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Abstract: The lockdowns from the coronavirus disease of 2019 (COVID-19) have led to a reduction
in anthropogenic activities and have hence reduced primary air pollutant emissions, which were
reported to have helped air quality improvements. However, air quality expressed by the air quality
index (AQI) did not improve in Shanghai, China, during the COVID-19 outbreak in the spring of 2022.
To better understand the reason, we investigated the variations of nitrogen dioxide (NO2), ozone (O3),
PM2.5 (particular matter with an aerodynamic diameter of less than 2.5 µm), and PM10 (particular
matter with an aerodynamic diameter of less than 10 µm) by using in situ and satellite measurements
from 1 March to 31 June 2022 (pre-, full-, partial-, and post-lockdown periods). The results show that
the benefit of the significantly decreased ground-level PM2.5, PM10, and NO2 was offset by amplified
O3 pollution, therefore leading to the increased AQI. According to the backward trajectory analyses
and multiple linear regression (MLR) model, the anthropogenic emissions dominated the observed
changes in air pollutants during the full-lockdown period relative to previous years (2019–2021),
whereas the long-range transport and local meteorological parameters (temperature, air pressure,
wind speed, relative humidity, and precipitation) influenced little. We further identified the chemical
mechanism that caused the increase in O3 concentration. The amplified O3 pollution during the
full-lockdown period was caused by the reduction in anthropogenic nitrogen oxides (NOx) under
a VOC-limited regime and high background O3 concentrations owing to seasonal variations. In
addition, we found that in the downtown area, ground-level PM2.5, PM10, and NO2 more sensitively
responded to the changes in lockdown measures than they did in the suburbs. These findings provide
new insights into the impact of emission control restrictions on air quality and have implications for
air pollution control in the future.

Keywords: COVID-19; Shanghai; air quality; O3 pollution; TROPOMI

1. Introduction

In December 2019, the abrupt outbreak of COVID-19 produced previously unseen
societal impacts in China [1]. The city of Shanghai, as the first echelon, was placed under
lockdown and officially launched the First-Level Public Health Emergency Response to
epidemic prevention and control. The tremendous epidemic in Shanghai was controlled
in March 2020. Since then, Shanghai has had only a small number of occasionally im-
ported cases or localized outbreaks on a small scale, which had been properly handled
and controlled [2], and there was no second wave of tremendous outbreak. However, in
early March 2022, a new round of COVID-19, caused by the spread of the Omicron variant,
rapidly attacked the whole city of Shanghai, which led to the second lockdown manage-
ment, from March 28 to June 1, 2022. Consequently, human mobility, public transportation
options, manufacturing, and economic growth were greatly reduced. For instance, in the
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first half of 2022, Shanghai’s gross domestic product (GDP) decreased by 5.7% relative to
the previous year [3].

There is no doubt that the COVID-19 epidemic is a tragedy and has caused an adverse
impact on people’s lifestyles and production activities [4–7]. Nonetheless, it has provided an
unprecedented experiment in which substantial reductions have occurred in anthropogenic
activities, which are unique opportunities to assess the efficiency of air pollution mitigation.
The AQI describes the degree of air cleanliness and its impact on health. In terms of
the AQI, many studies have suggested that air quality generally improved at multiple
spatial scales throughout the world during the lockdowns [8–12]. Focusing on China,
Wang et al. [13] reported that the AQI averaged over 366 urban areas decreased by 20%
(−28 points) during the historical wintertime COVID-19 lockdowns (hereafter referred to as
HWCL, approximately from late January 2020 to March 2020, in China) as compared with
that before the control period, which was due mainly to the substantial reduced primary
emissions from anthropogenic activities.

Despite the widely distributed air quality improvements and decreases in primary
emissions, it has been reported that several air pollution events still existed in some regions
of China during the HWCL [14–19]. The substantial declines in NOx emissions alleviated
lower O3 titration in urban areas of China, leading to amplified O3 pollution [20]. More-
over, previous studies have shown that in eastern China, increases in O3 have resulted
in an increased atmospheric oxidizing capacity and therefore facilitated the formation of
secondary particular matter (PM), which has caused several heavy winter haze events [19].
Additionally, meteorology has a non-negligible impact on the formation or diffusion of air
pollutants [21], and unfavorable meteorological conditions may lead to severe air pollution
events [22]. For instance, several severe PM2.5 pollution episodes were simultaneously
observed in northern China during the HWCL [14–18]. This was attributable mostly to
unfavorable meteorological conditions, including low wind speeds and increased rela-
tive humidity (RH). As a result, under certain circumstances, the emission reduction of
anthropogenic sources cannot completely offset the adverse impact of secondary aerosol
formation or unfavorable meteorological conditions on air quality [14–19]. According to
these understandings, we cannot infer that air quality will improve during this springtime
lockdown in Shanghai. Additionally, air pollutants usually present spatial heterogeneity,
which is related to geographical location, city development, and the emission sectors [23,24].
The national and global trends of air pollutants have been quantified in detail during the
COVID-19 epidemic [24,25], whereas research on the changes in urban-scale and suburb-
scale air pollutants in response to the lockdown measures is still limited. Therefore, all
these should be addressed to achieve the objectives of regional air quality management.

