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Abstract: In 1978, the SEASAT satellite was launched, carrying the first civilian synthetic aperture
radar (SAR). The mission was the monitoring of ocean: application to land was also studied. Despite
its short operational time of 105 days, SEASAT-SAR provided a wealth of information on land and
sea, and initiated many spaceborne SAR programs using not only the image intensity data, but also
new technologies of interferometric SAR (InSAR) and polarimetric SAR (PolSAR). In recent years,
artificial intelligence (AI), such as deep learning, has also attracted much attention. In the present
article, a review is given on the imaging processes and analyses of oceanic data using SAR, InSAR,
PolSAR data and AI. The selected oceanic phenomena described here include ocean waves, internal
waves, oil slicks, currents, bathymetry, ship detection and classification, wind, aquaculture, and
sea ice.

Keywords: synthetic aperture radar (SAR); polarimetry; along-track interferometry; oceanic phenomena;
ship detection; aquaculture

1. Introduction

The ocean covers the two thirds of the surface of the earth, having a strong impact
on the global climate through carbon absorption and heat transfer. The ocean is also an
important source of food and maritime transport. Since the first civilian spaceborne syn-
thetic aperture radar (SAR) onboard the SEASAT satellite in 1978 with its main purpose
of ocean monitoring, a substantial number of spaceborne and airborne SARs have been
launched and used in practice over ocean as well as land [1–4]. For the ocean applica-
tion, an excellent summary was presented by Jackson and Apel in 2004 [5], covering the
principal theory of SAR and applications to most of the oceanic phenomena. New tech-
nologies have also been developed, including cross-track interferometric SAR (InSAR) for
production of a digital elevation model (DEM) of land surface and surface deformation
measurements [4,6–10], along-track InSAR (ATI SAR) applied to the measurements of the
velocity of moving targets [11–16], polarimetric SAR (PolSAR), and polarimetric inter-
ferometric SAR (PolInSAR), mainly for image classification [17–22], as well as the recent
applications by artificial intelligence (AI) such as deep learning [23–29].

An example is shown in Figure 1 of the ERS-1 C-band VV-polarization SAR image
of the English Channel and Isle of Wight. The image shows several oceanic features such
as ocean waves, warm and cold water boundary, areas of different ocean wind speeds,
the effect of underwater topography, ships, and a dark linear feature of possible oil spills
dumped by a ship. These and other oceanic phenomena can be detected and their properties
can be estimated by the intensity data associated with the spatial and temporal changes of
sea surface.
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components in the corresponding directions, and thus the velocity vector of ocean cur-
rents [15,16]. Another method of velocity vector measurement was proposed using two 
antennas on a single platform, where the forward and backward beams are transmitted 
by a main antenna, and the backscattered signal is received by the two antennas. By using 
the Ku–band of short wavelength, an antenna separation of 12 m is possible on a space-
borne platform [14]. 

 
Figure 1. ERS–1 SAR image of the English Channel (scene center: 50.57°N, 1.17°W), showing several 
oceanic features. (Courtesy of ESA). 

PolSAR and PolInSAR can be applied mainly to land–cover image classification 
through different backscattering processes depending on different polarization combina-
tions. For the ocean application, PolSAR is used for detection and classification of 
manmade targets such as ships, marine cultivation, and also sea ice and oil slicks [30–39]. 

Further, in recent years, AI has attracted much attention for several oceanic applica-
tions. The study of AI such as Perceptron started in 1950s, followed by machine learning 
in the 1980s to the early 2000s [40]. The recent popular algorithms of deep learning include 
convolution neural network (CNN) composed of multi–layer neural networks (NN) [26]. 
In general, these algorithms require a large quantity of training data. For ocean applica-
tions, the deep learning method is often applied to detection and classification of internal 
waves, oil spills, ships, and sea ice, as well as the estimation of waveheight, e.g., [41–45]. 

In the present article, a brief description is first given on the principle of radar 
backscatter from the sea surface, which is the basis of many applications. A summary is 
then given on the applications of the conventional SAR data, ATI SAR, PolSAR data, and 
artificial intelligence over oceans, including surface waves as well as breaking waves, 

Figure 1. ERS-1 SAR image of the English Channel (scene center: 50.57◦N, 1.17◦W), showing several
oceanic features. (Courtesy of ESA).

The complex SAR data can be used for the velocity measurement of ocean currents
through the Doppler centroid shift of the azimuth spectra. Another popular method is the
ATI SAR, with two antennas placed in the along-track direction on aircraft or spaceborne
SARs in tandem, such as TerraSAR-X and TanDEM-X [12,13]. These methods can measure
only the range velocity component of ocean currents, while a recent proposed method
based on multi-look processing of ATI SAR is able to estimate the velocity vector. This
multi-aperture ATI SAR (MA-ATI SAR) produces the forward- and backward-looking
interferograms using multi-look processing of two ATI SAR data, yielding the velocity
components in the corresponding directions, and thus the velocity vector of ocean cur-
rents [15,16]. Another method of velocity vector measurement was proposed using two
antennas on a single platform, where the forward and backward beams are transmitted
by a main antenna, and the backscattered signal is received by the two antennas. By
using the Ku-band of short wavelength, an antenna separation of 12 m is possible on a
spaceborne platform [14].

PolSAR and PolInSAR can be applied mainly to land-cover image classification
through different backscattering processes depending on different polarization combi-
nations. For the ocean application, PolSAR is used for detection and classification of
manmade targets such as ships, marine cultivation, and also sea ice and oil slicks [30–39].

Further, in recent years, AI has attracted much attention for several oceanic applica-
tions. The study of AI such as Perceptron started in 1950s, followed by machine learning in
the 1980s to the early 2000s [40]. The recent popular algorithms of deep learning include
convolution neural network (CNN) composed of multi-layer neural networks (NN) [26]. In
general, these algorithms require a large quantity of training data. For ocean applications,
the deep learning method is often applied to detection and classification of internal waves,
oil spills, ships, and sea ice, as well as the estimation of waveheight, e.g., [41–45].

In the present article, a brief description is first given on the principle of radar backscat-
ter from the sea surface, which is the basis of many applications. A summary is then given
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on the applications of the conventional SAR data, ATI SAR, PolSAR data, and artificial
intelligence over oceans, including surface waves as well as breaking waves, oceanic inter-
nal waves, ocean currents, aquaculture, and ice. It should be noted that there have been
substantial numbers of publications to date on the SAR/Ocean. In the present review, only
a limited numbers of references are given, and for further readings the references therein
are recommended.

2. Ocean Surface Waves
2.1. Mirowave Backscatter from Sea Surface

In order to describe the imaging process of ocean waves, it is useful, first, to explain
briefly the radar backscatter from the sea surface. Since the penetration depth of the
microwave used by SAR is a few millimeters for the seawater, the SAR images contain only
the information on the surface of the sea. As noted in the preceding section, the intensity
data are proportional to the microwave backscatter from the sea surface, and the power of
backscatter is related to the spatial and temporal variations of oceanic phenomena.

The elementary scatterers which give rise to the radar backscatter from the sea surface
are the small-scale waves satisfying the Bragg resonance condition λBragg = λ/(2 sinθi),
where λ is the radar wavelength and θi is the incidence angle. For example, for X-band
of λ = 0.03 cm and L-band of λ = 0.23 cm with θi = 35◦, the Bragg wavelengths are 2.6 cm
and 20 cm, respectively. The Bragg resonant radar backscatter was first observed by D. D.
Crombie by a ground-based HF radar in 1955 [46]. Since then, there have been extensive
theoretical and experimental studies on the radar backscatter from sea surface under
different environmental conditions in terms of radar incidence angles and polarizations,
e.g., [47]. Temporal and spatial changes of the Bragg waves associated with, for example,
local surface tilt angles of ocean waves and damping of small-scale waves by oil slicks, give
rise to the varying radar backscatter and hence image modulations.

2.2. Imaging Process of Ocean Surface Waves

It is interesting to note that prior to the launch of SEASAT in 1978, a question was
raised whether the spaceborne SAR could produce fine images of moving ocean waves on
a global scale. However, as is known, the SEASAT-SAR proved its ability to image dynamic
ocean waves, and considerable efforts were made on the theoretical and experimental
studies during the late 1970s to the early 2000s. Consequently, the principal theory of
imaging ocean waves by SAR is well understood with supporting experimental data,
followed by several spaceborne SARs as routine wave monitoring [48–56].

Figure 2 is a SEASAT-SAR image of the Fair Isle in the North Sea and the sur-
rounding water, showing ocean waves propagating from left to right in the range di-
rection and those refracted around the island. Four imaging processes are known to
interpret these wave images, including the tilt, hydrodynamic, foreshortening and velocity-
bunching modulations.

As in Figure 3, the tilt modulation is due to the changes of the local incidence angle
on the surface of ocean waves, in which the backscatter radar cross section (RCS) is large
from the wave surface facing toward the radar, and it is small from the surface facing
backward. Therefore, this modulation is largest for range-travelling waves, and almost
null for azimuth-travelling waves. The hydrodynamic modulation is caused by the water
movement, where the surface water on the wavefront facing toward the wave propagation
direction converges, giving rise to a rough surface, while the surface facing backward
becomes smooth. The image modulation is weak in comparison with the tilt modulation,
as illustrated in Figure 4. The foreshortening modulation is, as the name suggests, due to
foreshortening of wave undulation. Again, this modulation is weak and characteristic of
the range-travelling waves.

The very strong modulation by velocity bunching is caused by the azimuth image
shift of the moving scatterers having different slant-range velocity components. This highly
non-linear modulation is dominant for azimuth-travelling waves and is absent in range-
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traveling waves, as in Figure 4a. Velocity bunching is well known where the image of a
scatterer having the slant-range velocity vSR [m/s] is shifted in the azimuth direction by the
distance δX = −(R/V)vSR. Here, R and V are the slant-range distance from the antenna to
the scatterer and platform velocity, respectively. For example, for R = 750 km, V = 7 km/s,
the amount of shift is δX = −107 vSR [m].

Figure 4b illustrates the velocity bunching modulation. As the wave propagates the
scatterer at a position A moves downward between the time t1 and t2,while the scatterer
B moves upward, i.e., the Bragg waves have negative and positive slant-range velocity
components depending on the positions and also the wavelength, amplitude, and phase
speed of ocean waves. Then, the images of the scatterers are concentrated or dispersed in
the image plane, yielding wave-like images although the RCS is uniform. Depending on
the amount of shift, double peaks may also appear. Experimentally, the effect of velocity
bunching was proven by the waves over floating sea ice [50].
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2.3. Directional Wave Spectrum

Despite the non-linearity of ocean wave imagery, the measurement of the directional
wave spectrum based on multi/sub-look processing has been proposed and used in prac-
tice [53–56]. The initial purpose of multi/sub-look processing is to increase the signal-to-
noise ratio (SNR) by adding sub-look images on an intensity basis. Since the inter-look
speckle patterns are not correlated, the standard deviation of speckle noise is reduced
by 1/N1/2 at the expense of the reduction in image resolution by 1/N. In this way, the
images of stationary targets can be enhanced, but the images of moving targets such as
ocean waves cannot be improved as much as for the stationary targets because of different
inter-look image positions.

