (water, no water, or no data) using an expert system, visual
analytics, and evidential reasoning. The utilized classifier produces false water detections
at a rate below 1% and misses fewer than 5% of water surfaces [31]. The yearly dataset
contains four bands, among which band 0 refers to ‘no data’, band 1 corresponds with
‘no water’, band 2 indicates ‘seasonal water’, and band 3 denotes ‘permanent water’.
The datasets constructed for 2015 are used in this article.

2.3. Global LAI Products

The MODIS C6 LAI product (MCD15A3H, available at https://earthdata.nasa.gov/,
accessed on 1 September 2021) has a temporal resolution of four days and a spatial res-
olution of 500-m. In the product, the daily red and near-infrared surface reflectance
(MOD09GA/MYD09GA, 500 m) and the annual land cover product (MCD12Q1, 500 m) are
used to retrieve LAI data based on a look-up table [32] derived from the three-dimensional
radiative transfer model (3D-RT) [33,34]. When the main algorithm fails, a backup algorithm
based on the biome-specific empirical relationship between the LAI and the normalized
difference vegetation index (NDVI) is used [35].

Global Land Surface Satellite (GLASS) LAI products (available online at http://glass.
umd.edu/, accessed on 1 September 2021) are provided by the Global Change Processing
and Analysis Center of Beijing Normal University. The temporal resolution of the GLASS
LAI product data recorded from 2000 to 2018 is eight days, with a 500 m spatial resolution.
The LAI inversion algorithm uses general regression neural networks (GRNNs) to produce
global long-term LAI products from the time series data observed by the MODIS surface
reflectance data [5].

In this article, we use the global LAI products for 2015. These products are temporally
aggregated over eight days to reduce the influence of temporal mismatches. The MODIS
products used in this article provide quality control documentation. Consistent with other
studies, according to these quality control files, the pixels marked as ‘no cloud’, ‘no snow’,
‘no cirrus’, etc., as retrieved by the main algorithm and classified according to MODIS land
cover products and corresponding to vegetation land cover types, are regarded as effective
pixels. Because the LAI values retrieved by the MODIS backup algorithm are often affected
by clouds, only the LAI values retrieved by the main algorithm are considered in this study.

2.4. Landsat 8 Surface Reflectance

The Landsat-8 Collection-2, Level-2 surface reflectance products are provided by
the Google Earth Engine (GEE), and are corrected for atmospheric effects (atmospheric
absorption and scattering) and geometric deviations. The dataset is used to calculate
the NDVI time series with GEE’s simple synthesis algorithm by conducting pixel-by-
pixel analysis, generated using only cloud-free images collected in 2015 at a monthly
temporal frequency.

3. Methodology

To verify the accuracy of the utilized LAI products over mixed water-vegetation scenes,
in our methodology (Figure 1), we built a framework that included a network of EVUs with

https://earthengine.google.com
https://earthengine.google.com
https://earthdata.nasa.gov/
http://glass.umd.edu/
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globally distributed specific mixed scenes and corresponding LAI reference values to allow
the intercomparison of LAI products over mixed water-vegetation scenes. Certain criteria
were set to screen out global EVUs with different WAFs. The mixed scenes were checked
pixel-by-pixel globally, and the network of screened-out EVUs that met the criteria, called
HESNet-WV, was constructed. The LAI reference values corresponding to each EVU were
calculated and treated as the true mixed-pixel values for the LAI product comparisons.
The HESNet-WV network consists of globally distributed validation sites with variable
mixed water-vegetation scenes and is applied herein to examine the performance of the
LAI products over mixed water-vegetation scenes.
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Figure 1. Study flow chart.

3.1. Building a Network of Sites for Intercomparing LAI Products: HESNet-WV

An EVU, containing a water-vegetation scene (S1) and an adjacent homogeneous
vegetation scene (S2), was the elementary unit of the HESNet-WV network. The schematic
diagram for an EVU is shown in Figure 2. The calculation of the LAI reference values was
based on the assumption that the adjacent homogeneous vegetation was highly similar
to the vegetation within a mixed scene. The reference LAI value of the mixed pixel was
calculated based on a linear mixture model constructed using the LAI of the adjacent pure
vegetation pixel and the water area fraction provided by the global water classification
dataset. In this paper, to verify the medium- and low-resolution LAI products, each EVU
was constructed with 3 × 3 500-m pixels.
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3.1.1. Criteria for Network Building