The AQI and five representative air pollutants, specifically PM2.5, PM10, NO2, O3,
and formaldehyde (HCHO), were selected for an analysis of the impact before and after
the lockdown. PM2.5 and PM10 have an important relationship with human premature
death from cardiovascular and respiratory diseases [1]. NO2 is usually regarded as a
direct indicator for evaluating industrial pollution, vehicle exhaust emissions, and biomass
burning [21,24], which participate in many chemical reactions and crucially affect air quality.
O3 pollution is one of the main air quality challenges in China [26,27], which damages
human respiratory and immune systems and causes related diseases [28]. Anthropogenic
NOx and volatile organic compounds (VOCs) are the main precursors of O3 and generate
O3 through a series of photochemical reactions [29]. Regarded as a proxy for VOCs
reactivity, HCHO is an important intermediate in the oxidative degradation of atmospheric
VOCs [29,30]. The ratio of HCHO to NO2 (HCHO/NO2, FNR) is assumed as an indicator
of the relative sensitivity of surface O3 to NOx and VOCs emissions (details are in Text
S2) [31]. The formation and the changed mechanism of O3 under major events were
widely analyzed by using the estimated FNR (e.g., 2008 Beijing Olympics, 2014 Asia-Pacific
Economic Cooperation) [32,33]. Thus, first understanding the formation mechanism of
regional O3 is an important prerequisite for scientific O3 control. Furthermore, the complex
chemical processes of different air pollutants also significantly impact air quality [34].
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In this study, we utilized both ground-based and high-resolution satellite data to
ensure the reliability and robustness of the results. The following four aspects are taken as
specific objectives: (1) analyzing the general variations of different air pollutants and the
AQI during different periods of the COVID-19 pandemic in Shanghai; (2) investigating the
effect of long-range transport and quantifying the meteorologically and anthropogenically
driven changes in ground-level NO2, O3, PM2.5, and PM10 concentrations during the full-
lockdown period; (3) exploring the driving force of the unexpected increase in the AQI
and interpreting the relevant formation mechanism of O3 over Shanghai on the basis of
using FNR; and (4) investigating the differences in changes in ground-level NO2, O3, PM2.5,
and PM10 in response to the COVID-19 lockdown measures between downtown and the
suburbs. It is expected that through the new round of the COVID-19 epidemic in Shanghai,
the results are helpful in gaining new insights into air pollution control strategies.

2. Methodology
2.1. Study Region and Time

Shanghai is located between 30◦40′–31◦53′N and 120◦52′–122◦12′E on the east of the
Asian continent and the front edge of the Yangtze River Delta (YRD) (Figure 1a). Shanghai
occupied a total area of 6340 km2 and had a resident population of almost 24.87 million by
the end of 2020 [35]. It is an important international economic, financial, trade, and shipping
center in China. Shanghai is composed of 16 municipal districts. The downtown includes
the Huangpu (HP), Xuhui (XH), Changning (CN), Jing’an (JA), Putuo (PT), Hongkou (HK),
and Yangpu (YP) districts, and it is an important comprehensive transportation hub and
a modern service industry development center. Although the total area of downtown
is 664 km2, its resident population accounts for approximately half of that in Shanghai.
The suburban area consists of the Minhang (MH), Baoshan (BS), Jiading (JD), Jinshan (JS),
Songjiang (SJ), Qingpu (QP), Fengxian (FX), Chongming (CM), and semisuburb Pudong
New Area (PD) districts (Figure 1b).
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Figure 1. (a) The topography of China. The red circle represents the location of Shanghai; (b) suburbs
and downtown Shanghai. Bold black text indicates the location of the BS district, red dots represent
the 19 air quality monitoring stations, and the blue dot represents the BS meteorological station; (c)
the study time series of daily COVID-19 new local confirmed cases from March 1 to June 31 (i.e., from
P1 to P4).
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The 4-month study period from March 1 to June 31, 2022, is divided into four periods
according to the development of the COVID-19 epidemic and government management
measures (Figure 1c). Because Shanghai was officially blocked on 28 March 2022, the first
period (P1) is defined as the prelockdown stage, from March 1 to 27. The second period
(P2), from March 28 to May 16, is defined as the full-lockdown stage. The third period
(P3) is May 17 to 31, which is the partial-lockdown stage. The epidemic situation in P2
remained the grimmest, where all kinds of anthropogenic activities were substantially
reduced and with 56,850 COVID-19 local confirmed cases in total (Figure 1c) [36]. On
17 May of P3, the Shanghai Municipal Health Commission officially announced that all
16 districts eliminated COVID-19 outside of the quarantine zones [37]. While stay-at-home
protection and staggered-shift policies were still implemented, gradual work resumption
was taking place across some major projects (e.g., transportation and factory operation).
Several supermarkets, restaurants, pharmacies, and other public services reopened. The
fourth period (P4) is June 1 to 31 and represents the post-lockdown stage. The Shanghai
Municipal People’s Government announced that from 1 June, residents would regain
access to residential areas and all public transportation would be restored, except for
several medium- and high-risk controlled areas [38].