To produce the directional wave spectrum from the two-look processing, for example,
independent sub-look reference signals are applied to the raw data yielding two sub-look
images, as illustrated in Figure 5. The corresponding spectra S1 and S2 are computed
by Fourier transform (FT). Then, S1 × S2* is multiplied by a weighting function of the
phase proportional to the inter-look time difference δt and a preset radian frequency of
ocean waves, where the asterisk * implies taking a complex conjugate. The resultant
weighted wave spectrum removes the directional ambiguity from the conventional wave
spectrum produced by Fourier transforming the full-look image [53–56]. Here, an example
is given using two-look images, but several sub-look images can be used to increase the
measurement accuracy using SAR data, such as those of Spotlight SAR of long azimuth
integration times. In the sub-look processing described above and in Figure 5, sub-images
are produced from the raw SAR data.
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The directional wave information can also be obtained by taking the cross-correlation of
sub-images. The result yields not only the wave propagation direction but also wavelength [53].

Another method of sub-look processing is to divide the full-look complex image
spectrum into the multiple sub-spectra and by inverse Fourier transform of the individual
sub-spectrum. A further detailed process will be given in Section 7 (Ship Detection).

2.4. Waveheight

Apart from the directional wave spectrum, the significant waveheight is an important
parameter. There have been several attempts to estimate waveheight using the images
of waves in ice, RCS of range-travelling waves, and HH/VV-polarization ratio, but they
are not proven for practical applications. However, a recent study reported using a deep
neural network (DNN) for waveheight estimation [57]. In the study, a dataset of over
750,000 collocations between radar altimetry and the two Sentinel-1 SAR sensors was
created, and used to train a DNN regression model. By training with the wave cross-spectra
from the collocation data acquired from 2015 to 2017, the model was demonstrated on test
data acquired during 2018. This deep learning model reduced the mean squared error by
50%, from 0.6 m to 0.3 m, when compared with the altimeter data, and the root mean square
error (RMSE) of the significant waveheight was 0.3 m as compared with the independent
altimeter observations. It was noted that there is still room for improvement with additional
training data in the extreme sea states with significant waveheights larger than 8 m.

The significant waveheight estimation by CNN was reported based on the relation be-
tween the normalized RCS and significant waveheight [58]. After training, the comparison
of the test results using 1597 C-band Sentinel 1 SAR images with the matched in situ buoy
data indicated a mean RMSE of 0.32 m with a correlation coefficient of 0.90.

The AI algorithms such as CNN are also used in other ocean applications. Further
details on AI are given in Section 4.3.4.

2.5. Breaking Waves

The ocean waves described so far are the wind waves generated by the energy in-
put to the water surface by wind. With increasing wind speed, duration and fetch, the
waves around the crest start to break, containing air bubbles. These breaking waves can
also be seen in shoaling waves and waves broken by rocks. When breaking waves are
imaged by SAR, they appear as bright linear images in the azimuth direction, known as
“azimuth streaks”.
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Figure 6 is the RADARSAT-2 X-band SAR image of Chuuk Lagoon, Micronesia, ac-
quired on the 4th of November, 2010. Ocean waves propagating from the right to left are
diffracted by the inlet toward inside the lagoon. The bright linear images along the coastal
barrier are the azimuth streaks caused by braking waves.
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Figure 6. RADARSAT-2 X-band SAR image of Chuuk Lagoon, Micronesia, showing the bright
azimuth streaks caused by breaking waves along the coastal barrier.

Figure 7 illustrates the origin of azimuth streaks. The top-left image shows the azimuth
Doppler phases from a stationary point scatterer and a scatterer in random motion. The
corresponding point images (PSFs: point spread functions) are in the bottom-left image.
Because of the random motion of the point scatterer, the PSF is smeared in the azimuth
direction due to the azimuth image shift, explained in Section 3.1, for velocity bunching of
surface waves. Because of different range velocities of the point scatterer, the smeared PSF
contains random fluctuation.
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point scatterer moving in random motion. Bottom left: The corresponding point spread functions
(PSF) of the stationary and moving CRs. Right: TerraSAR-X image showing stationary and moving
corner reflectors.
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The right image in Figure 7 is the TerraSAR-X SpotLight image of the baseball ground
of the National Defense Academy, Japan. During the observation, several corner reflectors
(CRs) were placed, and a CR moved in the range direction with varying speed. The image
of the moving CR is shifted by the distance proportional to the mean velocity, and spread in
the azimuth direction due to the random velocity changes. This is the basis of the azimuth
streaks caused by breaking waves.

3. Oceanic Internal Waves
3.1. Observation and Impact

The oceanic nonlinear (non-sinusoidal) internal waves (IWs), known as “dead water”
were first recorded by the Norwegian explorer F. Nansen in 1893, and later explained by
Ekman by laboratory experiments in 1904 [59,60]. IWs are generated at the interface of
stratified water layers (i.e., pycnocline) often induced by the interaction between currents
and bottom topography. The stratification can be caused by high- and low-density layers
associated with differences in temperature and/or salinity [61–64].

Observations of nonlinear IWs by optical sensors have been reported since the 1950s,
and a large number of studies using both optical and SAR have been reported since the
launch of SEASAT in 1978. The IWs appear as a single solitary wave also known as a soliton
or a packet of multiple nonlinear internal waves. The largest waves in wavelength and
amplitude appear at the front of the wave packet, decreasing toward the trailing edge, and
propagate over several hundred kilometers with phase velocities ranging from 0.1 m/s to
several m/s.

Figure 8 shows the ENVISAT-ASAR images (left column) and MODIS-Terra images
(right column) of two IW packets in the two areas (A and B) of the South China Sea. The
MODIS images were acquired at 55 min after the ENVISAT-ASAR data. These IWs were
generated by the interaction of tidal currents with the edge of continental shelf at the Luzon
Strait between Taiwan and Luzon island of the Philippines, propagating from right to
left toward the east coast of China. The two wave packets are separated by the distance
proportional to the semi-diurnal tidal period of 12.42 h. As will be discussed later, the
phase velocities of these IWs can be estimated from the distance between the two wave
packets and tidal period.
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Substantial numbers of in situ surface and in-water measurements have also been
made by several instruments such as echo-sounder profilers, acoustic Doppler current
profilers (ADCP) and conductivity temperature depth profilers (CTD). Some of these
measurements were used to validate the simultaneous SAR observations, e.g., [65–68].

Oceanic internal waves are of great interest in the field of geoscience for their strong
energy transport between the deep water and continental shelf, nutrient mixing, sediment
re-suspension, effects on marine architecture, underwater communication, and also on
global climate [69–73]. For example, the dissipation energy of the semi-diurnal tides (M2) is
approximately 2.4 TW, which is 2/3 of the total energy, and the semi-diurnal tides generate
IWs of 0.3–1.2 TW energy. The IWs generated in the Lombok Strait are considered to have
substantial effects on the EL Niño and EL Niño Southern Oscillation (ENSO).

The mechanism is based on the strong seasonal energy transport by IWs between the
Java Sea and Indian Ocean through the Lombok Strait, where the both monsoon- and El
Niño-induced variability is strong. As such, the throughflow likely varies on interannual
time scales to reflect an ENSO influence by reduced and enhanced transports during EL
Niño years [70].

3.2. Imaging Process

Since the microwave does not penetrate into the interior of the sea, SAR does not
directly measure IWs. Figure 9 illustrates the imaging process, where the left and right
figures correspond, respectively, to the nonlinear IWs of depression and elevation. As the
IW propagates from left to right, water particles follow a circular motion, and this motion
induces varying surface currents. The surface of converging currents becomes rough, and
the radar backscatter is large compared with the smooth surface of diverging currents.
Thus, the SAR images are manifestation of IWs.
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Figure 9. Imaging process of IWs by SAR. The varying surface roughness is caused by the circular
motion of water particles as the internal wave propagates, resulting in the current converging and
diverging areas. The current converging surface becomes rough compared with the diverging area.
The image signatures depend on the depression (left) and elevation (right) of the pycnocline.

The SAR image signature of nonlinear IWs depends on the depression and elevation of
the pycnocline, e.g., [61,62]. The most common pattern is the images of IWs of depression,
shown in the left of Figure 9, where a bright band is followed by a dark band in the
direction of propagation on the gray background, as in Figure 8 and the top-left image of
Figure 10. For the nonlinear IWs of elevation, the bright band appears behind the dark
band in the direction of propagation, as illustrated in the right of Figure 9 and the ERS-1
SAR image in Figure 10. This reversal of bright and dark images may occur, such as the case
where internal wave packets propagate toward shore on the continental shelf of decreasing
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water depth. As internal waves approach shallow waters, the leading undulation may
decay, and the pycnocline tends to become uniform, resulting in the dark band leading the
bright band [62,63,65].
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Figure 10. Different image signatures of nonlinear internal waves [63]. Top left and bottom
right: TerrasAR-X images over the Gulf of Main west of Cape Cod acquired, respectively, on the 23rd
of June and 3rd of July, both in 2008. Top right: ERS-1 SAR image over the Mozambique Channel
acquired on the 24th of September 2001. Bottom left: ENVISAT-ASAR image over the Andaman
Sea acquired on the 18th of November 2006. The propagation direction is from right to left, except
the ENVISAT-ASAR image, in which the interaction can also be seen between the two wave packets
propagating predominantly from left to right.

Another mechanism associated with ocean wind and surface films is biogenic
oil [62,63,73,74]. The imaging processes shown in Figure 9 are under the condition of
clean sea surface under moderate wind speed. If the biogenic oil is present on the varying
currents induced by IWs, the oil is concentrated in the current convergence zone. Since oil
slicks have higher viscosity than seawater, they damp the small-scale Bragg waves.

If the power of damping of surface roughness caused by the current convergence is
large in comparison with the background surface, the SAR image shows only a dark band
on the gray background as in the bottom-right image of Figure 10.

The wind speed also affects the image signature of IWs. Under the low wind condition,
the surface becomes moderately rough on both the current converging and background
surfaces with and without surface films, yielding only bright bands on the gray background,
as in the ENVISAT-ASAR image in Figure 10.

As to the detection of IWs in SAR images, it is interesting to note that faster regions-
CNN (R-CNN) [24] was used for IW detection utilizing the 466 ENVISAT-ASAR images
over the South China Sea acquired during 2003 to 2012. A total of 888 IW images were
trained to identify IWs, resulting in a 94.78% recognition rate. The computation time for
detection was 0.22 s/image, suggesting the capacity of CNN for the automatic detection of
IWs [75]. Further details on AI are given in Section 4.3.4.