To ensure the architectural stability of the mixed scenes in the EVUs and the accuracy
of the reference LAI values, we established criteria to screen out the EVUs using the
following three principles. Firstly, the homogeneous vegetation scene (S2) comprised
the same vegetation type as the vegetation component in the mixed scene (S1) and was
generally selected from the nearest-neighbor pixels. Secondly, the homogeneous vegetation
scene (S2) had highly similar spectral characteristics to the vegetation component in S1.
Thirdly, the water body inside S1 had a fixed boundary and steady conditions over the
year. A series of criteria serving these three principles were applied in the construction of
the network. The vegetation types in the S1 and S2 pixels were extracted from the 30-m
FROM-GLC-2015 and 500-m MCD12Q1. The water bodies were extracted from the JRC
water classification dataset.

Principle 1: Two criteria were set up.

i. Criterion 1: S1 contained a water body and a single vegetation type. The vegetation
types in S1 and S2 should be the same. The vegetation type in S2 derived from the
500-m MCD12Q1 product should be the same as in S1. All vegetation endmember
types in S1 and S2 derived from FROM-GLC-2015 must be the same.

ii. Criterion 2: The distance between S1 and S2 should be close to ensure the best
possible vegetation representation effect. Generally, S1 was screened first, and then
S2 was found within a 15-km diameter circle centered on S1 (Figure 2).

Principle 2: The vegetation growth in S2 needed to be similar to that in S1. The spectra
of endmembers in S2 were required to be highly similar and have few differences from the
spectra of the vegetation endmembers in S1. Then, the LAI of S2 could be used to calculate
the reference LAI of S1 after criterion 1 was established.

i. Criterion 3: The Landsat 8 monthly average NDVI values of the S2 endmembers
were compared with those of the vegetation endmembers in S1 throughout the
growing season (longer than seven months). The average and maximal differences
between the NDVIs of the vegetation endmembers in S1 and S2 were set as the
thresholds. In this paper, the Ave_DifNDVI (1) and Max_DifNDVI (2) thresholds were
set to 0.08 and 0.1, respectively:

Ave_DifNDVI =
∑n

k=1(|NDVIs1_k − NDVIs2_k|)
n

, n ≥ 7 (1)

Max_DifNDVI = max
{∣∣∣NDVIs1(i) −NDVIs2(j)

∣∣∣} (2)

where Ave_DifNDVI is the average difference between the NDVIs of S1 and S2, Max_DifNDVI
is the maximal difference between the NDVIs of S1 and S2, k is the different temporal phase
(in months), n is the number of valid months of NDVI data, NDVIs1(i) is the average NDVI
value of the vegetation endmembers in S1, and NDVIs2(j) is the average NDVI value of the
endmembers in S2.

Principle 3: The water body in S1 was required to have fixed boundaries. Variation
in the water coverage extensively changes the vegetation growth situation, making it
difficult to guarantee the representativeness of S1 concerning the vegetation component
in S2. Therefore, the water area was required to change little with seasonal precipitation
under natural conditions. The mixed water-vegetation scenes with unchanged water areas
were given the highest priority during the S1 selection process after the first two principles
were established.

i. Criterion 4: The water bodies in S1 were required to be spatially stable.

First, the monthly WAFs in S1 calculated using the JRC monthly water classification history
dataset must have had a few variances in 2015. The standard deviation of the valid monthly
WAFs in 2015 in S1 needed to have been less than 0.01, or the water area range over the
year must have been less than two standard deviations.
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Second, permanent water bodies were given priority to avoid the possibility that the water
area remained unchanged while its position changed. The areas of permanent and seasonal
water bodies throughout the year were obtained from the JRC yearly water classification
history dataset. The proportion of seasonal water in S1 was set to be less than 10%.

ii. Criterion 5: The NDVI of the water body needed to remain fixed in the year of study
to avoid the influence of water body eutrophication on the LAI inversion results. In
this paper, the NDVI threshold of the water endmember in S1, NDVIwater, was set to
be lower than 0.3.