2.2. Data Sources
2.2.1. Air Quality Data and Meteorological Data

In this study, the in situ observations of the AQI; the daily averaged concentrations
of PM2.5, PM10, and NO2; the daily maximum 8-hour average (MDA8) O3 concentrations;
and the daily dominant pollutant datasets were obtained from the Shanghai Municipal
Ecological Environment Bureau, including 19 air quality monitoring stations in 16 districts
of Shanghai (Figure 1b). In China, the AQI is defined as the highest of the individual air
quality index (IAQI) values (definitions are in Text S1). An AQI value less than 100 indicates
good air quality, according to the Technical Regulation on Ambient Air Quality Index of
China [39]. The daily dominant pollutant has the highest IAQI value, which determines
the daily AQI (Text S1). In addition, we investigated the influence of local meteorological
factors and anthropogenic activities. Meteorological parameters, including air temperature,
atmospheric pressure, wind speed, RH, and precipitation, measured at the BS meteorolog-
ical station (Figure 1b), were collected and sorted by the National Climatic Data Center
and the UK Meteorological Office. The information on the observed data is summarized in
Table S1. The meteorological parameters were processed into daily averages at the same
time resolution as air pollutants. The BS meteorological station is not far from the BS
monitoring station. The distance between them is approximately 8 km (Figure 1b), ensuring
the distribution consistency and reliability of the case-study results.

We have adopted a comparative approach to explore the impact of the COVID-19
epidemic on air quality from P1 to P4. All the data from previous years (2019–2021) during
the same periods of 2022 were also analyzed as historical references. The Wilcoxon signed
rank test (details are in Text S3) was used to analyze whether there were significant changes
in different air pollutants and the AQI. This test was selected because the data during each
research period were not required to be normally distributed (Text S3 and Table S2).

2.2.2. Sentinel-5P/TROPOMI NO2 and HCHO Data

The Sentinel-5 Precursor (S5P) is a low-Earth-orbit polar and polar sun-synchronous
satellite that launched on October 13, 2017, with an ascending node (from south to north)
that crosses the equator at around 13:30 local solar time [40]. The function of S5P is to
provide information on and services for air quality, climate, and the ozone layer [41]. The
tropospheric monitoring instrument (TROPOMI) is the single payload of the S5P spacecraft,
which can effectively monitor trace gas components, including O3, NO2, SO2, CO, CH4,
HCHO, and aerosol properties, in the atmosphere around the world [41]. As the most tech-
nologically advanced instrument with the highest spatial resolution, TROPOMI provides
near-daily global coverage and an approximately 2600 km wide imaging swath [41].
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In terms of the validation of the TROPOMI NO2 and HCHO tropospheric VCD data,
much work has been conducted by using aircraft-borne profile measurements, ground-
based observations, and model simulations [42–46]. These studies have generally demon-
strated the good quality of the TROPOMI tropospheric column data, which are suited
to a variety of applications, although they have some negative biases compared with in
situ measurements (details are in Text S4). Moreover, Sentinel-5P/TROPOMI provides
more-adequate spatial resolution and observation information on air pollutants in the
troposphere, so as to cope with the COVID-19 epidemic and fill the gap from the low spatial
distribution limit of ground monitoring [24,47,48]. TROPOMI observations have been
widely utilized by previous studies to monitor the air quality and analyze the variations of
NO2 and HCHO during the HWCL around the world [48–50].

In this study, we used the TROPOMI tropospheric level 2 (L2) NO2 and HCHO OFFL
(offline) product data (from March 1 to June 1 in 2020 and in 2021), which were obtained
from the Copernicus Open Access Hub. Detailed descriptions of the NO2 and HCHO
algorithms can refer to the S5P product ATBD (algorithm theoretical basis document) [51,52].
The near-ground pixel size of NO2 and HCHO products is 7.0 × 3.5 km2, while it was
revised to 5.5 × 3.5 km2 on 6 August 2019. For the TROPOMI data, it is important to
conduct data quality control before analysis [53,54]. A quality assurance value (qa_value)
is a continuous flag variable that ranges from 0 (no output) to 1 (all is well), indicating
the status and quality of the retrieval result. Each ground pixel of NO2 and HCHO is
selected with a qa_value > 0.5 and a cloud radiation fraction > 0.5 (details are in Text
S4), which exclude the cloud-covered scenes (i.e., cloud radiance fraction > 0.5), errors,
and problematic retrievals [53,54]. We distributed TROPOMI observations on a two-
dimensional latitude–longitude gridded map with a daily temporal resolution and a spatial
resolution of 0.1◦ × 0.1◦. The daily averaged tropospheric NO2 and HCHO vertical column
densities (VCDs) in each grid were calculated as follows:

VCDsi,j,y,m,d =

{ 1
n ∑n

1 VCDsi,j,y,m,d,n, i f n 6= 0
0 , i f n = 0

(1)

where i is the index of latitude (i is from 1 to 1800), j is the index of longitude (j is from 1 to
3600), y is the year, m is the month, d is the day, and n refers to the number of pixels in the
grid (i, j) on the day (y, m, d) (details are in Text S4). Subsequently, these TROPOMI daily
data were averaged in each period from P1 to P4.

2.3. Multiple Linear Regression Model

The MLR model establishes a quantitative statistical relationship between a forecast
quantity and multiple variables, which has been widely applied to meteorological statistics
and forecasts. Meteorologically driven changes in regional-scale PM2.5 and O3 concentra-
tions are comprehensively understood by utilizing the MLR model [55–57]. However, most
MLR models in previous studies that have accounted for the impact of seasonal variations
or long-term trends were not applicable to the short-time interval of the COVID-19 lock-
down (i.e., P2, 50 days) at the city scale [55–57]. Recently, Fu et al. [58] developed an MLR
model to quantify meteorological and anthropogenic influences on O3 during the COVID-
19 lockdown period in Guangxi, China. On the basis of using the method in Fu et al. [58],
we further developed a stepwise MLR model to explore the effect of meteorologically and
anthropogenically driven changes on NO2, O3, PM2.5, and PM10 concentrations during the
new round of COVID-19 lockdowns in Shanghai, using 4-year (2019–2022) ground-based
monitoring data from the BS site.