3.3. Estimation of Internal Wave Properties

As mentioned with reference to Figure 8, the phase velocities of IWs can be estimated
from either the multiple IW images separated by the semi-diurnal tidal period in a single
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SAR/optical data, or the measurement can also be made from two sets of data separated
by a short acquisition time [64,76]. Figure 11 shows the results of estimating the phase
velocities of IWs in Figure 8, where the measurements were made using (a) the difference
between the ENVISAT and MODIS images with a time difference of 55 min, and (b) those
using the IW packets with a time difference of 12.42 h within the ENVISAT and MODIS
images. Comparison is made with the theory first proposed by Munk [77], which describes
the depth-dependent IW propagation with the two-layer vertical structure function of
an IW. Numerical computation was made to produce the theoretical results in Figure 8
using the water temperature, density, and depth [64]. Agreement with the theory is good
for (a), with the correlation coefficient of 0.81, while (b) shows a moderate correlation of
0.59. It is clear that the good correlation of (a) is due to the short time difference between
the ENVISAT and MODIS image acquisition times. Note that the two wave packets are
separated by a longer distance in area A than area B in Figure 8. The reason may be
associated with different tidal powers, and/or IWs in area B being further from the Luzon
Strait, travelling over longer distance of varying water depths.
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Figure 11. Estimated and theoretical IW phase velocities of selected points in Figure 8. (a) Velocities
estimated using the difference between the ENVISAT and MODIS images with a time difference of
55 min. (b) Velocities estimated using the IW packets with a time difference 12.42 h [64].

Similar results have been reported by several authors. For example, Liu, et al. [76]
used the Envisat and ERS-2 tandem data separated within 30 min in the South China Sea of
water depths ranging from 100 m to 4000 m. The estimated phase velocities agreed well
with the theoretical values, and they were affected mainly by bottom topography. The
relation of IW velocity and water depth was also investigated, with good agreement with
the theory.

Figure 12 is an example of the theoretical interpretation and extraction of the properties
of IWs from a single SAR image. The initial values are of a soliton amplitude, upper
and lower layer densities, and the water depth. Then, the Korteweg-de Vries (K-dV)
equation [77–79] is applied. The K-dV equation is a non-linear partial differential equation,
and provides analytical solutions under certain conditions. The solutions describe the
interface displacement of a soliton in terms of the phase velocity and dispersion coefficients
between the two layers in the water of a constant depth. A modified K-dV equation
can take into account the effect of water heterogeneity and depth, which is also used for
simulation study [80–82].
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Using the K-dV equation, the surface current vector U(r,t) can be computed where
r and t are the spatial vector and time variable, respectively. Another approach is using
the environmental fluid dynamic code (EFDC) that simulates the three-dimensional flow
process in surface water systems in a finite difference computational grid.

Having computed the spatial and temporal changes of surface currents induced by
the IWs, the relaxation time approximation, which is the first-order solution of the action
balance equation, is used with wind data to describe the waveheight spectrum in terms
of the varying surface currents. This approximation describes the evolution of small
amplitude of the sea surface by a slowly varying current. The Monte-Caro method can also
be applied to simulate the spatial and temporal changes of the perturbed sea surface. Radar
backscatter models are then applied to the sea surface using the waveheight spectrum
perturbed by the IW. Scattering models such as the physical optics, small perturbation, and
integral equation methods can be used to compute the backscatter RCS. The results are
compared with the SAR data, and optimization, if necessary, is made by iteration. This
approach is generally used to interpret the SAR images and extract the properties of IWs,
e.g., [76,81], including the theoretical velocity shown in Figure 11.

It is worth mentioning at this stage about the early SAR Signature Experiment (SAR-
SEX) conducted in the New York Bight in 1984, where multi-frequency airborne SAR and
in situ data of IWs were collected. Using the Bragg scattering model, good agreement was
obtained between the theory and observed intensity modulation with L-band data, but the
X-band intensity modulation was underestimated by an order of magnitude in comparison
with the observed intensity modulation. The reason for the discrepancy was considered
to be the additional small-scale roughness perturbed by meter-scale waves by the current
field induced by IWs [83], while good agreement was obtained both at X- and L-band using
the same SAESEX data with the physical optics scattering model [84]. The reason is that
the Bragg model is based only on the small-scale waves, while the physical optics model
takes into account the waves of all wavelengths as well as the Bragg waves.

A further interesting result on the frequency-dependent SAR images was obtained
during the joint UK-USA controlled experiment for the validation of ship-generated IWs
in Loch Linnhe, Scotland, during 1989–1994 [85]. Airborne SAR data of six frequencies
ranging from Ka-band (~35 GHz) to P-band (~0.5 GHz) were collected with simultane-
ous in situ measurements. Different scattering models were also considered, including
the modified Bragg, Kirchhoff (physical optics), and composite surface models [85–87].
The upper image of Figure 13 shows the X-band SAR image of IWs and surface and in-
water instrumented sites. The lower figure is the relative image intensity modulation in
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P-, L- and C-bands. It can be seen that the P-band image is at an advanced position followed
by the C-band and X-band images. This is another proof that the principal scatterers are the
Bragg waves, i.e., the P-band Bragg waves have longer wavelength and propagate faster
than the others [87].
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While most studies on oceanic IWs are on the basis of intensity, the first measurement
of IWs by ATI SAR was made with the JPL (Jet Propulsion Laboratory) airborne ATI SAR
during the 1989 Loch Linnhe campaign, where the line-of-sight Doppler velocity estimated
by the JPL ATI SAR ranged from 50 cm/s to 100 cm/s. However, the in situ current data
were 5 cm/s to 10 cm/s [88]. This large discrepancy is due to the different modulation
by the Bragg waves advancing and receding from the SAR, in particular, under the wind
direction across the IW features. This contribution needs to be subtracted from the Doppler
velocity for accurate measurements of surface currents induced by IWs [89].

The first IW parameter retrieval by the spaceborne ATI SAR was reported using the
TerraSAR-X dual receive mode (DRA mode) over the waters around the Dongsha (Pratas)
Atoll in the South China Sea [90]. No in situ data were available, but using the previously
reported information on the water depth, densities and thickness, the theoretical results
based on the K-dV equation agreed fairly well with the observed Doppler velocity and
image intensity signature.

Note that the TerraSAR-X DRA ATI mode consists of a single antenna for transmission
and two antennas for reception of the backscattered signal separated in the along-track
direction on the same antenna board. Due to the limited distance between the two receiving
channels on a single antenna board, the system is suitable for high frequency bands such as
X-band, and the TerraSAR-X DRA utilizes a 4.8 m long antenna with the receiving antenna
separation of 1.2 m [91].

4. Oil Slicks
4.1. Background

Oil slicks are often caused by tanker and offshore accidents, and illegal discharge by
vessels and plants through rivers, resulting in short- and long-term environmental and eco-
nomic damage. For example, the 2010 Deepwater Horizon oil-rig explosion was the largest
marine oil spill in history, discharging an estimated 4,900,000 barrels (7.33 barrels ≈ 1 ton)
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of crude oil and 4 million pounds of gas into the Gulf of Mexico, killing 11 workers and
doing considerable damage to the Gulf ecosystem [92–95].

Another cause is by tankers. Figure 14 shows the major oil spills from 1967 to 2021,
where, except the Hebei Spirit and Sanchi cases, the largest spills occurred before the
year 2000. From the 1990s to 2020s, there have been 602 cases involving tankers of 7 tons
and over, resulting in 1,494,000 tons of oil spills. Most of the spills were due to collisions
and groundings. It should be noted that the numbers of spills involving tankers are in
a decreasing trend since the 1990s (358, 181, and 63 spills during the 1990s, 2000s and
2010s, respectively) [96].
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Figure 14. Major oil spills by tankers from 1967 to 2021. (Courtesy of ITOPF 2021 [96]).

One of the latest spills, among others, occurred when the anchored Hebei Spirit
oil tanker collided with a crane vessel off the east coast of Korea on the 7 December
2007 [97]. Figure 15 shows the ENVISAR-ASAR C-band image acquired four days after the
collision. In the figure, the dark areas around the tanker (white circle) correspond to the
spilled oil. The other dark areas in the top-left and those near the coasts are considered as
wind-sheltered areas. Similar dark images are observed, for example, by cold up-welling
water, biogenic slicks, rain cells, and algae. These images are called “look-alikes” and the
classification of oil spills and look-alikes is one of the main research subjects, as well as the
classification of different types of oil such as crude oil, plant oil, emulsion (mixture of oil
and water), and natural seep oil [98]. Note that the long white linear images are associated
with the interaction between the currents and bottom topography, as will be discussed later.

The main task of SAR is the detection of oil spills, classification of different types of oil
and look-alikes, evolution of slicks, and oil thickness.
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was acquired 4 days after the collision.

4.2. Imaging Process

To date, the images of spilled oil have been acquired both by optical sensors and
SAR [97], following the analyses based on the conventional intensity-based method,
e.g., [99–102], combinations of SAR and optical data [100,103], polarimetry [37–39,104,105],
and recent artificial intelligence [106–109].

The principal mechanism of oil slick detection using image intensity is through the
change of surface roughness. The surface tension of oil is greater than water, so that a film
of oil on the sea surface damps the small-scale Bragg waves. Then, the microwave incident
on such a smooth surface is mostly reflected away in the specular direction, while there
is sufficient backscatter from the surrounding rough clean surface. Thus, the images of
slick areas appear darker than the clean surface, as in Figure 15. The degree of reduction in
image intensity of mineral oil films is smaller (~3 dB) than that of biogenic films (~10 dB),
while those of crude oil and emulsion are similar (~8–9 dB) [98].

In general, high frequency SARs such as X- and C-bands yield higher image contrast,
since damping by oil slick increases with increasing Bragg wavenumber. Hence, the radar
backscatter of high microwave frequency from the clean sea surface is larger than that of
L/P-band microwaves, i.e., the difference in image intensity between oil-covered and clean
surface is larger, e.g., [110]. For the same reason of strong radar backscatter, VV-polarization
is suitable compared with HH-polarization in the incidence angles ranging from 30◦ to
60◦ [111]. Radar backscatter in HV/VH-polarization is due to multiple-bounce scattering,
while the backscatter from the sea surface is single-bounce surface scattering. Hence, the
radar backscatter from both the clean and oil surfaces is very small, i.e., very low image
contrast. However, the controlled oil release experiment using two airborne SARs including
the Uninhabited Aerial Vehicle SAR (UAVSAR) operated by NASA/JPL showed that the
HV-polarization was recommended because of high slick-sea contrast under a sufficiently
low system-noise floor [111].

Wind speed also affects the image contrast. Under little and no wind (≤2–3 m/s),
both the oil and calm sea surfaces become equally smooth, so that the images appear
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similarly dark (see the areas of little/no wind in Figures 1 and 15). Suitable wind speed is,
in general, between 2–3 m/s and 10–14 m/s, and for natural light oil and heavy crude oil, it
is ≤6–7 m/s and ≤10–14 m/s, respectively. Under very strong wind, the surfaces become
equally rough, yielding a negligible effect of the surface tension of oil slicks. Evaporation,
dispersion and dissolution of oil may also occur. Thus, the images of oil and clean sea
surfaces become equally bright.

4.3. Detection and Classification

Figure 16 is an example of oil spills and look-alikes detected by different SARs, show-
ing natural oil seeps, oil slicks from off-shore oil-rigs, low wind and up-welling look-alikes,
and oil spills illegally discharged by a ship transmitting automatic identification system
(AIS) signals at the same time. From these images, the detection and classification of the
different types of oil spills can made, and Figure 17 illustrates the general procedure.
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Figure 17. General procedure for oil slick detection system.