3.1.2. Network of Sites

Altogether, 934 EVUs were screened out after applying the above five criteria and
conducting a global search using Google Earth Engine and a local search to construct the
HESNet-WV network. Three vegetation types (grass, evergreen needleleaf forests (ENFs),
and evergreen broadleaf forests (EBFs)) were included, corresponding to 414, 115, and 405
EVUs, respectively. The spatial distribution of all EVUs is shown in Figure 3. The EBF
and ENF sites exhibited obvious regional characteristics. The EBF sites were distributed
between N 20◦ and S 20◦, while the ENF sites were mainly concentrated in the high-latitude
regions of the Northern Hemisphere. Almost 90% of the grassland sites were located in
the Northern Hemisphere. Table 1 shows the WAFs of all HESNet-WV EVUs; these values
were calculated based on the JRC dataset. Few sites with large WAFs were screened out
(112 sites with WAF values larger than 50%), as the water areas in the S1 regions tended to
vary monthly.
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Table 1. Information on the validation sites in the HESNet-WV Network.

Type
GRASS EBF ENF SUMWAF

0~10% 92 20 94 206
10~20% 137 50 100 287
20~30% 63 25 76 164
30~40% 43 13 47 103
40~50% 27 4 31 62

>50% 52 3 57 112
Sum 414 115 405 934
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According to the land product validation (LPV) specification requirements [35], pro-
viding the accuracy or precision of the reference data is recommended to calculate the
uncertainty of verification. This network provided two indices for each EVU to describe
the stability of the vegetation and water. One was the annual average difference between
the vegetation NDVI of S1 and S2, and the other was the annual standard deviation of the
proportion of the S1 water area.

3.2. Calculation of Reference LAI Values for the S1 and Product Intercomparison

The reference LAI value of each S1 site was considered to be the true value representing
the mixed pixel when the influence of the water body was removed. This value was
calculated based on the linear mixture model described by Equation (3), as water bodies
have zero leaf area coverage:

LAIreference= LAIs2 × (1− Swater) (3)

where LAIreference is the reference LAI corresponding to S1, Swater is the water areal fraction
in S1 calculated by the JRC monthly water classification dataset, and LAIs2 is the mean LAI
value of the vegetation endmember in S2.

Since the S2 site in each EVU was specifically screened to comprise the same vegetation
type and have highly similar spectra to the vegetation in S1, the LAI value of S2 was treated
as the LAI value of the vegetation endmember in S1. Then, for each LAI product, the
reference LAI value of S1 was calculated using the S2 LAI derived from this product and
the WAF value provided by the EVU.

The reference LAI of S1 was calculated using the LAI of the homogeneous vegetation
pixels (S2) extracted from the LAI product. It was then compared with the LAI value
obtained through a direct inversion with the byproduct algorithm over the mixed pixel
(S1). This process can remove the accuracy differences among product algorithms.

To quantitatively describe the difference between the inversed LAI by the product
algorithm and the reference LAI over S2, bias and relative error (RELAI) were calculated
using Equations (4) and (5), respectively. RMSE and R2 were also used to determine the
quantitative inversion accuracy.

Bias = LAIproduct − LAIReference (4)

RELAI =

∣∣∣LAIproduct − LAIReference

∣∣∣
LAIReference

× 100 (5)

where LAIproduct is the LAI value of S1 extracted from the LAI product inverted by the
specific LAI algorithm and LAIReference is the reference LAI value of S1 calculated from
Equation (3).

4. Results and Discussion
4.1. Evaluation of EVUs
4.1.1. Representative Evaluation of S2 Sites

The consistency between the vegetation spectra at S1 and S2 of the EVUs is the basis
of the intercomparison process based on the HESNet-WV network. Figure 4a–c shows
the NDVI values of the vegetation in the S1 and S2 of all the EVUs representing the three
considered vegetation types. The monthly NDVI values of the S2 sites are strongly linearly
correlated with those of the S1 sites (with R2 values ranging from 0.951 to 0.965). The S1-S2
vegetation consistency of the EVUs with ENF vegetation is the lowest among the three land
cover types (RMSE = 0.042), and the grass EVUs have the best consistency (RMSE = 0.028).
This high consistency indicates that the vegetation growth statuses obtained for S1 and S2
from the HESNet-WV network are highly similar among different phases.
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Figure 4. Spectral consistency analyses of S1 and S2 with different underlying vegetation types (a–c).
The frequency of the annual average difference between the S1 vegetation NDVI and S2 vegetation
NDVI (d).