The short-term variations in air pollutants are significantly affected by local weather
systems and short-term fluctuations in primary emissions [59]. In this study, we included
five meteorological variables (temperature, pressure, RH, wind speed, and precipitation) in
the stepwise MLR model. To minimize the influences of correlations between predictors,
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we first tested the multicollinearity among these variables via a variance inflation factor
(VIF) analysis [57]. VIF is calculated as follows:

VIFi =
1

1− R2
i

(2)

where Ri
2 represents the multiple coefficient of determination of the i-th independent

variable regressed on all the remaining variables. We set the threshold at which the variable
with a VIF value less than 10 would be accepted; otherwise, it would be removed. All
the variables that we selected as predictors were within the tolerance of multicollinearity
(Table S3).

Stepwise regression obtains the best model fit by adding predictors with significant
contributions and deleting insignificant predictors. The basic form trained from historical
data is as follows:

C0i(t0) = βi,0 + ∑N
k=1 βi,k ×M0k(t0) + ε (3)

where C0i(t0) is the observed daily concentration of air pollutant i (e.g., NO2) from 2019
to 2021 during P2 for the BS site, M0k(t0) presents the k-th daily meteorological element,
βi,0 is the constant term of the regression equation (i.e., intercept), βi,k is the regression
coefficient for the k-th meteorological variable, and ε is the residual term. From 28 March
to 16 May 2020 (P2), the previous COVID-19 epidemic in Shanghai had ended and normal
human production and a normal way of life had resumed. Therefore, the data from 2020
can also present the characteristic of no sharp fluctuations in anthropogenic influence (i.e.,
constant anthropogenic influence) as that in 2019 and 2021. The stepwise MLR model
guarantees that each variable selected for i-th air pollutant in the equation is significant
(Table S4). The regression coefficients of nonexistent predictors in the final MLR model
were set as 0. Furthermore, to improve the accuracy of the results, we removed the outliers
that were more than or less than the three times the standard deviations [58]. The adjusted
coefficient of determination (aR2) for the regression equation reflects the reliability of the
MLR model to explain the variations of the air pollutants during P2 (Table S4). In the
study, the aR2 values for NO2, O3, PM2.5, and PM10 are 0.3, 0.5, 0.2, and 0.4, respectively,
which are within a reasonable range, indicating that the model has good explanatory and
predictive abilities [55,57].

Then the i-th meteorologically driven air pollutant concentrations in 2022 are predicted
by pi(t) and given by Equation (4). ∆CMi(t) in Equation (5) presents the meteorologically
driven change in the i-th air pollutant concentrations of 2022 compared to previous years
(2019–2021). The difference between the observed value (∆Ci(t)) and ∆CMi(t) is defined as
nonmeteorologically driven change (∆CAi(t)), which is attributed mainly to anthropogenic
activities according to Equation (6) [55,57]. The relevant equations are as follows:

pi(t) = βi,0 + ∑N
k=1 βi,k ×Mk(t) + ε (4)

∆CMi(t) = ∑N
k=1 βi,k × ∆Mk (5)

∆CAi(t) = ∆Ci(t)− ∆CMi(t) (6)

where ∆Mk is the anomalies in the k-th meteorological predictor of 2022 compared with that
from 2019 to 2021 and ∆Ci(t) is the difference in the observed i-th air pollutant concentration
of 2022 in respect to the previous 3-year baseline.

2.4. Backward Trajectory Simulation

To determine the origin of air masses and establish source–receptor relationships in
Shanghai, we used the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT)
model from the National Oceanic and Atmospheric Administration’s (NOAA) Air Re-
sources Laboratory (ARL), which enabled us to simulate the backward trajectories. With
the input meteorological data from the National Center for Environmental Prediction



Remote Sens. 2023, 15, 1295 7 of 21

(NCEP)/Global Data Association System (GDAS) at a 1◦ × 1◦ horizontal resolution, the
24-hour backward trajectories were computed at 1-hour interval at a height of 500 m above
the ground level from P1 to P4 in 2022. On the basis of the HYSPLIT cluster analysis, all
backward trajectories were categorized into distinct transport patterns.

3. Results
3.1. General Variations of Air Pollution between Different Periods
3.1.1. Variations of Ground-Observed Ambient Air Pollutants and AQI