As in the figure, dark spot detection and segmentation are made after SAR data
calibration and land masking. Then, the image features and statistical characteristics such
as the probability density function (PDF) of image intensity are computed. Comparison
of these characteristics is made with those from the oil spill database, and the decision
is made whether the image is of oil slicks or look-alikes. In general, there are four main
approaches based on the procedure shown in Figure 17 to the detection and classification
of oil slicks as follows.
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4.3.1. Manual Approach

The first is the manual approach using intensity images by trained operators who
make decision with supporting information on ships with and without AIS, wind, current,
location of oil-rigs, coastlines, national territorial borders, and chlorophyll, etc. Since the
accuracy depends on the operators’ skill and available information, this method is not exact
science, and there exists an uncertainty associated with the results [112]. Nevertheless, this
method may be practical by incorporating with other approaches.

4.3.2. Semi-Automatic/Automatic Approach

The second approach is the semi-automatic/automatic method using single-polarization
intensity-based analyses. Classification of oil-covered areas from clean surface by image
classifiers such as histogram threshold, Bayesian classifier, and target detection algorithms,
such as CFAR (constant false alarm rate) and ATM (adaptive threshold method). The
classification of oil and look-alikes is based on the features such as slick shape, brightness,
surroundings and homogeneity. This method is often applied in practice since the basic
intensity data are used with simple detection algorithms. For example, Solberg, et al. [102]
used 59 RADARSAT and ENVISAT images to classify oil-spills over European waters.
The method is the same as that in Figure 17. ATM with a moving window was used
for dark spot detection. In the detection algorithm, the threshold value IT is defined as
IT = < I >—c, where < I > is the mean intensity within the window and c is the empirical
constant. Classification was made using the Bayesian classifier based on the probability
density functions of oil, look-alikes, and the comparison was made by aircraft data and
the manual detection by trained operators at the Oil Spill Detection Service of Kongsberg
Satellite Service (KSAT), Norway [113]. The performance in detecting verified oil slick
was 72% and 77% for the ENVISAT and RADARSAT data, respectively. Other operational
systems include GNOME (General NOAA Operational Modeling Environment [114,115]
and IMO (International Maritime Organization [116]), etc.

4.3.3. Polarimetric Analyses

The third approach is based on polarimetric analyses. Popular algorithms include span
(HH/VV/HV mean power), four-component scattering model, H/α classifier, where H is
entropy and α is alpha angle, and polarization power ratio [17–22]. The four-component
scattering model decomposes the scattering power into surface, double-bounce, volume
and helix scatterings using the covariance matrix of the HV-based scattering matrix. The
entropy is derived by the eigenvalue analysis of the coherency matrix, and describes the
randomness of the scattering process. It takes the values between 0 and 1. For example,
H = 0 means one eigenvalue, indicating only one scattering process, such as the surface
scattering from the sea surface, while H = 1 means three identical eigenvalues (in case of
HH/HV/VV data), indicating the randomness of the scattering process, such as system
noise. The alpha angle defines single-bounce (α = 0◦) and double-bounce (α = 90◦) scattering
processes. H/α classifier is often used for land-cover classification.

As an example, the multi-polarization features were reported using the quad-polarization
RADARSAT-2 C-band data with controlled oil spills (plant oil, crude oil, and emulsion)
and simulated look-alikes (monomolecular biogenic film) in the North Sea [37]. The cross-
polarization data were at the system-noise level, and not useful for the analyses. The mean
VV-polarization signals were above the system-noise floor, but the mean HH-polarization
levels lie close to and partly in the noise level. After comparisons of the in situ data
with different polarimetric features such as entropy and inter-polarization correlation, the
most useful parameters for discriminating oil and look-alikes were the geometric intensity
(determinant of the coherency matrix) and the co-polarization ratio <|SHH|2>/<|SVV|2>,
where SHH and SVV are the scattering matrix elements, i.e., image complex amplitudes of
the corresponding co-polarizations. The co-polarization ratio is also a simple parameter to
evaluate dielectric constants. It should be emphasized that radar backscatter from both the
oil-covered and clean surfaces is the single-bounce surface scattering, while the polarimetry
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is based on multiple-bounce scattering. Thus, these results, along with others [38,102,105],
are considered as not associated with the scattering process but rather with the dielectric
properties of oil, look-alikes and sea water, as indicated by the co-polarization ratio, and
the system-noise level relative to the scattering power [98,117]. Another problem arising
from the practical applications is that the polarimetric mode is not routinely operational.

4.3.4. Artificial Intelligence

The last and most recent approach is AI. This method can be applied to both the
single-polarization and polarimetric data. Algorithms include the early versions of su-
pervised classifiers such as SVM, standard/artificial NN, and wavelet neural network to
CNN [106–109]. The method is accurate, but requires a large amount of training data.

At this stage, a brief summary is given on the deep learning method, since AI is also
used for the waveheight measurement in Section 2.3, and IW detection in Section 3.2, as
well as the detection and classification of ships. For target detection, the deep learning
model usually detects target by bounding boxes, e.g., faster R-CNN, single-shot detection
(SSD) [24,75,118] and you only look once (YOLO) family [119–121]. For classification,
the model classifies pixels into different categories, called semantic segmentation (e.g.,
U-Net) [122]. The combination with detection and classification is called instance segmen-
tation (e.g., Mask R-CNN) [123]. As an application for SAR images, detection and/or
classification can be used for ships, oil spills, internal waves, sea ice, etc. The detection
can provide the number, size, and location of targets. Different types of targets can also be
detected by training with each supervised category. Meanwhile, the semantic segmentation
model can yield the area of targets, and it can grasp the occupied areas or concentrations of
the targets in SAR images.

The early version of deep learning consists of a single hidden layer and training
data such as the features of geometry and shape, features of mean intensity, standard
deviation of dark spots, and the ratios of those of clean sea surface, and texture, etc.
Singha, et al. [124], for example, used 183 oil spots and 720 look-alikes in 92 ERS-2 and
ENVISAT-ASAR images for training NN over European waters, and 226 oil spots and
4670 look-alikes in 82 ASAR and RADARSAT-2 images for the test data. All the data were
confirmed and recorded by the European Space Agency (ESA) and European Maritime
Safety Agency (EMSA). The results showed high classification accuracy of ~92% and ~98%
for oil slicks and look-alikes, respectively. Zhang, et al. [125] used the same RADARSAT-2
polarmetric data with a controlled oil spill experiment with the ground-truth data [37], and
compared the classification accuracy of NN, support vector machine (SVM) and maximum
likelihood classifier (MLC) methods. The features used include intensity, and polarimetric
parameters such as entropy, alpha angle, correlation coefficient, etc. The detection accuracy
of oil spills was above 95% by all classifiers.

CNN is mainly used for image analysis, consisting of multiple hidden NN layers of
convolutional, pooling and fully connected layers between the input and output layers,
as shown in Figure 18 [106,108]. The convolution layer can catch the characteristics of the
target. The process of convolution involves a filter checking if a feature is present. The
pooling layer also rolls a filter across the input image. It reduces the number of parameters
in the input. It means the increasing robustness of the model. By accumulating such
layers, the deep neural network is realized. The fully connected layer is the roll of image
classification based on the features extracted in the previous layers. Like this, CNN can
identify targets or features of an image. To obtain high performance, training requires
a large quantity of data, but too much training may result in over-fitting. Generally, the
model is set to avoid over-fitting and remains suitable for practical applications. Further
recent examples are illustrated as follows.
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A feature merge network (FMNet) model was developed to distinguish between
oil-spill areas and oil-spill-like areas [126]. 1002 images were used for training and
110 images for testing, with five classes (oil spills, look-alikes, land, ships, and sea ar-
eas). The initial SAR data were collected from the ESA database, the Copernicus Open
Access Hub, acquired through the Sentinel-1 European Satellite missions. The required
geographic coordinates and time of the confirmed oil spills were provided by the European
Maritime Safety Agency (EMSA) based on the CleanSeaNet service records, from
28 September 2015 to 31 October 2017. The overall accuracy reached 61.90% compared with
U-Net. The recognition accuracy of oil spill areas and oil-spill-like areas reached 56.33%.

A novel automatic detection of offshore oil slicks was developed using multi-modal
deep learning [127]. An expert photo-interpreter annotated Sentinel-1 SAR data over four
years and three areas, specifically, the Atlantic Ocean coast in Southern Africa (Nigeria
and Namibia), and the Mediterranean Sea in Western Asia (Lebanon). It utilized a refined
version of the FC-DenseNet model, a well-known extension of densely connected convolu-
tional networks (DenseNets). The proposed approach reached a detection performance of
up to 94%.

As an example of an application of polarimetric SAR, an improved deep learning
model named BO-DRNet was proposed [128]. In this model, target features could be
extracted more efficiently than the conventional model using ResNet-18 as the backbone in
encoder of DeepLabv3+ [129], and Bayesian optimization was used to optimize the hyper
parameters. In the study, the analyses were made with three sets of quad-polarimetric oil
spill SAR images acquired by RADARSAT-2 over the Gulf of Mexico, and 10 prominent
polarization features were extracted from these images. Then, 32,768 pixels of oil spills
and 32,768 non-oil spill pixels were trained and tested. The other models such as FCN-8s,
DeepLabv3 + Xception and DeepLabv3 + ResNet-18 were used for comparison. As a result,
BO-DRNet performed best with a mean accuracy of 74.69% compared to the other models.

As a last example, Faster R-CNN was applied for the detection of oil spills with
C-band Sentinel-1A/B (S1-A/B) and RADARSAT-2 (RS-2), over the Gulf of Mexico, the
Indian Ocean, and the East and South China Sea [130]. VV-polarization was used since it
has a better signal-to-noise ratio than other polarizations. A large data set, consisting of
15,774 labeled oil spills from 1786 C-band Sentinel-1 and RADARSAT-2, was used to train,
validate and test. The results showed a mean precision of 92% for the detection of oil spills
with wide swath SAR images.