The consistency of the S1-S2 vegetation was further assessed by comparing the average
LAI of S2 with the average LAI of the pure vegetation pixels (e.g., Figure 2, S1-1 and S1-2)
in S1 from the MODIS and GLASS LAI products. A frequency distribution diagram of
the LAI relative differences is shown in Figure 5. The relative difference in the average
LAI of all vegetation types is 6.52%; the grasslands have the highest consistency, and the
ENF pixels are less consistent than the other vegetation types (relative difference ranked by
GLASS: EBF (2.81%) < grass (6.06%) < ENF (10.71%)). Regardless of the vegetation type,
the greater the difference is, the less frequent the occurrence is. The results indicate that
the S2 LAI values are consistent with the pure vegetation pixels in S1 and can be used to
calculate the reference LAI values.
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4.1.2. Stability of the WAF Values in the S1 Pixels

The annual standard deviations and maximum monthly WAF differences in S1 are
used to assess the stability of the water areas inside the S1 pixels on the monthly scale
(Figure 6). The results show that the standard deviations of all three vegetation types are
less than 0.01. For the grassland and ENF pixels, the standard deviations with the highest
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frequency (16.6% and 21.4%, respectively) range from 0.001 to ~0.002 (Figure 6a), and more
than 60% of the annual standard deviations are lower than 0.005. The maximum differences
with the highest frequencies range from 0 to 0.005 for grasslands and from 0.005 to 0.01
for ENFs. The S1 pixels of EVUs in EBF regions have relatively high standard deviations
and maximum monthly WAF differences. The highest frequency ranges obtained for the
standard deviation and maximum difference are 0.006–0.007 and 0.01–0.015, respectively.
Figure 6b shows the maximum monthly WAF difference inside the S1 and the monthly
variations in the water areas inside the EBF S1 pixels tend to be more intense than those of
the water areas grassland and ENF pixels because EBF EVUs are spread over the equatorial
zone, where nearly the highest rainfall amounts on Earth occur.
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4.2. Intercomparison of Global LAI Products under the HESNet-WV Framework
4.2.1. Intercomparison with Increasing WAFs

In this work, the intercomparison results are quantitatively analyzed using the bias
and RELAI values derived from all the 500-m water-vegetation mixed EVUs. The re-
sults indicate the accuracy variations that occur under different mixed water-vegetation
scenes comprising different vegetation types (Figure 7). The bias values exhibit slow and
steady increases with increasing WAFs for three vegetation types for the MODIS and
GLASS LAI products. The average MODIS bias values increase from −0.02 to 0.40 for
GRASS (Figure 7a), from −0.31 to 4.25 for EBF (Figure 7b), and from −0.21 to 0.93 for
ENF (Figure 7c). The GLASS bias values increase from −0.05 to 0.37 for GRASS, from
−0.29 to 2.34 for EBF, and from −0.28 to 0.84 for ENF. Both LAI products show initial
underestimation and then overestimation with increasing WAF. The presence of water in
the mixed water-vegetation pixels affects the mixed-pixel reflectance. The presence of pure
water bodies increases the amount of solar radiation absorbed, which leads to a decrease in
the reflectance of red and NIR wavelengths in mixed pixels. The product algorithm treats
the reflectance of pixels contaminated by water bodies the same as the pure vegetation
reflectance for that specific type of vegetation. The underestimation or overestimation of
the LAI products partly depends on the balance between the influence of water reflectance
on the red and near-infrared (NIR) bands. A more significant decrease in the NIR band
than in the red band will present a weak NIR scattering effect of vegetation spectra and
cause the LAI underestimate [23]. In contrast, a more significant decrease in the red band
than in the NIR band will reinforce chlorophyll absorption and make the LAI overestimate.
In addition, the LAI is also affected by the reflectance of different water bodies in nature,
which will be discussed later.
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RELAI values increase with increasing WAFs. This conclusion is consistent with
previous research by Xu et al. [23], who evaluated the performance of MODIS LAI us-
ing the aggregated Landsat ETM+ reflectance of water pixels over different regions and
the aggregated 30-m LAI reference maps. In this study, the RELAI values demonstrate
that the error approaches the reference LAI when the WAF is approximately 0.6 (RE-
LAIgrass_modis = 109.66%, RELAIgrass_glass = 76.50%, RELAIEBF_modis = 126.38%,
RELAIEBF_glass = 114.96%, RELAIENF_modis = 89.49%, RELAIENF_glass = 113.52%)
and exceeds the reference LAI almost twofold when the WAF reaches approximately 0.75
(RELAIgrass_modis = 245.46%, RELAIgrass_glass = 214.98%, RELAIEBF_modis = 238.78%,
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RELAIEBF_glass = 159.13%, RELAIENF_modis = 209.38%, RELAIENF_glass = 183.11%) for
all three vegetation types. In Xu’s study [23], MODIS RELAI reaches about 85% when the
WAF approaches 0.5. It is consistent with the results of this study. In our study, the RELAI
value rapidly increases when the WAF is more significant than 0.75 because the reference
LAI calculated based on the linear mixed model decreases for mixed pixels containing large
water bodies.