Figure 2 presents a time series of the daily NO2, PM2.5, and PM10 concentrations; the
daily MDA8 O3 concentrations; and the daily AQI, which is based on in situ measurements
over Shanghai from P1 to P4 in 2022. The timing of the decrease in many air pollutants
(NO2, PM2.5, and PM10) was remarkably coincident with the lockdown measurements
over Shanghai from P1 to P2 in 2022, while O3 concentrations and the AQI increased.
During P2 of 2022, PM2.5 concentrations declined by 29.8% (−9.7 µg/m3) and showed
a high significant difference (p < 0.01) compared with the same period in the previous
year (Figure 3 and Table S5). Similarly, PM10 also presented decreasing trend by 39.3%
(−23.6 µg/m3) and a high significant difference (p < 0.01). The PM2.5 concentrations during
P2 of 2022 ranged from 9 µg/m3 to 50 µg/m3, with an average value of 22.9 µg/m3, thus
meeting the level II standard of the Environmental Air Quality Standard (EAQS) of China
(GB3095-2012) (Table S6) [60]. Moreover, the PM10 concentrations during P2 ranged from
9 µg/m3 to 90 µg/m3, with an average value of 36.4 µg/m3, which met the level I standard
of EAQS. As a result, the pollution of PM2.5 and PM10 had been significantly reduced.
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The monthly Multiresolution Emission Inventory for China 2010 (MEIC10) shows that
the major sources of PM2.5 and PM10 are complicated in Shanghai [61]. The anthropogenic
sources of PM2.5 and PM10 are mainly from the industry, power generation, residential, and
transportation sectors [61–63]. Thus, the overall reduction in PM2.5 and PM10 concentra-
tions could have contributed to the sharp reductions in anthropogenic activities. Although
the formation of secondary aerosols may result in an increase in PM2.5 and PM10 [64,65],
there were no PM2.5 and PM10 pollution episodes (PM2.5 > 75 µg/m3 or PM10 > 150 µg/m3)
observed during P2 of 2022 (Figure 2). From P3 to P4, PM10 and PM2.5 concentrations did
not obviously rebound, despite the resumption of work and production after the lifting of
lockdown restrictions (Figures 2 and 3). One possible reason could be the favorable meteo-
rological conditions (e.g., strong solar radiation, high temperature) in June, which were
conducive to PM diffusion [66]. Additionally, this result may be limited by the complex
chemical composition and formation reactions of secondary aerosols, resulting in a delayed
response [67].
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Compared with the previous year, NO2 concentrations in P2 of 2022 sharply cur-
tailed, by 49.7% (−17.0 µg/m3), with a high significant difference (p < 0.01) (Figure 3 and
Table S5). The average NO2 concentrations in P2 (17.2 µg/m3) were significantly lower
than the 40 µg/m3 required by the EAQS level I standard. The absolute change in NO2
concentrations in P2 was significantly higher than that in PM2.5 and PM10 concentrations,
indicating that NO2 had a more sensitive response to the lockdown. We further found that
the freight turnover and tourist turnover (two traffic emissions indicators) in Shanghai
significantly decreased in April 2022, by 34.0% and 95.7%, respectively, compared to 2021
(Figure S1). These results were mostly consistent with previous studies in Shanghai during
HCWL, in which decreased NO2 was strongly associated with substantial restrictions on
local traffic and industrial activities [67–69]. From P3 to P4, the NO2 concentrations were
still significantly lower than those in 2021 (p < 0.01), and with the gradual recovery of
human activities, NO2 concentrations began to slightly recover.

The variations in the O3 concentrations were more complicated. The average O3
concentrations increased by 20.0% (21.5 µg/m3) over Shanghai (Figure 3) during P2 of 2022,
ranging from 72 µg/m3 to 200 µg/m3. According to the EAQS standard of daily MDA8 O3
concentrations, 80.4% of days during P2 failed to meet the first level’s standard (100 µg/m3).
What is worse, from P2 to P4 in 2022, O3 concentrations remained at a high level, with
the average value ranging from 120.9 µg/m3 to 128.9 µg/m3. More investigations into O3
variations during different periods of 2022 will be further discussed in Sections 3.3 and 3.4.
The AQI showed an unexpected upward trend during P2 of 2022 compared to 2021, with
an enhancement of +4.5 points (6.3%), ranging from 36 to 137. This was likely due to the
enhanced O3 concentrations. Specifically, the proportion of O3 as the dominant pollutant
during P2 of 2022 increased from 62.7% to 98.0% when compared to 2021 (Figure S2),
resulting in a 7.9% decrease in the good air quality rate (AQI < 100, Figure S3). Moreover,
in the following periods (i.e., from P3 to P4) of 2022, the AQI was completely influenced
by O3 (100%, Figure S2). These results imply that the improvement in air quality from the
primary emission reduction cannot completely offset the adverse effect of the increased O3
during this lockdown in Shanghai.

3.1.2. Variations in Satellite-Observed Tropospheric NO2 and HCHO Concentrations

In Figure 4a–h, during P1 of 2021 and 2022, the spatial distributions of the TROPOMI
average NO2 VCDs were similar in general. However, with the implementation of the
lockdown measures in Shanghai, NO2 VCDs significantly decreased during P2 of 2022,
especially in the downtown and neighboring areas (Figure 4a). During P3 of 2022, NO2
VCDs remained at a low level (Figure 4g), while a slight rebound occurred in P4 (Figure 4h).
The variation trend for NO2 observed by satellites was in good agreement with ground
observations.

Figure 4m–x presents the spatial distributions and absolute differences in TROPOMI
average HCHO VCDs. Temperature and solar radiation have important effects on the
formation of HCHO by affecting biogenic emissions and photochemical reactions [29,70].
Additionally, the contribution from anthropogenic sources (e.g., industry and transporta-
tion) to HCHO cannot be ignored [71]. Li et al. [29] reported that HCHO VCDs in Shanghai
during 2010–2019 were the highest in summer and the lowest in winter. It can be observed
that from P1 to P4 in 2021, HCHO VCDs showed a typical upward trend in general (Fig-
ure 4m–p), which was significantly related to the increased temperature from spring to
summer [29]. Nonetheless, from P1 to P3 in 2022, HCHO VCDs remained at a consistently
low value (Figure 4q–s), suggesting that the effects of increased temperature were probably
offset by the impact of the reduced anthropogenic activities. Although we have demon-
strated only a sharp decrease in NO2, it generally correlates to the reductions in NOx at
a regional scale [70]. The reduction in anthropogenic NOx and in nonmethane volatile
organic compound (NMVOC) emissions was possibly the main reason for the decline in
HCHO in Shanghai [70]. During P4 of 2022, HCHO VCDs showed a greater recovery
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(Figure 4t,x) caused by the warmer summer temperatures and the resumption of work and
production.