4.4. Tracking and Prediction

After oil is released, evaporation, dispersion, and dissolution may occur, as well as
diffusion. The tracking and prediction of oil spill movement are important for prompt
measures of prevention and cleaning. There are several oil diffusion models, such as those
of GNOME by NOAA [114,115], IMO model [116], and ROMS [97,131]. The principle
of forecasting the oil slick movement is illustrated in Figure 19. After detecting oil slick
areas at time t1, the SAR image is gridded. Cells containing oil slicks are called virtual oil
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particles. Then, the empirical diffusion equation Voil = Vcurrent + Q•Vwind is applied to
predict the positions of oil particles at a later time (t2). In the equation, Voil, Vcurrent, and
Vwind are velocity vectors of oil, current and wind, respectively, and the wind-induced
current velocity is expressed in terms of the wind drift factor Q. The wind drift factor can
range from 0.01 to 0.06 [131–135], but in many cases, Q is fixed as 0.03 [116,136]. Information
such as the evaporation and emulation can be included if the data are available.
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Figure 20 shows the case of the oil prediction for the Hebei Spirit tanker accident [137].
The accident occurred at local time 07:15 on 7 December 2007 off the east coast of Korea [97].
After the accident, airborne sensors as well as spaceborne sensors acquired the data, in-
cluding the KOMPSAT-2 optical data (11:04/08), ENVISAT-ASAR (10:40/11), RADASAT-1
(18:31/11), TerraSAR-X (06:44/13), and ENVISAT-ASAR (10:45/14). First, the oil particles
were detected using the KOMPSAT-2 image, and the positions of oil particles were simu-
lated at the time of the next data acquisition by ENVISAT-ASAR. For the simulation, the
Environmental Fluid Dynamics Code (EFDC) and automatic weather system (AWS) were
used to generate the tidal and wind fields, respectively. The simulation was repeated for
different Q values in order to find the best match with the ENVISAT-ASAR oil particles.
Figure 20 illustrates an example for the simulation of the RADARSAT-1 oil particles from
the ENVISAT-ASAR, and the best fit was found with Q = 0.015, with a matching accuracy
of 60% to 86%. On average, the best Q value was 0.031. Thus, it seems that the fixed
Q value of 0.03 may be a good choice, but it depends on the wind speed as in the top-right
of Figure 20, as well as the current.
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Figure 20. (A,B) An example of the prediction of oil slick movement for the Hebei Spirit tanker oil spill
off the west coast of Korea shown in Figure 15. Oil particles are extracted from the ENVISAT-ASAR
image and simulated and compared with the oil particles in the RADARSAT-1 SAR image. The
top-right image shows the optimum wind drift factor in terms of wind speed [137].

The oil diffusion model can also be used to track back the unknown sources of oil
spills [138]. The sources can be identified if they are visible in SAR images, such as oil-rigs,
wrecked ships, natural oil seeps of characteristic shapes, and ships with AIS signals, as in
Figure 16. Note that the ships discharging waste oil illegally do not, in general, transmit
the AIS signals simultaneously. Matching of AIS signals with the AIS transmitting ships is
a subject of ship detection and identification [139].

5. Ocean Current

Ocean currents have a strong impact on the global climate through heat and nutrients
circulation as well as fishing activity. In SAR images, the current boundaries can be
visualized by the changes of intensity, such as the front in Figure 1. Apart from the
qualitative estimation of current boundaries, the measurements of current velocity are
made using the Doppler shift of return signals and ATI SAR. The complex SAR data can be
used for the velocity measurement of ocean currents through the Doppler centroid shift of
the azimuth spectra, as shown in Figure 21.
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Figure 21. Principle of current velocity measurements by the Doppler shift. Left: the center of the
azimuth return signal from a range moving scatterer is shifted. Right: The center of the spectrum
over the sea surface is shifted from that of the stationary surface.

As noted in Section 2.3 on breaking waves, the image of a scatterer moving with the
ground-range velocity vR is shifted in the azimuth direction by a distance ∆X =−(R0/V)(vR
sinθi), where R0 and V are the slant-range distance and platform velocity, respectively, as in
the left of Figure 21. Due to the same reason, the center of the Doppler spectrum, computed
by Fourier transform of the image complex amplitude of the sea surface, is shifted. The
shift is proportional to the range velocity of ocean currents, intrinsic velocity of the Bragg
waves, and the orbital velocity of waves if present; ocean wind also takes an important
role. This method has been used for the current measurements by several researchers
since 2005 [140–143].

The ocean current measurement by ATI SAR was first proposed in 1987 by Goldstein
and Zabker [144]. As mentioned in Sections 1 and 3.3, ATI SAR consists of two antennas
in the along-track direction on airborne or spaceborne SARs. The geometry is shown in
the top-left of Figure 22, where the two antennas are separated by the distance BA, and the
aft antenna is assumed for signal transmission and reception while the fore antenna is for
reception only. Since the time difference when the fore and aft antennas are directly above
the scatterer is BA/(2V), the difference of the slant-range distance is (vR sinθi)BA/(2V). The
complex interferogram is given by AFAA* = |AF||AA|exp (iδφ), where AF and AA are the
complex amplitude through the fore and aft antennas, respectively. The interferometric
phase is δφ = k (BA/V) vR sinθi, where k = 2π/λ is the wavenumber and λ is the wavelength.
The phase value is relative, and to compute the absolute phase, a stationary reference
point is required. Note that there is a phase ambiguity if δφ exceeds 2π. For a C-band
(λ = 0.057 m)) airborne ATI SAR with V = 200 m/s and BA = 0.6 m, the measurable velocity
without the phase ambiguity is 19 m/s. Figure 22 shows an example of the ocean current
measurement by ATI SAR across the Gulf Stream. The accuracy was found as ~0.1 m/s.
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Figure 22. From top left in clockwise direction: Geometry of ATI SAR, intensity image (8 km square)
of the Gulf Stream boundary off Virginia Beach, USA, produced by the JPL-AIRSAR, InSAR phase
image, and estimated current velocity. The survey vessel (arrowed) is used as a reference to compute
the absolute interferometric phase and the current velocity [145,146].

There have been several airborne ATI SAR, e.g., [147–149], and spaceborne systems
including ATI SAR by the space shuttle [150], the dual-channel RADARSAT-2 MODEX-1
(Moving Object Detection Experiment) mode (two signal receiving channels separated
in the along-track direction on a same antenna board) [151], and the dual-channel and
formation flight of TerraSAR-X and TanDEM-X [11–13,152]. These systems can measure
only the cross-track (range) component of the current velocity.

For current vector estimation, the dual-beam ATI SAR was reported by using a pair of
antennas, with one squinted forward and the other squinted backward [153]. The University
of Massachusetts developed an airborne ATI SAR consisting of four antennas with the two
forward-looking antennas and the other two backward-looking [154]. Wollstadt, et al. [14]
presented a Ku-band spaceborne ATI SAR scheme consisting of three antennas. The main
antenna at the center transmits forward- and backward-beams, and the two antennas
separated by 12 m receive the return signals. Ouchi, et al. [15] proposed a multi-aperture
ATI SAR (MA-ATI SAR) using the conventional ATI SAR data for the current vector
measurements with supporting simulation and airborne data [16,155]. In this MA-ATI SAR,
two-look processing is applied to the data acquired by the fore and aft antennas, yielding
the forward- and backward-looking complex image amplitudes, and the corresponding
velocity components are produced from the interferograms in each look direction. The
spaceborne ATI SAR for the current vector measurements is a subject of future study.

6. Bathymetry

The white linear images in the upper-left in Figure 15 are associated with the current
interaction with the topography of the sea floor [156]. The bottom topography is important
information for coastal navigation, offshore construction, aquaculture, and climate change
associated with the rising sea levels and current circulation [157]. While the bathymetry
measurements, in general, are carried out by survey vessels, the approach using SAR data
was first proposed in 1983 [158]; the principle is illustrated in Figure 23.
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Figure 23. Illustrating the dependence of the backscatter radar cross section (RCS) through the surface
roughness changes caused by varying surface currents.

As the current passes above the undulating bottom topography, the velocity of the
surface current varies depending on the depth. The relation between the current velocity
and the water depth can be described by the sand wave model given by Vcurrent = Constant/d.,
where d is the water depth. Due to the varying current velocity, the surface becomes rough
in the current converging areas, yielding large backscatter RCS compared with the smooth
surface of current converging areas. The surface roughness dependence on the converging
and diverging currents is the same as for the case of internal waves in Section 3.

There are three main approaches for the measurement of bottom topography with SAR
data. The first is based on the relation of the backscatter RCS and bottom topography. In
the second method, the relation of the water depth and current velocity directly estimated
by ATI SAR, and the third method uses the ocean wave images of wavelength and period
related to the water depth through the dispersion relation.

An example of the RCS-based method is illustrated in the left of Figure 24. The surface
current is first simulated from the initial water depth estimated by echo sounding. Then,
the action balance equation with the current and wind data used in Section 3.3 for internal
waves is applied to compute the waveheight spectrum. Given this simulated waveheight
spectrum, the RCS is computed using the Bragg scattering model for comparison with the
SAR image. This process is repeated for minimizing the difference between the simulated
and SAR images, yielding the optimum water depth. This is the basis of the bathymetry
in shallow waters by SAR that follows. The validation experiment of the operational
system bathymetry assessment system (BAS) by ERS-1 SAR over the Waddenzee in north-
ern Netherlands showed the root mean square error (RMSE) of 10–30 cm in comparison
with the echo sounding data in the depth 2–8 m [159]. The initial version of BAS was
one-dimensional, and a two-dimensional model was developed by BMT ARGOSS of the
Netherlands [160]. See also a comprehensive summary of BAS in [161].
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In the ATI SAR-based approach, the current is directly measured by ATI SAR [149,152].
Since this method does not rely on the scattering model, the accuracy is considered to
be higher than the RCS-based model. As in the right of Figure 24, the current velocity is
estimated first by ATI SAR, followed by the regression analysis of the relation of surface
current and water depth using multiple reference points. An example is illustrated in the
left of Figure 25, where (a) the ATI-derived current vector to the north of the German island
of Sylt, (b) water depth estimated by echo soundings, (c) 78 reference depths around the
edge of the image, and (d) resultant depth map by the ATI SAR-based method [152].
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Figure 25. Left: (a) The current velocity vector measured by the X-band ATI SAR to the north of the
German island of Sylt (3.5 km square). (b) Depth map from echo soundings. (c) 78 selected reference
depth points (white dots). (d) Depth map derived in combination of the reference depth and the
ATI-derived current field [152]. Right: TerraSAR-X StripMap scene over the island of Jersey in the
southern exit of the English Channel (left), and the estimated bathymetry from the dispersion relation
of ocean waves is shown at the points over the bathymetry data by the European Marine Observation
Data Network [162,163].

The third approach is based on the dispersion relation of ocean waves and water depth
given by

Ω2 = (gK + γK3) tanh (Kd) (1)

where Ω = 2πT0 is the angular frequency of ocean waves, T0 is the wave period,
g = (9.81 m/s2) is the gravitational acceleration, γ (~0.735 × 10−4 m3/s2) is the surface
tension/water density, K = 2π/L is the wavenumber, and L is the wavelength. The wave-
length can be measured from the SAR images, and the water depth d can be estimated if
the wave period T0 is known. The wave period can be approximated as T0 = (2πL/g)1/2

under the condition L >> d, or depth data at reference points. There have been several
reports on bathymetry measurements using ocean wave patterns [162,164–166], and an
example is shown in the right two figures in Figure 25. The image was acquired by the
TerraSAR-X StripMap mode over the island of Jersey in the southern exit of the English
Channel (left), and the estimated bathymetry from the dispersion relation of ocean waves
is shown at the points over the bathymetry data by the European Marine Observation Data
Network (right) [162,163]. The RMSE is 7.1 m for this case, and the error increases towards
deeper waters with longer wavelengths. Similar results based on the wave-based approach
were reported using the Sentinel-1A C-band SAR off the Portuguese west coast, showing
the relative error of the water depth ranging between 6% and 10%, but increasing with
increasing water depth [166].

