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Abstract: The widespread use of mobile devices has resulted in the generation of vast amounts of
spatial data. The availability of such large-scale spatial data facilitates the development of data-driven
approaches to address real-life problems. This paper introduces the max coverage region (MCR)
problem in road networks and provides efficient solutions. Given a set of spatial objects and a
coverage radius, the MCR problem aims to identify a location from the road network, so that we
can reach as many spatial objects as possible within the given coverage radius from the location.
This problem is fundamental to supporting many real-world applications. Given a road network
and a set of sensors, this problem can be used to find the best location for a sensor maintenance
station. This problem can also be applied in medical research, such as in a protein–protein interaction
network, where the nodes represent proteins, the edges represent their interactions, and the weight
of an edge represents confidence. We can use the MCR problem to find the set of interacting proteins
with a confidence budget. We propose an efficient exact solution to solve the problem, where
we reduce the MCR problem to an equivalent problem named the most overlapped interval and
design an edge-level upper bound estimation method to reduce the search space. Furthermore, we
propose two approximate solutions that sacrifice a little accuracy for much better efficiency. Our
experimental study on real-road network datasets demonstrates the effectiveness and superiority of
the proposed approaches.

Keywords: road network; region search; location selection; spatial data management; shortest distance

1. Introduction

With the proliferation of GPS-enabled mobile devices, users can access various location-
based services, such as Foursquare and Google Maps. Therefore, massive volumes of spatial
data are being generated rapidly every day. The availability of such large-scale spatial
data facilitates the development of data-driven approaches to address problems in real
scenarios, such as urban planning. Consider the following example.

Example 1. Suppose that the government has already placed a set of sensors along the road network.
In order to collect data from the sensors and guarantee the sensors work properly, the government
would desire to set up a maintenance station to host engineers. Intuitively, a good location for the
station should reach as many sensors as possible within a reasonable distance. Where should the
station be set up?

In this paper, we generalize the motivating example and formulate the max coverage
region (MCR) problem. Informally, given a set of spatial objects in the road network, we
wish to find a location, such that the objects within its coverage are maximized. Here, we
assume that an object is in the coverage of a location if the road network distance between
the object and the location is no larger than a given threshold.
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Example 2. Consider the example in Figure 1. The road network consists of nine nodes and nine
edges. The black dots represent four spatial objects. Assume the coverage radius is 4. When the
station is placed at the black square, it covers o1, o2, and o3. The shortest path between the station
and each covered object is highlighted in red. As no other location can cover more than three spatial
objects, the black square is the result that the MCR problem aims to return.

station

2

2

2 33

1

3

5

Figure 1. An example of a road network. The numbers on the edge indicates the length of the road
segments.

It is non-trivial to solve the MCR problem. In the road network, there are infinite
candidate locations and it is prohibitively expensive to consider all these locations in the
search of the max coverage region. Moreover, in order to determine whether the region
at a location has the maximum coverage, it is required to compute the network distance
between the location and many objects, which is also expensive. Thus, these demand
techniques that can efficiently identify the optimal location over very large volumes of
spatial objects.

To address the aforementioned challenges, we first propose the most overlapped interval
(MOI) problem. Instead of searching for the optimal location from the infinite set of
candidate locations, we construct an equivalent MOI problem and design an effective
algorithm based on a linear scan to solve it. This reduction greatly reduces the search space.
However, even if we can search an edge efficiently, it becomes prohibitively expensive
if we search every edge. Therefore, we propose an edge-level upper-bound estimation
method. By acquiring the upper bounds for every edge, we search the edges in a greedy
manner and terminate immediately when the upper bound of the remaining edges is worse
than the current known optimal location. In some scenarios, it is acceptable to sacrifice a
little accuracy for much better efficiency. Motivated by this, we further propose two highly
efficient solutions that find results with comparable quality. According to our experiments,
the runtimes of the approximate solutions are only 1

8 of the exact solutions. To demonstrate
the superiority of our proposed solutions, we conducted extensive experiments on five
real-world road network datasets. The experiments show that our solutions are capable of
handling large-scale datasets and could find satisfying results.

Our paper is related to the community search/detection problem, the best region search
problem, and the location selection problem. We will elaborate on these three problems in turn.