Figure 8 shows the LAI bias inverted with simulated bidirectional reflectance factors
(BRFs) at the red and NIR bands of a mixed grass-water pixel, which can be utilized to
explain the water effects in the LAI retrieval. With the increase in the ∆BRFred and decrease
in the ∆BRFnir of the pixels, the bias changes from overestimating to underestimating.
The specific effect of water on the LAI of mixed pixels depends on the reflectance of
water, and the different reflectance values of the water have different effects on the mixed
pixels. When the reflectance of the red band of water is greater than that of the NIR band,
the LAI of the mixed pixels is generally underestimated (Figure 9). At the same time,
Xu et al.’s research also showed that under fixed water reflectance, the change direction
of the vegetation-water mixed pixel LAI depends on the balance of red and NIR bands
changes [23].
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nir_water both have a range of [0, 0.3]. The change between the mixed vegetation-water pixel 
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Figure 8. The bias change in the inverted LAI with the change in BRFs at the red and NIR bands
of the mixed pixel from the MODIS main LAI retrieval algorithm. This case was simulated for
grasslands, with BRFred_vegetation = 0.06, BRFnir_vegetation = 0.35, solar zenith angle = 35◦, solar
azimuth angle = 150◦, view zenith angle = 25◦, and view azimuth angle = 100◦. BRFred_water and
BRFnir_water both have a range of [0, 0.3]. The change between the mixed vegetation-water pixel
(BRFred = BRFred_vegetation × (1 −WAF) + BRFred_water ×WAF; BRFnir = BRFnir_vegetation ×
(1 −WAF) + BRFnir_water ×WAF) and the change in the reflectance of the vegetation pixel caused
by the addition of water is described by ∆BRFred (∆BRFred = (BRFred_water − BRFred_vegetation)
×WAF) and ∆BRFnir (∆BRFnir = (BRFnir_water − BRFnir_vegetation) ×WAF).



Remote Sens. 2023, 15, 1337 12 of 21

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 21 
 

 

the addition of water is described by ΔBRFred (ΔBRFred = (BRFred_water − BRFred_vegetation) × 
WAF) and ΔBRFnir (ΔBRFnir = (BRFnir_water − BRFnir_vegetation) × WAF). 

 
Figure 9. The bias changes induced by different water reflectance combinations to the LAI inversion 
of mixed pixels with a WAF range from 0 to 1 (for example, ‘underestimate and then overestimate’ 
indicates that when the WAF changes from 0 to 1, the LAI of the mixed pixels is first underestimated 
and then overestimated). 

However, when the reflectance of the red band of water is less than that of the NIR 
band, one part of the mixed-pixel LAI is consistently overestimated, and the other part is 
first underestimated and then overestimated. Meanwhile, with the increase in WAF, the 
LAI tends to be overestimated (Figure 10). Therefore, the proportion of underestimation 
in the validation results (Figure 7) depends on the characteristics of the water reflectance 
at the validation sites. However, the underestimation and then overestimation trend does 
not change with validation sites. 

 
Figure 10. The mean bias with different WAFs in the simulated experiments includes the mean bias 
caused by all water bodies and the mean bias caused by five different water bodies, as shown in 
Figure 9. 

4.2.2. Intercomparison of MODIS and GLASS Products 
The average biases of the MODIS and GLASS products are 0.15 and 0.11 for grass-

lands, 1.39 and 0.96 for EBFs, and 0.36 and 0.34 for ENFs, respectively. For grasslands, the 
MODIS LAI error is slightly smaller than that of GLASS when the WAF < 0.1 (Figure 7a). 
For the EBFs, the GLASS LAI performs better than the MODIS LAI except when 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Water Area Fraction

-1
-0.75
-0.5

-0.25
0

0.25
0.5

0.75
1

1.25

ALL
Underestimate and then overestimate
Overestimate and then underestimate
Underestimate
Overestimate
Others

Figure 9. The bias changes induced by different water reflectance combinations to the LAI inversion
of mixed pixels with a WAF range from 0 to 1 (for example, ‘underestimate and then overestimate’
indicates that when the WAF changes from 0 to 1, the LAI of the mixed pixels is first underestimated
and then overestimated).