3.2. Effect of Long-Range Transport Based on the HYSPLIT Model

Given the influences of atmospheric motion and disturbance, the long-range transport
of air masses may have had an impact on the air pollutants in Shanghai. As shown in
Figure 5, during P1, northerly and southerly air flows from the Yellow Sea, the East China
Sea, and the coastal areas of the Bohai Sea dominated the air mass transport to Shanghai
(59.87%). Similarly, during P2 and P3, four clusters of trajectories originated from the
coastal waters and sea areas, accounting for 62.51% and 80.28% of the air mass transport,
respectively. This indicated that the major air masses were clean and that the anthropogenic
pollutant load was low.

The terrestrial inputs during P2 and P3 were mainly from the southern cities of the
YRD (Figure 5b), whereas the contribution from regional transport from the northern high-
polluted cities of YRD (especially Jiangsu and the central and eastern parts of Anhui) and
Central China was not significant [72,73]. Therefore, anthropogenic pollutants from inland
cities and industries contributed little to the substantial variations in air pollutants during
the COVID-19 epidemic period in Shanghai.

We further explored the distribution characteristics of the surrounding biomass burn-
ing, such as wildfires and straw burning. According to the Landsat-8 satellite, fire spots
were sparsely distributed in YRD during P2 and P3 of 2022, and no biomass burning
was observed in Shanghai (Figure S4). The locations of the fire spots were also not on
the 24-hour backward trajectories of Shanghai. In general, the long-range transport of
land-based pollutants had little impact on Shanghai.
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3.3. Quantification of Meteorological and Anthropogenic Influences on Air Pollutants in MLR
Model

By understanding the variations of different air pollutants compared with the previ-
ous year, we could conclude that anthropogenic factors have played non-negligible roles
and that the long-range transport of pollutants contributed little. However, there are still
questions whether these changes in air pollutants are mainly contributed by local mete-
orological factors or anthropogenic factors, or a combination of both, given the possible
influence of anomalous weather. Therefore, we further quantified the meteorologically and
anthropogenically driven changes in the NO2, O3, PM2.5, and PM10 concentrations during
P2 on the basis of using the developed stepwise MLR model.

The changing trends of air pollutants in the BS site were similar to those in the whole
of Shanghai (Figure S5). Compared with the 3-year baseline (2019–2021), NO2, PM2.5,
and PM10 concentrations declined by 62.2% (−28.6 µg/m3), 34.4% (−12.1 µg/m3), and
24.3% (−18.7 µg/m3), respectively. In contrast, O3 concentrations increased by 14.8%
(+15.6 µg/m3). According to the MLR estimation, there was no significant fluctuation in the
meteorologically driven changes in air pollutants during P2 compared with that influenced
by anthropogenic activities (Figure 6a–d). The total changing values of NO2, O3, PM2.5, and
PM10 were +0.9 µg/m3, +0.6 µg/m3, −1.2 µg/m3, and −0.5 µg/m3, respectively. Overall,
the meteorological factors slightly impacted the changes in air pollutants during P2. These
findings could be verified from comparisons of the meteorological predictors during P2
of 2019–2021 and of 2022. The meteorological predictors slightly changed from the 3-year
baseline during the lockdown, including a +0.1% change in pressure, +1.3% change in
temperature, −3.2% change in wind speed, and +0.1% change in RH (Figure S6a–d). There
is also no obvious difference in the frequency distributions of precipitation (Figure S6e,f).
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The anthropogenically driven changes in NO2, O3, PM2.5, and PM10 concentrations are
−29.5 µg/m3 (103%), +15.0 µg/m3 (96%), −10.9 µg/m3 (90%), and −11.8 µg/m3 (96%), re-
spectively. This suggests that the anthropogenic factors significantly dominated the changes
in all air pollutants during P2. In particular, the anthropogenically driven NO2 change
always presented negative anomalies during the whole lockdown (Figure 4a), ranging from
−55.2 µg/m3 to −2.9 µg/m3. Consequently, these results provide further evidence that the
NO2 exposure level can be effectively sustained by reducing anthropogenic sources, such
as by limiting the emission of vehicles.

3.4. O3 Variations and Formation Regime in Different Periods

From the perspective of the monthly distribution of O3 concentrations, the rate of
increase in O3 from March to April 2022 changed from 16.7% to 27.9% compared with the
3-year baseline (Figure 7). These also indicated the significant O3 pollution in Shanghai
during the lockdown. For the amplification of O3 pollution, as shown in Figure 6g, anthro-
pogenic factors were the main reason during P2. Moreover, as mentioned in Section 3.1.1,
O3 concentrations remained at a higher level from P2 to P4 in 2022 compared with the
previous year. Owing to the adverse effect of O3 on the AQI, it is urgent to explore the
formation mechanism of O3. The relationship between NOx, VOCs, and ozone forma-
tion is nonlinear [31]. The strategy to control both NOx and VOCs on the formation of
ground-level O3 depends on the regional photochemical oxidation regimes, which are
NOx-limited regime and VOC-limited regime [31]. In brief, under a NOx-limited regime,
the NOx/VOCs ratio is lower and the O3 reduction is controlled mainly by NOx, while
under a VOC-limited regime, the ratio of NOx/VOCs is higher and the reduction in O3
is controlled mainly by VOCs. Using the criteria estimated by Duncan et al. [74], the O3
formation regime is designated as a VOC-limited regime (FNR < 1), a NOx-limited regime
(FNR > 2), or a transitional regime (1 < FNR < 2), where O3 productions can be changed by
both VOCs and NOx.
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Figure 7. Monthly distribution of 3-year average and 2022 ground-level MDA8 O3 concentrations
in Shanghai, with 95% confidence intervals (error bars). The words show the rate of increase in O3