Best region search problem. The best region search problem aims to find the location
of a given-size rectangular region such that the score of the region is maximized. This
kind of problem is first proposed and investigated as the maximizing range sum (MaxRS)
problem [1,2] in the computational geometry community. The score of a region in the
MaxRS problem is the number of spatial objects inside the region. Imai et al. [2] developed
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an efficient algorithm to find the position of the rectangle of the given size enclosing the
maximum number of spatial objects. The algorithm’s complexity is O(n log n), where n is
the number of spatial objects. Nandy and Bhattacharya [1] reduced the MaxRS problem to
a rectangle overlapping problem and then designed a sweep-line-based algorithm with
the same time complexity O(n log n). Choi et al. [3] thoroughly investigated the MaxRS
problem. They assumed that the scalability of the spatial object was too large to be placed in
memory. They proposed an external memory algorithm based on the in-memory O(n log n)
algorithm. Tao et al. [4] proposed sacrificing some accuracy for better efficiency. They
proposed a (1− ε)-approximate algorithm for addressing the MaxRS problem efficiently.
Feng et al. [5] generalized the MaxRS problem to propose the best region search problem,
where the score of a region was generalized from the SUM to a user-defined submodular
monotone function. Mostafiz et al. [6] extended the MaxRS problem by taking the types of
spatial objects into account. Users can issue constraints on the types of spatial objects while
searching for the region with the maximum total weight. Feng et al. [7] next proposed an
attribute-aware similar function to evaluate the similarity between regions. Users can issue
a query region to search for regions that have similar attribute distributions. Moreover,
researchers proposed the use of a semantic window [8] and searchlight [9] to investigate the
region search problem in an interactive data exploration manner for multidimensional data.
All of this work focuses on finding the location of a rectangular region in the Euclidean
space. In this paper, we aim to find the optimal location for a station whose coverage is
defined as a subgraph on the road network. In addition, the aforementioned region search
problems require users to specify the width and the height of the rectangular region, which
is difficult to set. In contrast, in this paper, we eliminate the shape-related parameter and
only let the users specify the radius of the coverage, which is intuitive and straightforward.
Thus, the aforementioned studies are different from our problem.

The length-constrained maximum-sum region (LCMSR) query [10] is the most relevant
to our work. Given a spatial network and a set of query keywords, the LCMSR query
returns a subgraph from the road network such that (1) the distance between any pair of
nodes in the subgraph is no larger than a threshold, and (2) the total textual relevance
between the keywords on each node in the subgraph and the query keywords is maximized.
The LCMSR problem differs from our problem in the following aspects: (1) The LCMSR
problem imposes a length constraint on the pairwise distance to control the shape of the
region, making the LCMSR problem NP-hard. In contrast, in our paper, we assume the
coverage of a station is a subgraph centered at a location in the road network. As we
will show in Section 2.2, our proposed problem can be solved in polynomial time. (2) The
LCMSR problem only considers the nodes in the spatial network; however, in this paper, we
assume that spatial objects can be located at any location on any edge in the road network.
Therefore, the techniques proposed for LCMSR cannot be applied to solve our problem.

Location selection problem. Our MCR problem is related to the location selection
problem. The location selection problem aims to find the location for a new facility, such that
a certain objective function is optimized. As input, the min-dist optimal-location query [11]
uses a set S of sites, a set O of weighted objects, and a spatial region Q. It returns a location
in Q, which, if a new site is built there, minimizes the average distance from each object to
its closest site. Xiao et al. [12] extended the location selection problem to road networks,
as movements between spatial locations are usually confined by the underlying road
network in practice. Chen et al. [13] also investigated the location selection problem in road
networks, but they considered minimizing the maximum distance between any client and
the site that served him/her. Another class of studies aimed to find the location for a new
server to maximize its influence. For instance, Du et al. [14] assumed that the influence of a
new site is the total weight of its reverse nearest neighbors, i.e., the total weight of objects
that are closer to this site than the others. They consider this problem in the L1-norm space.
Moreover, Cabello et al. [15] studied this problem in the L2-norm space and a very efficient
algorithm was proposed [16]. Choudhury et al. [17] incorporated textual information into
this problem and only considered the reverse k-nearest neighbors that were textual relevant
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to the query keywords. Zhou et al. [18] and Yan et al. [19] also considered the problem with
different definitions of influence, respectively. Moreover, many works [20–22] investigated
the problem of selecting the top-k locations. The location selection problem differs from
the MCR problem, as it cares about the reverse nearest neighbors of the new site. In other
words, the new site has to compete with other sites to affect more objects. In our paper, the
location of the station is independent. We only need to find the optimal location to cover as
many objects as possible without considering the effect of other competing stations.