However, when the reflectance of the red band of water is less than that of the NIR
band, one part of the mixed-pixel LAI is consistently overestimated, and the other part is
first underestimated and then overestimated. Meanwhile, with the increase in WAF, the
LAI tends to be overestimated (Figure 10). Therefore, the proportion of underestimation in
the validation results (Figure 7) depends on the characteristics of the water reflectance at
the validation sites. However, the underestimation and then overestimation trend does not
change with validation sites.
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caused by all water bodies and the mean bias caused by five different water bodies, as shown in
Figure 9.

4.2.2. Intercomparison of MODIS and GLASS Products

The average biases of the MODIS and GLASS products are 0.15 and 0.11 for grasslands,
1.39 and 0.96 for EBFs, and 0.36 and 0.34 for ENFs, respectively. For grasslands, the MODIS
LAI error is slightly smaller than that of GLASS when the WAF < 0.1 (Figure 7a). For the
EBFs, the GLASS LAI performs better than the MODIS LAI except when abnormalities
arise when the WAF ranges from 0.7–0.75 (Figure 7b). This indicates that the accuracy
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of the GLASS LAI product for EBFs in equatorial zones tends to be steadier than that
of the MODIS product due to the reprocessing step that removes residual atmospheric
contamination from the reflectance information in the GLASS LAI algorithm. For ENFs,
the GLASS LAI values have a higher bias than the MODIS LAI values when WAF > 0.45
(Figure 7c). The biases of the ENF and EBF pixels are usually higher than those of the
grassland pixels due to the large LAI values of forests.

The number of validation units with WAFs lower than 0.5 (926 for grasslands, 358 for
EBFs, and 1202 for ENFs) is significantly greater than the number with WAFs larger than
0.5 (221 for grasslands, 37 for EBFs, and 313 for ENFs); specifically, when the WAF is larger
than 0.8, pixels containing large water bodies can be identified as water body types instead
of vegetation cover and are thus not processed in the LAI product inversion. Therefore, the
bias and RELAI values do not continuously increase when the WAF ranges from 0.6 to 0.7,
due to the uncertainties arising from a few samples.

Figure 11 provides scatter plots of the product-derived and reference LAI values in
the S1 pixels for all heterogeneous pixels. The large LAI value of forests leads to a larger
bias than for grasslands. The RMSE of GLASS (0.210) is higher than MODIS (0.185) for
grasslands, but GLASS shows more advantages for forests. The inversion LAI value for the
three vegetation types appears to be underestimated when the WAF is small, especially
in WAF < 0.1 (MODIS: BiasEBF = −0.21, BiasENF = −0.19; GLASS: BiasEBF = −0.27,
BiasENF = −0.22). When the WAF increases, most of the product-derived LAI values (the
green and yellow points in Figure 11) tend to be overestimated, and this overestimation
becomes severe when the WAF exceeds 0.5 (MODIS: Biasgrass = 0.26, BiasEBF = 2.54,
BiasENF = 0.71; GLASS: Biasgrass = 0.21, BiasEBF = 1.85, BiasENF = 0.71). This is consistent
with the results in Figure 7.
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The MODIS LAI overestimations derived for the EBF pixels tend to be more significant
than for GLASS LAI product when WAF > 0.8 (Figures 11b and 7b); this finding can
be partly attributed to the relatively high MODIS LAI values obtained for the EBF EVUs
compared to the GLASS LAI values, regardless of whether homogeneous pixels (Figure 12d)
or mixed water-vegetation pixels are considered (Figure 12c). An example EVU of an EBF
on Julian day 201 is shown in Figure 13. The average MODIS LAI value of 6.28 in S2 is
higher than the average GLASS LAI of 5.38; this difference is consistent with the frequency
distribution in which the MODIS inversion value is higher than the GLASS inversion value,
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as shown in Figure 12d. The bias values of MODIS are higher than those of GLASS. In
contrast, the RELAI values are similar, indicating that algorithm errors remain in the bias
calculation. The RELAI value better describes the influence of the mixed water cover on
the inversion results and can remove the algorithm error.
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and S1 heterogeneous pixels from two LAI products covering three vegetation types. The horizontal
axis represents the LAI value.
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4.2.3. Intercomparison under Growing-Season Conditions

To evaluate the influence of mixed vegetation-water pixels on the LAI inversion results
throughout the growing season, we calculated the time series of the bias and RELAI
values obtained for the EVUs containing the three analyzed vegetation types, as shown in
Figures 14 and 15.
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Figure 15. Temporal profiles of the RELAI values obtained for the GLASS and MODIS LAI products
among different WAFs and biome types.