The effect of bottom topography to the surface currents is limited to the waters of
depth less than 3–40 m. The depth of shallow waters in the English Channel shown in
Figure 1 is 3 m to 33 m according to the sea chart [167].
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7. Ship Detection and Classification
7.1. Background

The first study on ship detection by spaceborne SAR was reported after the launch
of the SEASAT satellite in 1978 [168]. Since then, considerable effort has been made for its
importance in maritime affairs, including ship navigation support, monitoring of fishing
activity, detection of distressed ships, illegally operating ships such as pirates, smuggling
and oil dumping, and also others associated with maritime domain awareness (MDA) [169].

There are several systems for the current ship navigation support, including AIS,
Vessel Monitoring System (VMS), Long-Range Identification and Tracking (LRIT) and
Vessel Traffic Service (VTS). AIS is mandatory for all passenger ships and ships over
300 tonnages to exchange information among cruising ships and ground-based monitoring
stations on the identification codes, positions, courses, etc., directly or through satellite
communication. Kongsburg (Norway), for example, operates 3 AISSat, the nano-satellites,
sized 20 × 20 × 20 cm, mainly over European waters [170], and the exactEarth (Cambridge,
ON, Canada) operating 18 AIS satellites covering the entire globe [171]. VMS is required
for all fishing boats longer than 15 m in the European Union for monitoring the ships’
information as well as the amount of catch through such communication satellites as
Immarsat, ORBICOM and Iridium. LRIT monitors passenger ships, cargos, and mining
ships through satellite VHF-band communication, and VTS is the system for ship traffic in
and out of bays and ports through control radars, CCTV and wireless phones. As noted
above, the problem is the ships that are not equipped with these systems and those not
transmitting AIS and VMS signals. Thus, airborne and spaceborne SARs of all-weather and
day-and-night data acquisition capability are important for ship monitoring.

7.2. Ship Detection

Figure 26 illustrates the microwave incident and backscatter from a ship on the wa-
ter. The backscatter from the sea surface is due to the single-bounce surface scattering
(apart from white caps from breaking waves), while there are several different scattering
processes from the ship’s structure, including surface, double-bounce, volume and helix
scatterings. Among these scattering processes, double-bounce and volume scattering are
dominant for those from ships, and thus the return signal power at cross-polarization
is large compared with that of surface scattering from the sea surface. The scattering
power from the sea surface is also smallest at cross-polarization in comparison with co-
polarization (HV < HH < VV). The suitable polarization for ship detection is therefore
cross-polarization. Figure 27 shows the ALOS-PALSAR PLR image of Tokyo Bay, Japan.
The contrast of ships’ images in white dots is clearly much higher in HV-polarization than
co-polarization images.
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Figure 26. Illustration of the microwave backscatter from the sea surface and a ship. While
the backscatter from the sea surface is dominated by the single-bounce surface scattering, the
backscattering from the ship is due to the double-bounce, volume and helix scattering as well as
surface scattering.
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Figure 27. ALOS-PALSAR PLR images of Tokyo Bay, Japan, showing HH-, HV- and VV-polarizations
from left to right. The image size is approximately 44 km and 28 km in the azimuth and range
directions, respectively. The white rectangular box indicates the test site for detection of aquaculture.

For ship detection, many algorithms have been developed to date, e.g., [172–174]. Some
known algorithms include constant false alarm rate (CFAR) of different versions [175–181],
adaptive threshold method (ATM) [182,183], wavelet transform [184,185], multi/sub-look-
based methods [186–191], polarimetric analysis [30–32], standard deviation filter (SDF) [192]
and AI-based methods [41–45,118–121,193].

7.2.1. Constant False Alarm Rate (CFAR)

The principle of CFAR is illustrated in Figure 28. For detecting bright spots against the
background noise, thresholding of image amplitude/intensity is applied using a moving
window. In general, the background image amplitude often varies from an area to areas. If
the threshold value is set as constant, the false alarm rate varies depending on the areas. In
order to achieve a constant false alarm, a moving window is divided into a signal test cell,
buffer window and background reference window. The size of the test cell is a single cell or
larger, and decides whether the target is within the cell. The buffer window is not used,
and should be larger than the expected size of ships. This prevents a part of the target being
in the reference cell. The background reference window is used to compute the statistical
distribution within the window.

In the cell-averaging linear-CFAR, for example, the clutter (noise) model that fits
best to the data is assumed or sought by, for example, the Akaike information criteria
(AIC) [194,195]. Then, the mean value within the reference window is calculated, and the
pixel value in the test cell is divided by the mean, yielding the output that is independent
of the parameters of the clutter. By setting a threshold for the required false alarm rate, the
target can be detected with a constant false alarm rate.
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Figure 28. Illustrating the principle of CFAR for ship detection.

Consider the clutter with Rayleigh distribution with the probability density function (PDF)

p(z) = (2 z/σz
2) exp(−z2/σz

2) (2)

where z and σz are the image amplitude and standard deviation, respectively. The mean
<z> of the pixels in the reference cell is given by integrating z p(z) over zero to infinity,
which is <z> = π1/2σz/2. Using the parameter z’ = z/< z > = 2 z/(π1/2 σz), and from the
relation, p(z)dz = p(z’)dz’, the PDF is given by

p(z’) = (πz’/2) exp(−πz’2/4). (3)

which is independent from the clutter parameter σz. For the threshold value zT, CFAR pfar

is given by integrating p(z’)dz’ over zT to infinity, that is, exp(−πzT
2/4).

Note that with increasing SAR resolution, the images of the sea surface contain sta-
tistically non-uniform textures such as those of white caps in high sea states. Then, the
distribution of clutter tends to follow a non-Rayleigh distribution, such as the log-normal,
Weibull, and K-distributions. Currently, the algorithms based on non-Rayleigh CFAR
are used in most ship detection applications. Different versions of CFAR have also been
developed, including GO/SO (greatest/smallest of)-CFAR, exclusion-CFAR, OS (order
statistic)-CFAR, super pixel-CFAR, and others [175–181].

7.2.2. Adaptive Threshold Method (ATM) [182,183]

ATM uses the same moving window as for CFAR, but does not require the PDF of the
clutter noise. The threshold z is computed according to the equation, zT = <z> + c · σz or
zT = c (<z> + σz), where z can be amplitude or intensity in the reference window, and c is
a constant. The empirical constant c depends on the data, and c = 2–3 are generally used.
ATM is simple and easy to apply but the false alarm rate is not constant.

7.2.3. Wavelet Transform [184,185]

Among several different discrete WTs, the simple Harr wavelet is used for ship
detection. As illustrated in the left of Figure 29, the principle is the addition and subtraction
of neighboring pixels. The image after Harr transform consists of the mean value over
2 × 2 pixels in the original image, the mean values of difference between neighboring pixels
in the horizontal, vertical, and diagonal directions. These four sets of values are added to
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form a single output image of half the original image size. Thus, the process is similar to
the edge detection in three directions. While the ATM is a single pixel-based method, WT
is based on the average of 2 × 2 pixels, so that the target ship size is larger than that of the
ATM. The right image in Figure 29 shows the COSMO-SkyMed X-band HH-polarization
SpotLight image of Tokyo Bay, Japan. Most of the ships were detected and identified by
AIS and visual observation by the National Defense Academy (NDA). Small spots detected
in the upper end were not confirmed either by AIS or visual observation.
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Figure 29. Left: Illustration of the principle of ship detection by the wavelet transform. Right: Detected
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7.2.4. Multi/Sub-Look-Based Methods [186–190]

The principle of multi/sub-look processing is described in Section 2.1 and Figure 5.
For ship detection from the multi-look images, a small moving window is used in both
the look-1 and look-2 sub-images (for the two-look example), and the cross-correlation
coefficient is computed. As shown in Figure 5, the background clutter is uncorrelated
between looks (it is a purpose of multi-look processing), but the images of ships have
some correlation, provided that the images are within the moving window. Then, the ships
can be detected in the coherence image, i.e., the image of correlation coefficient as high
coherence against low coherence of the background clutter. The advantage of this method
is that ships not clearly visible in SAR images can be detected. The disadvantage is that
the detection may fail if a cruising ship is outside the window in the look-2 sub-image due
to the inter-look time difference over which the ship moves. This method, however, is the
basis of estimating the direction and cruising speed of moving ships as will be discussed
later. Further, based on the principle of sub-look, the generalized likelihood ratio test
(GLRT) [190,191] was developed for ship detection.

7.2.5. Polarimetric Analyses [30–32]

As mentioned in Section 7.2, HV-polarization is suitable for ship detection in com-
parison with co-polarization. Further, the approach using fully polarimetric and dual-
polarization data has been proposed. In the model-based four-component scattering power
decomposition, the total scattering power is decomposed into the surface, double-bounce,
volume and helix scattering components. Note that the helix scattering process is the
process by which the linearly polarized incident wave becomes a circularly polarized
wave upon reflection by, for example, crossed wires. Considering the scattering processes
from the sea surface and ships, the polarimetric power decomposition is suitable for ship
detection. Figure 30 shows the color composite representation of the ALOS-PALSAR PLR
data. The sea surface appears in blue, indicating the surface scattering, while the land areas
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appear mainly in green, indicating the volume scattering from forests. The urban areas
of structure aligned orthogonal to the range direction appear as double-bounce scatter-
ing as shown in red. Ships also appears in red and green due to the double-bounce and
volume scatterings.
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Figure 30. Color composite representation of the ALOS-PALSAR PLR images shown in Figure 27.

For the HH/VV dual-polarization SAR without HV-polarization, several approaches
are possible, including the co-polarization entropy, correlation, and phase difference. The
entropy is defined from the eigenvalue analysis as H = −p1 log2 p1 − p2 log2 p2, where
pj is the probability for which the jth scattering process occurs. Thus, H = 0 means that
there is only a single (surface) scattering process corresponding to the sea surface, while
H = 1 means the backscattering of mixed (random) scattering processes from ships. The
correlation coefficient is

γ = |<SHH S*VV>|/(<|SHH|2><|SVV|2>)1/2. (4)

where SHH and SVV are the complex scattering amplitudes of corresponding polarizations.
For the surface scattering, the inter-correlation increases as γ→1, and γ→0 for decreasing
correlation due to multiple scattering from ships. The phase difference is δφ = φVV − φHH,
where δφ→ 0 for the surface scattering, and δφ→±π for the multiple scattering.

Figure 31 shows the TerraSAR-X dual-polarization SpotLight SAR image (HH-
polarization) of Tokyo Bay, Japan (20 September 2012). The simultaneous observation
was made by AIS and visual observation with a video camera. The entropy, inverse coher-
ence (1− γ), and phase difference show much higher image contrast of ships in comparison
with the intensity images. Although the number of test images is not large, the peak-to-
background-image ratio was 0.83 for the entropy and 0.95 for the correlation, while those of
the co-polarizations were 0.67. Although the number of samples is small, the results show
the effectiveness of the entropy and inter-correlation methods.
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Figure 31. Left: TerraSAR-X HH-polarization SpotLight SAR image of Tokyo Bay, Japan, showing
the detected and identified ships. Right: HH/VV-polarization images of the test area (upper) and the
detection results (lower).