The contributions of this paper are summarized as follows:

• We formulated the max coverage region (MCR) problem. To reduce the search space,
we propose a most overlapped interval (MOI) problem and prove that it is equivalent
to solving the MOI problem. This idea greatly reduces the search space from infinite
candidate locations to O(|S|) intervals.

• To address the MCR problem, we developed an edge-level upper-bound estimation
method. This enabled us to search the road network in a greedy manner.

• We propose two approximate solutions. They are highly efficient and return results
with comparable quality.

• Extensive experiments were conducted on five real-road network datasets. The results
demonstrate the efficiency and effectiveness of our proposed solutions.

The remainder of this paper is organized as follows. Section 2 formally introduces the
max coverage region problem and presents the details of the solutions. Section 3 presents
the results and the discussions. Finally, Section 4 concludes the paper.

2. Method
2.1. Problem Definition

In this subsection, we first present the max coverage region (MCR) problem.

Definition 1 (Road Network Graph). A road network G = (V, E, w) consists of a set of nodes
V, a set of undirected edges E ⊆ V ×V, and a distance function w : E→ R. Each node v ∈ V is a
spatial location v = (lat, lng), where (lat, lng) are its coordinates.

A set O of data objects resides on the road network. Each data object oi ∈ O is a point on an
edge e ∈ E.

The road network graph models the roads in real life, where each node v ∈ V repre-
sents a road junction, and each edge e ∈ E represents a road segment. Data objects can be
the locations of vehicles or pedestrians.

Consider the example in Figure 1, where the road network consists of nine nodes and
nine edges. There are four data objects o1, o2, o3, and o4. The four data objects are located
on edges (v2, v3), (v1, v2), (v6, v7) and (v5, v9), respectively.

Remark 1. Note that in this paper, we assume that the spatial objects are located on the edges of the
road network. At first glance, it may seem that we can treat the spatial objects as nodes and build a
new graph. However, this is not appropriate due to the following reasons: (1) In real-life scenarios,
the spatial objects are usually used to represent points of interest, user check-ins, and GPS locations.
Compared with the road network, such spatial objects may change rapidly. If we transform these
spatial objects in the nodes in the network, we may need to frequently update the network when these
spatial objects change, which would be very inefficient. (2) As we treat the spatial objects separately,
we can store and manage the set of spatial objects on each edge together and build an efficient index.
This enables us to access spatial objects efficiently.

Definition 2 (Coverage). Let p be a location in the road network. Given a threshold γ, a data
object (o) is in p’s coverage if the road network distance between p and o is no larger than γ, i.e.,
dist(p, o) ≤ γ.
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In Figure 1, the shortest paths between the station and o1, o2, and o3 are highlighted in
red. In Figure 1, the distances between the station and o1, o2, and o3 are 3, 4.

Definition 3 (The MCR Problem). Consider a road network graph G. Given a set (O) of data
objects that reside on the road network and a threshold γ, and given a road network graph and a set
of data objects that reside on the road network, the MCR problem aims to find the optimal location
for a station, such that the number of data objects that are covered by the station is maximized.

2.2. An Exact Solution

The MCR problem requires selecting the best location for a station to cover as much as
spatial objects as possible. Intuitively, the optimal location can be located at any point in
the road network. Apparently, it is prohibitively expensive to enumerate all points, which
is infinite. To tackle this challenge, we first present an effective exact method for the MCR
problem. To this end, we first introduce how to select the best point on a given edge (u, v)
that covers the maximum number of spatial objects.

2.2.1. Searching an Edge for the Optimal Location

To search for the point that covers the maximum number of spatial objects of an edge,
a naive idea is to evaluate the number of objects that are covered by each point on this edge.
For instance, take Figure 2a as an example, where the blue point p is a point on the edge
(v1, v4). For the blue point p on the edge (v1, v4), we explore close objects within the given
radius by expanding from p. The coverage of p is highlighted in red. As can be seen from
the figure, objects o1 and o3 are covered by p. By repeating this procedure for every point
on the edge (v1, v4), we can find the optimal location on this edge. Unfortunately, as there
is an infinite number of points, this idea is prohibitively expensive.

Figure 2. In (a), the coverage of point p is highlighted in red. Point p covers spatial objects o1 and o3.
In (b), the coverage of o1, o2 and o3 are highlighted in red, grey and green, respectively. Point p is in
the coverage of o1 and o3.