concentration in April compared with that in March. Note: the 3 years are 2018, 2019, and 2021. O3 in
2020 was not considered, because of the impact of the wintertime COVID-19 lockdown.

Figure 8 shows the spatial distributions of FNR in Shanghai from P1 to P4 in 2021 and
2022. During P1 and P2 of 2021, Shanghai was basically under the VOC-limited regime.
From P2 to P4 in 2021 (spring to summer), adequate sunlight and more precipitation facil-
itated the photochemical removal and wet deposition of NO2 [29]. With the decrease in
NO2 and the increase in HCHO (Figure 4), the O3 formation regime in Shanghai mostly
transformed from a VOC-limited regime to a transitional regime (Figure 8). Nonetheless,
the downtown and some suburban areas (e.g., BS and JD) were more likely to be under a
VOC-limited regime. Like P1 in 2021, Shanghai was controlled mainly by a VOC-limited
regime during P1 of 2022. Thus, the substantial drop in NOx emissions from P1 to P2
led to a lower O3 titration by NO, resulting in an increase in O3 concentrations [18,20,75].
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Meanwhile, the MDA8 O3 concentrations in Shanghai generally present a high level from
April to September (Figure 7), which is due to the strong solar irradiation and high temper-
ature [23,76]. Therefore, the worse air quality was caused mainly by the chemical process
of O3 enhancement under high background O3 concentrations.
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During P2 and P3 of 2022, Shanghai generally changed from a VOC-limited regime to a
transitional regime caused by the significant reduction in NO2 emissions. During P4 of 2022,
with the significant increase in HCHO concentrations in summer and the low value of NO2
(Figure 4), FNR increased, and transitional regime mostly turned into a NOx-limited regime
(Figure 8), especially in the southern part of Shanghai. Thus, during P3 and P4 of 2022,
average O3 concentrations remained at a high level (>120 µg/m3) over Shanghai, which
may be partially due to the effects of the transformation in the O3 formation regime [34].
Additionally, the subsequent rebound of NOx may even amplify the O3 pollution and
worsen air quality under the NOx-limited regime after P4.

3.5. Air Pollutants Responses to the Lockdown Measures in Downtown vs. Suburbs

Given that there are obvious spatial variances in the changes in tropospheric air pollu-
tants (Figure 4c,f), we further quantified the interperiod absolute and relative changes of
different ground-level air pollutants between downtown and the suburbs. Corresponding
to the adjustment to lockdown measures, the changes from P1 to P2 (P2 minus P1) and
from P3 to P4 (P4 minus P3) in 2022 were analyzed and compared with those in 2021
(Figure 9). The differences in changes in the ground-level PM2.5 and PM10 concentrations
between downtown and the suburbs were basically the same as those in the previous year
but were significant in 2022 (Figure 9a–d). Specifically, in the downtown areas, we found
that the change in PM2.5 concentrations between P1 and P2 was −18.5 µg/m3 (−34.6%)
in 2022, which was 5.0 µg/m3 lower than that in the suburbs. However, between P3 and
P4 in the downtown areas, the change in PM2.5 concentrations was +1.0 µg/m3 (+5.3%),
which was 1.9 µg/m3 higher than that in the suburbs. The pattern of changes in PM10
and NO2 concentrations between downtown and the suburbs was similar to that in PM2.5
(Figure 9a–e), whereas there was no significant difference in O3 changes (Figure 9f). Overall,
the responses of PM2.5, PM10, and NO2 to the changes in lockdown measures were more
sensitive in the downtown areas than in the suburbs.
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These results are associated with regional differences. The downtown of Shanghai has
a high population density of 23,091 persons per km2, whereas in the suburbs, the population
density is approximately eight times lower (3006 persons per km2) [35]. Moreover, the
traffic and road density in downtown areas is high, and heavy industries are concentrated
mainly in the suburbs. For both PM2.5 and PM10, their sources are more strongly linked
with vehicular emissions in the downtown areas [77], whereas in the suburbs, the main
sources are industrial emissions and coal combustion [63,78]. For NO2, many studies have
suggested that NO2 concentrations in Shanghai show a significant positive correlation with
residence intensity, traffic, and industrial density [79]. Therefore, the larger declines or
recovery in the population movements and transport activities in downtown led to more-
significant changes in PM2.5, PM10, and NO2 compared with the suburbs. Despite the higher
industrial density in the suburbs, to ensure the basic operation of Shanghai and the stability
of the industrial supply chain, there were still parts of necessary industrial enterprises
maintaining a closed-loop production state (e.g., energy, chemicals, and electric power) [80].
This may partly explain the less-obvious changes in PM2.5, PM10, and NO2 from P1 to P2
in the suburbs than those in the downtown areas. In terms of quarantine measures, the
lockdown measures were enforced more strongly in the downtown areas because they
contained the highest number of confirmed infections, which also led to a greater reduction
in primary emissions compared with the suburbs. Given the highly sensitivity of PM2.5,
PM10, and NO2 in the downtown to policy restrictions on anthropogenic activities (e.g.,
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transportation), future mitigating strategies for air pollution can focus more on downtown
areas.