The bias values of the two products generally increase in January, reach maximum
values in July, and then decrease. This trend reflects the seasonal variations observed under
all WAFs for the grassland and ENF EVUs due to the intense correlation between the bias
and LAI values, meaning that the product-derived LAIs have relatively high inversion
errors resulting from mixed vegetation-water bodies during the vigorous growing period,
regardless of the spatial extent of the water body in the pixel. The bias values of the EBF
pixels show no seasonal variations; this could partly be explained by the fact that the
EBF EVUs are generally located in equatorial climate zones that lack distinct seasonal
variations. However, the EBFs exhibit more severe fluctuations throughout the growing
season than the grasslands and ENFs, likely due to cloud contamination, considering
the high precipitation rates observed in the equatorial regions where the EBF EVUs are
distributed. The MODIS bias values obtained for most of the EBF EVUs are higher than
those of the GLASS product. This finding implies that the reflectance reprocessing step in
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the GLASS algorithm is useful in relieving the effect of the reflectance anomalies caused by
cloud contamination.

The RELAI series is relatively flat, exhibiting slight seasonal variation throughout
the growing season (Figure 15), especially for the EBF pixels when the WAF is below 0.4.
The RELAI in the products resulting from the mixed vegetation-water pixels does not vary
throughout the growing season. However, these errors change significantly with the WAF,
especially when the WAF exceeds 0.5. The RELAIs of the two LAI products are similar
when the WAF is lower than 0.6, but the RELAI difference between these two products
increases when the WAF exceeds 0.6. The MODIS LAI product contains larger relative
errors than the GLASS LAI product.

To further evaluate the influence of mixed water-vegetation pixels on LAI retrieval
results during the growing season, the bias and RELAI values derived under different
LAI conditions and WAFs are illustrated in Figure 16. The bias values are underestimated
when the WAF is low, and overestimated during vigorous growing season under high WAF
pixel conditions. As the WAF and LAI values increase, the error in the MODIS LAI values
increases. The algorithm used to construct the MODIS LAI product tends to produce larger
inversion errors than the GLASS LAI algorithm in the flourishing period under large WAF
conditions. Additionally, due to the GLASS product’s smoothing algorithm, the LAI’s high
value is close to 7 and not inverted.
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Figure 16. Bias ((a) MODIS LAI product, (b) GLASS LAI product) and RELAI ((c) MODIS LAI
product, (d) GLASS LAI product) values obtained in a comparative analysis of the LAI values
retrieved from the two analyzed products under different WAF and inverted LAI conditions.

The RELAI (Figure 16c,d) is related only to the WAF. The average inversion error is
similar to the LAI reference value (the RELAI value is approximately 100%) for both the
MODIS and GLASS LAI products when the WAF is approximately 0.5. When the WAF is
larger than 0.7, the inversion error can reach four times the reference LAI value (the RELAI
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is approximately 400%). The low reference LAI values derived under large WAFs account
partly for the high RELAI values that are subsequently obtained. This finding also implies
that the decreased effect of water bodies on the LAI is more intense than the effect of water
bodies on the vegetation reflectance, resulting in the LAIs that are inverted from the mixed
reflectance values being larger than the mixed-pixel LAIs.

The GLASS product errors (relative LAI error (RELAI): 94.43%, bias: 0.858) are lower
than the MODIS product errors (RELAI: 124.05%, bias: 1.209), which means that GLASS
has less uncertainty. This is consistent with the previous research of Zeng et al. [36],
who compared GLASS, MODIS and GEOV2 products under the heterogeneous surface.
The results showed that the uncertainty of GLASS products was the smallest, followed by
GEOV2 and MODIS.