To address the above issue, we propose the most overlapped interval (MOI) problem. We
then show that we can reduce the problem of searching for the optimal point on the edge
to solve the most overlapped interval problem, which can be solved efficiently. We next
give the formal definition of the MOI problem and illustrate how to perform the reduction
with a detailed example.

Definition 4 (Most Overlapped Interval). Given an edge (u1, u2), a segment is a part of the
edge bounded by two endpoints ps and pe on the edge. Let S = {(ps

1, pe
1), . . . , (ps

k, pe
k)} be

a set of segments on the edge. The most overlapped interval problem aims to find the interval
(ps, pe), ps, pe ∈ {ps

1, . . . , ps
k, pe

1, . . . , pe
k}, such that (ps, pe) overlaps with the maximum number

of segments.

Example 3. Consider the example in Figure 3, where there is one edge and four segments. The
endpoints of the segments divide the edge into six intervals. We notice that intervals I1 and I2
overlap with three segments, which is more than other intervals. Thus, both I1 and I2 are the most
overlapped intervals on the edge.
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Edge

Segments

Figure 3. Most overlapped interval problem.

To explain how we can reduce the problem of searching for the optimal point on
the edge of the MOI problem, we first present the following observation. Consider edge
(v1, v4) in the example in Figure 2a. We observe that spatial object o1 is in the coverage of
point p (highlighted in red). Inversely, if we draw the coverage of o1, we notice that point
p is located at the interval I1, which is the overlap between o1’s coverage and the edge
(v1, v4). In fact, any point on the interval I1 can cover o1. Motivated by this observation, a
natural idea to identify the overlap between (v1, v4) and every spatial object’s coverage.
Each overlap corresponds to a segment on the edge (v1, v4). We can then find the most
overlapped interval. Any point on this interval is an optimal location on the edge (v1, v4)
that covers the maximum number of spatial objects. The following example demonstrates
the reduction from Figure 2a.

Example 4. There are three spatial objects (o1, o2, and o3) in Figure 2a. For each spatial object,
we draw the coverage of o1, o2, and o3, which are highlighted in red, gray, and green, respectively.
Each object’s coverage overlaps with edge (v1, v4) and the resulting segments divide the edge into
three different intervals, denoted as I1, I2, and I3. Interval I1 overlaps with the red and the green
segments, while I3 overlaps with the green and the gray segments. Thus, I1 and I3 are the most
overlapped intervals. We can pick a point p from I1 and return it to users as a result.

We showed how to reduce the problem of searching an edge for the optimal point to
the most overlapped interval problem. Two questions are to be answered: (1) Which spatial
objects should we consider to compute the overlap between the edge and their coverage so
that we can generate the segments for the MOI problem? (2) How do we address the MOI
problem efficiently? We next elaborate on the two questions in turn.

Identifying valid spatial objects.

As we demonstrated above, the input of the reduced MOI problem is the set of
segments, each of which is the overlap between a spatial object’s coverage and the edge.
Some spatial objects are very far from the edge, such that any point on the edge cannot
reach the object. It is unnecessary to consider such spatial objects while we are generating
the overlapped segments for the MOI problem. Thus, to identify the valid spatial objects
to generate segments for the reduced MOI problem on the edge (u, v), we can divide the
spatial objects into three classes as follows:

Case 1: Irrelevant objects. A spatial object (o) is an irrelevant object to the edge (u, v)
if no point on (u, v) can reach o within the radius γ. As a result, we do not need to consider
such objects when searching for the most overlapped interval. We can easily derive the
following lemma to verify whether a spatial object is irrelevant.

Lemma 1. If dist(o, u) > γ and dist(o, v) > γ, then o is an irrelevant object to (u, v).

Proof. For any point p on (u, v), its distance to o is dist(p, o) = min(dist(p, u) + dist(u, o),
dist(p, v) + dist(v, o)). Since dist(u, o) > γ, dist(v, o) > γ, it is obvious that dist(p, o) > γ.
Thus, o is an irrelevant object.
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Case 2: Fully-covered objects. A spatial object (o) is a fully-covered object to edge
(u, v) if any point on (u, v) can reach o within the radius γ. Thus, it is unnecessary to
consider o anymore when searching the edge (u, v) for the most overlapped interval. We
derive the following lemma to verify whether o is a fully-covered object.

Lemma 2. An object (o) is a fully-covered object to (u, v) if at least one of the following conditions holds:

1. dist(o, u) < γ− |(u, v)|;
2. dist(o, v) < γ− |(u, v)|;
3. dist(o, u) + dist(o, v) <= 2γ− |(u, v)|.