4. Discussion

This study revealed that the increased AQI during the COVID-19 lockdown in the
spring of 2022 was influenced mainly by the enhancement of O3 pollution. We further
explored the influences of long-range transport and quantified the impact of meteorolog-
ical and anthropogenic factors, and the results showed that the anthropogenic influence
dominated the observed changes in ground-level air pollutants. The Shanghai region was
controlled mainly by the VOC-limited regime during the pre-lockdown period, and thus,
the substantial decline in NOx caused by reduced human activities led to increased O3
formation during the full-lockdown period. Combined with the increased background O3
concentrations, the O3 level was high and dominated the increase in the AQI.

According to our review of the HWCL over Shanghai, many previous studies have
shown that the O3 concentrations had increased, whereas the air quality still improved
(Figure S7) [13,18], which was different from our findings. This may be because the
background O3 concentrations were lowest in winter (Figure 7), and the improvement in
air quality was influenced mostly by the declines in PM2.5 and NO2 during the HWCL
(Figures S7 and S8). In addition, comparing our study with previous studies on the O3
formation regime, we found that the VOC-limited regime was dominant before and after
the HWCL in Shanghai [81]. This may be because in the winner, HCHO VCDs are at their
lowest level and NO2 VCDs are at their highest, resulting in the lowest FNR [29,81]. Thus,
although NO2 significantly declined caused by the lockdown, FNR was still within the
range of less than 1 (VOC limited) [81]. Therefore, these results and comparisons indicated
that anthropogenic emission reductions occurring in different seasons may lead to different
air pollution mechanisms and processes.

The results of this study have some limitations. The criteria of the ozone formation
regime classification for Shanghai and the FNR calculated by satellite observations may
have some biases. Given the reference role of the COVID-19 lockdown measures for future
air pollution control policies, future work can further focus on understanding the impact of
primary aerosol changes on secondary aerosols by using regional air quality models.

5. Conclusions

In this work, we used the ground-based and Sentinel-5P/TROPOMI measurements to
explore the variations in air quality during the new round of COVID-19 lockdowns over
Shanghai in 2022. A deterioration in air quality in Shanghai during the COVID-19 lockdown
in the spring of 2022 was observed. We then quantified the influence of meteorological and
anthropogenic factors on the observed changes in different air pollutants and analyzed the
mechanism of O3 formation. The responses of air pollutants to the change in lockdown
measures between downtown and the suburbs were also explored.

During the full-lockdown period, ground-level PM2.5, PM10, and NO2 concentrations
in Shanghai significantly decreased, by 29.8% (−9.7 µg/m3), 39.3% (−23.6 µg/m3), and
49.7% (−17.0 µg/m3), compared with the values from the previous year, whereas O3
concentrations increased by 20.0% (+21.5 µg/m3). The AQI, the degree of air cleanliness
and the impact on health, showed an upward trend, increasing by 6.3% (+4.5 points), which
was due mainly to the amplification of O3 pollution. Overall, the improvement in air quality
by primary emission reduction cannot offset the adverse effect of O3 pollution amplification
in Shanghai. The variation trend of tropospheric NO2 VCDs was highly consistent with
ground-based observations. During the post-lockdown period, PM10 and PM2.5 in Shanghai
did not significantly rebound. NO2 slightly increased, while O3 concentrations remained at
a high level.

Using the HYSPLIT model, the backward trajectory analysis showed that the long-
range transport of land-based pollutants had little impact on Shanghai. According to the
MLR model, the anthropogenically driven change accounted for 103%, 96%, 90%, and
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96% in the observed changes for NO2, O3, PM2.5, and PM10 concentrations during the
full-lockdown period, respectively, whereas the meteorological factors contributed little
(−3~10%). Moreover, the anthropogenically driven NO2 change always presented negative
anomalies, further indicating that NO2 was the most sensitive to anthropogenic activities.

The amplification of O3 pollution adversely affected the AQI during the full-lockdown
period. One of the reasons was that under the VOC-limited regime, the substantial drop in
NOx emissions led to an increase in O3 concentrations. Another reason was the general
increase in background O3 concentrations was due to seasonal variations. However, during
the post-lockdown period, the O3 formation regime transformed into a NOx-limited regime
because of the large reduction in NO2 emissions and significantly increased HCHO (an
indicator of VOCs) in summer. Under the NOx-limited regime, the subsequent rebound of
NOx may amplify O3 pollution and even make air quality worse.

The responses of PM2.5, PM10, and NO2 to full-lockdown measures and the post-
lockdown measures in downtown were all more sensitive than those in the suburbs. There
was no significant difference in O3 changes between downtown and the suburbs.

This study facilitated the understanding of air quality responses during the COVID-19
lockdowns. Despite the substantial reductions in the primary emissions, air quality was not
improved in Shanghai, which revealed the important roles of the O3 formation mechanism.
Overall, the different seasons during which COVID-19 lockdowns occurred may have led
to different side effects on the air pollution process, which need to be carefully considered
in air pollution control strategies.
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