4.3. Limitations and Prospects
4.3.1. The Unbalanced Spatial Distribution of the Network

The HESNet-WV network includes three main vegetation types, and EVUs for dif-
ferent types have a global distribution. The uneven distribution of global inland surface
water resources will cause the same type of EVU to gather regionally around stable water
bodies (rivers, lakes, inland seas, etc.). In addition, the regional climate and ecosystem
characteristics also indirectly determine the spatial distribution of the sample points. For
example, there are few stable water bodies in the arid zone of Australia and less water and
vegetation in northern Africa, so high-quality EVUs cannot be retrieved in similar places.
The unbalanced spatial distribution of EVUs will not affect the quality of the network or
the accuracy of product validation because its distribution is consistent with the spatial
characteristics of stable water and vegetation in nature.

4.3.2. Uncertainty Assessment

The uncertainty of the validation results is closely related to the stability of the net-
work. According to the two parameters of vegetation representativeness and water stability
provided in the attachment, it can be seen that the vegetation representativeness of EVUs
of grassland is stronger and the proportion of water area more stable. The water body of
EBF fluctuates wildly and the vegetation representation of ENF is relatively poor. There-
fore, the uncertainty of verification results of grassland is smaller than for EBF and ENF.
The uncertainty assessment of validation results will be further improved and refined in
future work.

4.3.3. Prospects of Future Work

The results demonstrate the ability of the HESNet-WV Network to perform global LAI
assessments in a variety of mixed water body and vegetation scenarios. Moreover, these
results are a reference for algorithm refinement and further validation work. At a medium
spatial resolution, the heterogeneity of pixels is a crucial problem affecting the accuracy
of radiative transfer process simulations and the accurate inversion of surface parameters.
Constructing an LAI inversion algorithm system that considers land surface heterogeneity
is important. A simple linear mixed model could be used for correction when the pixel
heterogeneity is low, and cross-radiation could be regarded as improving the inversion
accuracy of the LAI when the heterogeneity is high, which requires further research. In
addition, high-resolution and high-precision land classification needs to be considered
and developed.

Theoretically, the best validation and application year of HESNet-WV Network is
2015, because it is more accurate to perform evaluations closer to the base year. When the
network is applied for other years, it is necessary to consider whether the vegetation type
and water area conditions characterizing the study site have changed. At the same time,
the only current validation object is the water-vegetation mixed heterogeneous surface, and
the heterogeneous characteristics of the surface are not uniformly distributed. Therefore, to
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conduct a comprehensive quality validation on the heterogeneous surface for global LAI
products, it is necessary to increase the number of verifiable objects of the site network.

In future work, more objects will be validated under the validation framework. The net-
work establishment method under the validation framework is also applicable to different
vegetation-vegetation mixtures or vegetation-urban land mixtures. Moreover, the available
time scale of the network will be extended. The developed network will implement higher-
resolution surface classification data by introducing more refined surface classification data.

5. Conclusions

This study proposed a validation framework to facilitate intercomparisons of global
LAI products over mixed water-vegetation pixels by deriving global EVUs with reference
values obtained by considering the different LAI inversion algorithms in the available LAI
products. The method framework included a globally distributed HESNet-WV network
and an error assessment method based on a linear mixing model.

The performance of the MODIS and GLASS LAI products was evaluated using the
HESNet-WV network through visualization and quantitative evaluation steps, and the
following conclusions were obtained:

(1) More WAFs in the mixed pixels resulted in larger errors during LAI inversion.
The error was close to the reference LAI value when the WAF was approximately 0.6 and
almost two times that when the WAF reached about 0.75.

(2) GLASS and MODIS LAI products showed growing errors alongside increased
WAF. The bias and relative error of the GLASS (Biasglass = 0.858, RELAIglass = 94.43%) were
lower than for MODIS (Biasmodis = 1.209, RELAImodis = 124.05%).

(3) The mixture of water bodies and vegetation influenced the three vegetation types
differently. EBFs (Biasmodis = 1.39, Biasglass = 0.96) were the most affected, followed by
ENFs (Biasmodis = 0.36, Biasglass = 0.34) and GRASS (Biasmodis = 0.15, Biasglass = 0.11).

This framework provides a scheme to evaluate the performance of LAI products
in mixed-pixel regions, and it is possible to realize the accuracy assessment of LAI in
heterogeneous-pixel regions. The validation objects of heterogeneous land surfaces need
to be further increased, and the influence of heterogeneous land surfaces on LAI product
inversion warrants further exploration.
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