Proof. It is obvious that o is a fully-covered object when the first two conditions hold. For
the third condition, consider a point p on the edge (u, v). We

dist(p, o) = min(dist(p, u) + dist(u, o), dist(p, v) + dist(v, o))

≤ 1
2
· (dist(p, u) + dist(u, o) + dist(p, v) + dist(v, o))

=
1
2
(|(u, v)|+ dist(u, o) + dist(v, o))

(1)

Since dist(o, u) + dist(o, v) < 2γ− |(u, v)|, we dist(p, o) ≤ γ, i.e., any point (u, v) can reach
o within the radius γ.

Case 3: Partially covered objects. A spatial object (o) is a partially covered object to
edge (u, v) if some points on (u, v) can reach o within the radius, while the other points
cannot. Therefore, to search for the optimal point on the edge (u, v), we need to find all
partially covered objects and determine the most influenced interval. To verify whether an
object is a partially covered object to (u, v), we present the following lemma.

Lemma 3. An object (o) is a partially covered object if the following two conditions hold:

1. dist(o, u) + dist(o, v) > 2γ− |(u, v)|
2. γ− |(u, v)| < dist(o, u) < γ, or γ− |(u, v)| < dist(o, v) < γ

Proof. According to the definition of partially covered objects, we consider the following
three cases: (1) As shown in Figure 4a, only the points on the interval (u, po

u) can reach o
within γ through node u; (2) only the points on the interval (v, po

v) can reach o within γ
through v; and (3) points on both intervals (u, po

u) and (v, po
v) can reach o within γ through

u and v, respectively. By considering the three cases, we can easily derive the inequalities
in the lemma.

(a) (b) (c)

Figure 4. Three cases of partially covered objects. In (a), object o can be reached from edge (u, v)
through u. In (b), object o can be reached from (u, v) through v. In (c), object o can be reached from
(u, v) through either u and v.

The above three cases indicate that we only need to consider the segments concerning
the intersection between the partially covered object’s coverage and the edge (u, v).

Solve the MOI problem
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We showed how to identify the set of spatial objects whose coverage on the edge
(u, v) should be considered in the MOI problem. With the MOI problem constructed,
how can one efficiently find the most overlapped interval? To answer this question, one
straightforward idea is to maintain a counter for each interval and iterate over all segments
to update the counter of every overlapped interval. We refer to this algorithm as the
MOIEnumerate algorithm.

MOIEnumerate Algorithm. Algorithm 1 shows the pseudocode of the straightfor-
ward idea. The algorithm takes as input a set S of segments on the edge (u, v) and outputs
the most overlapped interval Ime. The algorithm first collects the endpoints from all seg-
ments (lines 1–3) and sorts the endpoints (line 4). It computes all intervals bounded by
every two consecutive endpoints (line 5). Next, the algorithm iterates over all segments
(lines 6–8). For each segment, it computes the overlapped intervals (line 7) and increases
the associated counters by 1 (line 8). When all segments are processed, we choose the
interval with the largest counter (line 9) and return it to the user as the final result.

Algorithm 1: MOIEnumerate.
Input: A set S of segments on the edge (u, v)
Output: The most overlapped interval Imo and the number of overlapping

segments.
1 B← ∅ for (ps, pe) ∈ S do
2 B.add(ps);
3 B.add(pe)

4 Sort(B);
5 I = {(B[i], B[i + 1])fori ∈ [0, |B| − 1]};
6 for s ∈ S do
7 Is ← the intervals that overlap with s for Ii ∈ Is do
8 Ii.count+ = 1;
9 Imo ← arg maxI∈I I.count;

10 return Imo, Imo.count

Complexity Analysis. It takes O(|S| log |S|) to sort the endpoints of all segments,
where |S| is the number of segments. The 2|S| endpoints divide the edge into O(S) intervals.
Then, for each segment, we need to locate the intervals that are covered by the segment and
update the counter for each interval. Thus, it takes O(|S|) time to process one segment, and
there are O(|S|) segments to be processed. Therefore, the total complexity of Algorithm 1
is O(|S|2).

The MOIEnumerate algorithm is easy to implement. However, an expensive operation
in the algorithm is the counter-updating operation, i.e., for each segment, we need to iden-
tify the overlapped intervals and update their counters in turn. The number of overlapping
intervals is O(|S|); thus, the MOIEnumerate algorithm scales poorly with respect to the
number of segments.