7.2.6. Standard Deviation Filter (SDF) [192]

In the SDF method, the standard deviation and mean are calculated in a moving
window of a size large enough for statistical calculation. If a target is within the window,
the standard deviation is larger than that of the window containing only clutter. In order to
equalize the varying image amplitude along the range (decreasing amplitude with range),
the standard deviation can be subtracted by the mean within the moving window. This
approach requires the statistical computation in a large window, and the target size is larger
than that of the pixel-based method such as the ATM.

7.2.7. AI-Based Method

In the recent years, many methods of ship detection using deep learning have been
reported. For example, an automatic detection model was proposed based on the RetinaNet
object detector with 86 scenes of Chinese Gaofen-3 SAR images at four resolutions (3 m,
5 m, 8 m, and 10 m) [45]. Two Gaofen-3 images and one Constellation of Small Satellite
for Mediterranean Basin Observation (Cosmo-SkyMed) image were used to evaluate the
robustness. The result showed the model can detect multi-scale ships efficiently with a
high detection accuracy, with a mean detection precision over 96%.

A detection model utilizing the YOLO family was developed using two types of
datasets: the SAR ship-detection dataset (SSDD) and diversified SAR ship-detection dataset
(DSSDD) for training and testing [119]. The SSDD dataset is the first open dataset and a
benchmark containing 1160 images and 2456 ships acquired by RADARSAT-2, TerraSAR-
X and Sentinel-1 in various environments. The DSSDD is directly collected from these
spaceborne SARs, with more diversity in ships and SAR resolutions. In the study, 50 SAR
images with resolutions from 1 m to 5 m from the two datasets were used. The proposed
YOLOv2 architecture reached an accuracy of 90.05% and 89.13% on the SSDD and DSSDD
datasets, respectively.

Using the same SSDD dataset, a ship detection algorithm based on YOLO-v4-light
was developed, showing a mean precision of 90.37% [120]. Further, a new improvement on
the YOLOv3 based on SAR and optical images was proposed [121]. The SAR data were
collected from the Gaofen-3 and Sentinel-1 SARs at four resolutions, and the optical data
were extracted from SPOT imagery. By comparison with other models in the YOLOv3
family, the improved-YOLOv3 model showed the better average precision on both the
optical (93.56%) and SAR (95.52%) datasets.
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7.3. Ship Classification

As noted earlier, the information on cruising ships can be identified via AIS signals.
Figure 32 shows the ALOS-2 PALSAR HH-polarization image (4 December 2016) showing
the ships detected by the ATM with c = 2.5, and identified with AIS in the northern waters
of Taiwan [196]. As can be seen, the vast number of ships were without AIS signal. It is thus,
necessary to classify these ships from SAR data alone. The progress of ship classification
was slow compared with the ship detection mainly due to the spatial resolution not being
fine enough, and also a small number of SAR images of the same ship for classification.
In recent years, however, many spaceborne SARs have been launched and a number of
airborne SARs have also been increased. Correspondingly, several new methods have been
proposed for ship classification [197–204].
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Figure 32. ALOS-2 PALSAR HH-polarization image (4 December 2016) showing the ships detected
by the ATM with c =2.5 and identified with AIS in the northern waters of Taiwan [196].

The flow of ship classification is illustrated in the left of Figure 33. From the input
image, the geometrical and radiometric features such as the shape, size, and intensity in
different parts are extracted. With these features, classification is made using the algorithms
including feature-based template matching, pattern matching, multi-channel analyses and
machine learning.
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The feature-based template matching using the parametric vectors was developed by
several institutes, for example, the GMV Spain [197,198], the National University of Defense
Technology, China [199], and Lockheed Martin Canada (LMC) [200]. The flowchart on the
right of Figure 33 shows the system developed by the GMV Spain. Ship candidates are first
detected using the WT, and matching with AIS data is carried out. The parametric vector is
then extracted from the images of ships without AIS and those not matched with AIS. The
parametric vector consists of the image length LShip, width WShip, and the intensities σB,
σM, and σS in the bow, middle, and stern sections, respectively. The reference parametric
vector is computed prior to the comparison using the simulated or real SAR images of
different ship categories. Finally, the classification is made by comparison of the extracted
and simulated parametric vectors using fuzzy logic. The accuracy was tested using the
TerraSAR-X image of Tokyo Bay shown in Figure 31 and the Mediterranean Sea, acquired
on 4 December 2012 [201]. Unfortunately, only three ships were visible in the latter image
because of very strong wind. A part of the results is shown in Figure 34. For the reference
images, ships of seven classes were simulated: passenger, tanker, cargo/bulk container,
vehicle carrier, medium cargo, and medium and small fishing boats. Although the number
of ships was 18, the classification accuracy was 88%. These results were slightly better than
the previous results with an accuracy of ~70% using ENVISAT-ASAR data, mainly because
of the higher resolution (3 m) than that of the ASAR (30 m) [198].
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The method of pattern matching needs a large number of simulated or real SAR images
of a ship from different look angles and incidence angles. There have been studies on
the classification of military vehicles by real aperture radars, but no study, to the authors’
knowledge, has been reported on the pattern matching with SAR images. The multi-channel
analyses are those using polarimetric and InSAR images for template matching.

AI has recently been applied to ship classification as well as various other fields. For
example, a deep learning network was developed for ship classification and characteri-
zation using Sentinel-1 images and matched AIS data [202]. The model was a multi-task
neural network for three specific tasks, namely, ship detection, classification and ship length
estimation. For classification, a four-class database (tanker, cargo, fishing, passenger) was
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used for comparison with other approaches, i.e., a simple mult-layer perceptron (MLP) and
R-CNN, and a five-class database (four classes and tug boat) was used for the accuracy
estimation by the proposed model. The networks were trained using 16,000 images and
4000 different images for validation. The results showed that the overall classification
accuracy by MLP was 25%, with a length estimation mean error of −7.5 m ± 228 m.
R-CNN performed rather well, with the overall classification accuracy of 89.29%, while, the
overall classification accuracy of 97% and the mean length error of 4.65 m ± 8.55 m was
achieved by the proposed model. As to the ship size estimation, a deep learning model
named SSENet was developed, employing a single shot multibox detector-based model
with a rotatable bounding box. The training and testing dataset were 1500 and 390 ships.
The result showed the mean absolute errors are under 0.8 pixels; in other words, the length
and width are 7.88 and 2.23 m, respectively.

As an application of semantic segmentation, the Gaofen-3 (GF-3) data were used to
classify eight types of targets (boat, cargo ship, container ship, tanker ship, cage, iron tower,
platform, and windmill) [203]. For classification at a patch level, a novel CNN model
with six convolutional layers was designed, and a single shot multi-box detector with a
multi-resolution input (MR-SSD) was developed for detection. A total of 111 GF-3 fully-
polarimetric SAR images were selected over the offshore areas of Eastern Asia, Western Asia,
Western Europe, and Northern Africa from December 2016 to May 2018. The resolution
was from 0.5 m to 5 m, and 2522 training data were used with 688 test data. The proposed
method showed good category classification results except for platforms, with the mean
accuracy achieving 95%.

Similar results using CNN were reported for ship detection and classification with
TerraSAR-X StripMap high-resolution (~3 m) images at different incidence angles (ranging
from 20◦ to 45◦) and in different polarizations (73% for HH, 27% for VV) [204]. The category
was composed of five maritime classes of cargo, tanker, windmill, platform, and harbor
structure. A total of 683 target data were extracted (68% of ships, 32% of other struc-
tures), and the proposed model showed a classification performance with a total average
F-score of 0.94.

8. Wind

There are several approaches to the wind measurements using SAR. The scatterometer-
based approach is based on the relation between the NRCS and the empirical geophys-
ical model function (GMF), known as the CMOD4, first developed for the C-band VV-
polarization microwave wind scatterometer onboard the ERS-1 satellite of ESA [205]. Since
then, different versions in the CMOD family have been developed at different frequencies,
ranging from Ku-band to L-band [206–208]. The backscatter RCS from the sea surface
depends on the incidence angle θi, wind speed, and direction relative to the azimuth look
angle. The GMF takes a general form:

σ0
PP= B0 (U10, θi)[1 + B1(U10, θi) cosφ + B2 (U10, θi) cos(2φ)]c (5)

where σ0
PP is the NRCS in PP-polarization, Bj (j = 0, 1, 2) coefficients are empirically

determined by matching the scatterometer data with reference wind, the U10 is the wind
speed at 10 m above the sea surface, c is a constant, and φ is the wind azimuth angle, which
should not be confused with the polarimetric phase. The reference winds can be measured
by buoy or the numerical weather prediction (NWP) model.

Figure 35 shows an example of a GMF. The scatterometer measures NRCS at different
wind azimuth angles with multiple antennas or by scanning with a rotating antenna. For
example, the Ku-band NSCAT onboard the Advanced Earth Observation Satellite (ADEOS)
used six fan beam antennas, and the SeaWinds scatterometer onboard QuikSCAT uses
a rotating antenna [209]. The recent C-band ASCAT on the meteorological operational
(MetOp) platform also uses six antennas [207]. The wind speed and direction can then
be measured by fitting the NRCS at different azimuth angles with the GMF. The spatial
resolution of scatterometers is over 12 km, and thus it is difficult to measure the wind
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vector near coastal waters. The wind measurements using fine-resolution SAR can fill the
gap in the wind scatterometer data.
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wind speeds.

Unlike scatterometers that use multiple beams at different azimuth look angles, only
the line-of-sight (range) velocity component can be measured by SAR with a single beam.
In general, wind directions are estimated by combining other sources such as the image
spectra and wind streaks in SAR images [208,210,211].

The CMOD GMF was developed with VV-polarization data. To convert GMF from
VV-polarization to HH-polarization GMF, the co-polarization ratio model

σ0
HH/σ0

VV = (1 + a tan2θi)
2/(1 + b tan2θi)

2 (6)

was proposed, where a and b are the empirical constant depending on the scattering
models and incidence angles [208,210,212]. Note that an empirical model for the wind
speed measurements by the C-band cross-polarization data, σ0

VH = 0.592 U10 − 35.6, was
also developed [213].

Figure 36 shows an example of the wind direction estimation using the image
spectra [210]. The right image shows the ERS-1 C-band VV-polarization SAR image off
the northwest coast of the Shetland Islands (1 December 1992). The solid lines show the
wind direction estimated by the method of the image spectrum showing in the right image.
In the right image, the wavelength of ocean waves can be estimated by the two spectral
peaks, indicating the 180◦ directional ambiguity. The weighted cross-spectra described
in Section 2.2 can resolve this ambiguity. Nevertheless, the ellipsoid shows the spectral
distribution of the wind streaks in the direction orthogonal to the ellipsoid. Again, there
is a 180◦ directional ambiguity, but it can be resolved if there is shadowing over the wind
field by, for example, the coastal topography [210].
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shows the direction orthogonal to the wind streaks [210].

With increasing interest in AI applications, neural network methods were used to
retrieve sea surface wind speed from HH-polarized Sentinel-1 SAR images [214]. The polar-
ization ratio models combined with the CMOD5.N were applied. A total of 130 Sentinel-1
data sets in EW and IW modes were collected from October 2014 to December 2018. The
buoy data were also matched-up with the SAR data. Compared to the buoy data, the bias
and root mean square error of the wind speed retrieved by the neural network model were
0.10 m/s and 1.38 m/s, respectively.

Another approach was proposed based on the cutoff wavelength of ocean wave
images [215,216]. It was noted in Figure 7 that the resolution in the azimuth direction
is degraded and the PDSF is smeared due to the random motion of scatterers (Bragg
waves). The images of ocean waves under different wind speeds results in different
amount of smearing. Consequently, there is an upper limit of measurable wavelength
called the cut-off wavelength λc or cut-off wavenumber kc =2π/λc. The empirical relation,
λc = 23.4 U10 + 70.0 [m], was proposed using the relation of the azimuth cut-off wavelength
and wind speed [215]. This method was tested using the ERS-2 SAR wave mode data and
compared with the collocated scatterometer SCAT data. Although the correlation between
the measured image smearing and the SCAT data was reasonable, the method does not
seem to be comparable with the CMOD algorithms [216].

It should be emphasized that the ocean wind field measurements by SAR are of current
practical interest and also for near operational use such as the Italian Space Agency-funded
APPLICAVEMARS project [217].

9. Other Oceanic Phenomena
9.1. Aquaculture

With the rapid increase in aquaculture during the last several decades, monitoring of
coastal aquaculture of various species and fisheries is an important issue for management,
conservation, development and restoration purposes [218]. An early observation of fishing
activity by SAR was reported in 1992 during the Halieutis Radar Experimentation Mediter-
ranean Sea (HAREM) conducted in 1989, employing the C-band VV-polarization E-SAR
by the German Aerospace Agency (DLR) [219]. The data revealed the purse seine fishing
activity, floats and nets above the sea surface as bright features. The previous experiment
with the French VARAN-S X-band SAR also showed oyster tables, fish traps and nets above
the sea surface [219].
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Figure 37 shows the RADARSAT-1 SAR images of large fish cargoes on the left and
fish traps on the right. Again, these structures are above the sea surface, giving rise to
strong radar backscatter through the double-bounce scattering between the sea surface and
the cargoes and fish traps. The detection of such bright images against the dark background
can be made in a similar manner with target detection, such as ship detection.
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features against dark background of the sea surface (4 February 2001) [220].

As a practical application, continental-scale mapping was carried out to detect the
pond aquaculture for the entire coastal zone of Asia using 25,000 Sentinel-1 SAR time-series
images and Sentinel-2 multispectral images [221]. Note that pond aquaculture here is the
farming of fish, shrimp, etc. for food in a controlled environment, such as enclosed and
semi-enclosed nets. A histogram-based thresholding method was used for the automatic
detection and extraction of aquaculture areas on a single-pond basis. Over 3.4 million
ponds in an area of over 2 million hectare were detected and mapped along the shoreline of
South Asia, Southeast and East Asia. A similar study on a local basis using 113 Sentinel-1
SAR scenes and 328 Sentinel-2 MSI scenes was reported to monitor the aquaculture in
Palawan, the Philippines from 2016 to 2019, where significant change of aquaculture spatial
distribution was observed [222].

Methods based on deep learning have recently been applied to the extraction of
aquaculture areas [223–225]. The principal approach is essentially the same as that of
oil slick and ship detection, using a substantial amount of data for training, followed by
applying the test data for the algorithm evaluation.

The above-mentioned methods are for the detection and classification of marine
cultivation targets above the sea surface. A study was conducted to detect underwater
cultivation fields using polarimetric analyses [33,226]. Figure 38 shows a part of the ALOPS-
PALSAR PLR images around the Futtsu peninsula on the right (white rectangular box in
Figure 27); from left to right, the HH-polarization amplitude image, entropy image, and
a photograph of the test site are shown. Laver (Porphyra) is edible algae rich in protein,
dietary fiber, vitamins, and a source of mineral extract for the food and medical industries.
Laver cultivation is an important marine industry in Asia, along with oyster and fish
farming. After seeding, the cultivation nets are placed at the depth of 10–20 cm. As in
the figure, the image contrast of the surface above the cultivation nets is low (0.25, 0.12,
and 0.38 for HH, HV, and VV, respectively) in comparison with the contrast of the entropy
image (0.56). The in situ observation in the right image shows that the surface above the
underwater nets is smooth compared with the surrounding deep water, i.e., the area is
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effectively shallow water. As a result, the backscattered signal is within the random system
noise level, yielding high entropy, similar to the polarimetric analysis of oil spills [98,117].

Remote Sens. 2023, 15, x FOR PEER REVIEW 38 of 48 
 

 

 
Figure 38. Left: ALOS–PALSARHH-polarization image of the laver cultivation area in Tokyo Bay, 
Japan. Center: Entropy image. Right: Photograph of the test site. 

At present, the methodology of detection and extraction of aquaculture is fairly well 
established and these algorithms are applied to routine observation in the local, regional 
and global scales, as for those reported in the examples described above [221,222]. 

9.2. Sea Ice 
Approximately 15 percent of the global oceans are covered by sea ice during part of 

the year, in particular, in the polar regions. With increasing global warming, the spatial 
and temporal changes of sea ice are an indication of the changes in global climate [227]. 
There are more than a dozen operational ice monitoring services to support climate 
change studies, and ship navigation in ice–covered waters in near–real time. In addition 
to measurements taken in situ and by airborne sensors, spaceborne SAR and optical data 
are widely used. 

The imaging process of sea ice by SAR is illustrated in Figure 39. The single–bounce 
surface scattering is dominant from the open water. The backscattering increases from 
newly–borne ice, and further increases from the rough first–year ice, containing much salt. 
The double–bounce scattering also occurs between the ice ridge and water surface. Multi–
year ice contains less salt and the surface becomes smoother than the first–year ice. The 
radar backscatter is due mainly to the surface scattering and double–bounce scattering at 
the ice ridges as well as volume scattering from the ice interior. The volume scattering 
increased with increasing radar wavelengths, i.e., L/P–band. 

 
Figure 39. Illustrating the radar backscatter on sea ice and open water [5]. 

Figure 40 shows the total power and composite color images of the Beaufort Sea ac-
quired by the NASA/JPL airborne AIRSAR (11 February 1988), where dependence of sea 
ice images on different frequency bands can be seen [34]. Since then, there have been many 
studies reported for sea ice detection and classification on different frequencies and po-
larizations over several waters, e.g., [228,229]. As a result, the C–band HH–polarization 

Figure 38. Left: ALOS-PALSARHH-polarization image of the laver cultivation area in Tokyo Bay,
Japan. Center: Entropy image. Right: Photograph of the test site.

At present, the methodology of detection and extraction of aquaculture is fairly well
established and these algorithms are applied to routine observation in the local, regional
and global scales, as for those reported in the examples described above [221,222].

9.2. Sea Ice

Approximately 15 percent of the global oceans are covered by sea ice during part of
the year, in particular, in the polar regions. With increasing global warming, the spatial and
temporal changes of sea ice are an indication of the changes in global climate [227]. There
are more than a dozen operational ice monitoring services to support climate change studies,
and ship navigation in ice-covered waters in near-real time. In addition to measurements
taken in situ and by airborne sensors, spaceborne SAR and optical data are widely used.

The imaging process of sea ice by SAR is illustrated in Figure 39. The single-bounce
surface scattering is dominant from the open water. The backscattering increases from
newly-borne ice, and further increases from the rough first-year ice, containing much
salt. The double-bounce scattering also occurs between the ice ridge and water surface.
Multi-year ice contains less salt and the surface becomes smoother than the first-year ice.
The radar backscatter is due mainly to the surface scattering and double-bounce scattering
at the ice ridges as well as volume scattering from the ice interior. The volume scattering
increased with increasing radar wavelengths, i.e., L/P-band.
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Figure 39. Illustrating the radar backscatter on sea ice and open water [5].

Figure 40 shows the total power and composite color images of the Beaufort Sea
acquired by the NASA/JPL airborne AIRSAR (11 February 1988), where dependence of
sea ice images on different frequency bands can be seen [34]. Since then, there have been
many studies reported for sea ice detection and classification on different frequencies and
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polarizations over several waters, e.g., [228,229]. As a result, the C-band HH-polarization
SAR is considered to be suitable in comparison with the other frequencies and polarizations
if only a single polarization is used. If data are available, polarimetric analyses are better
for sea ice discrimination [228], and also the floe size distribution and temporal changes by
both optical and SAR data [230].
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As for the other oceanic phenomena, AI has been applied to sea ice classification in
recent years [231–233]. The classification of the sea ice type was reported using the 18
C-band SAR GF-3 quad-polarization StripMap data over the Arctic Ocean in 2017 [231].
Floe ice, brash ice between floes, and open water (ice-free area) were classified based on
a mini sea ice residual convolutional network called as MSI-ResNet. The combination
of VV and VH-polarizations resulted in a modest precision improvement for brash ice
and open water together with a slight overestimation for floe ice. With the VV, VH and
HH-polarization data as the inputs, the accuracy reached 95.12%, 93.42%, and 95.17% for
floe ice, brash ice and open water, respectively.

The Gaofen-3 satellite in the dual-polarization (VV, VH) fine strip II (FSII) mode in
the Arctic area in winter was also used for sea ice classification [232]. The western Arctic
Ocean from January to February 2020 was selected. The classification was made for the sea
ice into four categories, namely new ice, thin first-year ice, thick first-year ice, and old ice,
by referring to the ice maps provided by the Canadian Ice Service (CIS). The deep learning
model called Multiscale MobileNetV3 was developed based on MobileNet (MSMN) as
the backbone network with input samples of different sizes, and combining the backbone
network with multiscale feature fusion methods. As a result of testing with SAR sea ice
images, the classification accuracy reached over 95%.

A study was conducted for the automatic estimation of sea ice concentration by the
fully convolutional network using the Sentinel-1 dual-polarized C-band SAR images [233].
A database was generated with 1320 dual-polarized S-1scenes with ice charts produced by
MET Norway. A comparative benchmark was carried out with Ocean and Sea Ice Satellite
Application Facility (OSISAF) and MET Norway sea ice concentration products. The result
showed an overall accuracy of 78.2% for six-class classification.
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10. Conclusions

A summary was presented on the SAR imagery of oceanic phenomena. Since the
first civilian spaceborne SEASAT-SAR for ocean applications as the main purpose, many
spaceborne SARs have been launched, and considerable effort has been made to improve
the algorithms and systems. Currently, the technology of SARs is at a mature stage, and
routinely operating for practical use. Among many oceanic phenomena, the present article
focused on the ocean surface and internal waves, oil slicks, ocean currents, bathymetry,
ship detection and classification, wind, aquaculture, and sea ice. The methodology is
based on the conventional use of image intensity, interferometry, polarimetry and artificial
intelligence. Examples and references were provided where necessary; for further examples
and information, please refer to the references therein.
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