MOILinearScan Algorithm. To tackle this efficiency issue of the MOIEnumerate al-
gorithm, we next analyze the MOI problem and design an efficient linear scan-based
algorithm, named MOILinearScan. We use the following example to explain the intuition
behind the algorithm.

Example 5. Consider the example in Figure 5. The endpoints of the segments divide the edge (u, v)
into several disjoint intervals. In the example, p1, . . . , p8 are the endpoints of four segments. We
mark the left endpoints in red and the right endpoints in blue.

Assume we move a sweep point from u to v (from left to right). The sweep point first meets the
left endpoint p1 of segment s1. From now on, the sweep point overlaps with segment s1. We keep
moving the sweep point until it meets the left endpoint p2 of segment s2. The sweep point overlaps
with s1 and s2 now. Similarly, when the sweep point meets the left endpoint p3 of segment s3, the
sweep point overlaps with segments s1, s2, and s3. Then, the next endpoint the sweep point meets is
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p4, which is the right endpoint of segment s2. After that, the sweep point only overlaps with s1 and
s3. We keep moving the sweep point until it reaches the end of this edge, i.e., v.

Assume a sweep point is moving from left to right. From the above example, we can
observe the following properties:

Property 1. When the sweep point meets a left endpoint of any segment, the next interval is
overlapped with this segment.

Property 2. When the sweep point meets the right endpoint of any segment, the next interval is no
longer overlapped with this segment.

The two properties tell the status of consecutive intervals. Recall that each interval is
bounded by two endpoints. If the endpoints do not overlap with each other, the difference
between the number of overlapped segments of two consecutive intervals is 1. For instance,
p1, p2 overlap with one segment, while p2, p3 overlap with two segments. Similarly, p3, p4
overlap with three segments, while p4, p5 overlap with two segments.

From the two properties, we derive the following lemma, which is the key to the
MOILinearScan algorithm.

Lemma 4. Among all intervals on the edge (u, v), the interval between a left endpoint and a right
endpoint has the maximal number of overlapped segments, compared to its adjacent intervals.

Proof. The two properties indicate the set of overlapped segments of such an interval and
its adjacent intervals. Thus, the lemma is easily proved.

This inspired us to use a design a sweep point-based method to search for the most
overlapped interval. Specifically, we use a sweep point to scan the edge from left to right.
During the sweeping, we maintain a counter to record the number of overlapped segments,
keeping in mind the type of the recently passed endpoint, i.e., whether it is a left endpoint
or a right endpoint of a segment. If we encounter an interval bounded by a left endpoint
and a right endpoint consecutively, it is a maximal interval, which means the overlapped
segments of this interval are larger than the adjacent intervals. We refer to this algorithm as
MOILinearScan.

Algorithm 2 shows the pseudocode of MOILinearScan. The algorithm takes (as input)
a set S of segments on the edge (u, v), and outputs the most overlapped interval Imo.
Initially, the algorithm collects the left and right endpoints of all segments and stores them
in lists L and R, respectively (lines 2–3). Both lists are sorted in ascending order (line 4).
The variable start is initialized as L[0], representing the last endpoint the sweep point has
encountered, and counter count (lines 5–6). Next, it iteratively pops endpoints from L and
R, representing moving the sweep point from left to right (lines 7–15). In each iteration, if
L[0] < R[0], it means the sweep point meets a left endpoint, and the following interval’s
counter will be increased by 1 (lines 8–10). Otherwise, it means the sweep point meets the
right endpoint and the current interval’s counter is larger than its adjacent intervals. If
the current interval’s counter is larger than the record cmax, we record the interval and its
counter with Imo and cmax. When all left endpoints are processed, we can terminate the
iteration (lines 16–17) and return Imo to users.

Example 6. Consider the example in Figure 5. The two lists are sorted as L = [p1, p2, p3, p7],
R = [p4, p5, p6, p8]. The variable start is initialized as p1, and count is initialized as 1. In the first
iteration, p2 is ’popped’ from L, as p2 = L[0] < R[0] = p4. We update start = p2, count = 2. In
the second iteration, p3 is ’popped’ from L, and start = p3, count = 3. In the third iteration, p4
is ’popped’ from R. In this case, the interval p3, p4 is a maximal interval. We use cmax = 3 and
Imo = p3, p4 to record this interval. By repeating this process, we can know the counter for every
interval. Since interval p3, p4 has the maximum counter, we return it to the user as the final result.
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Complexity Analysis. It takes O(|S| log |S|) time to sort the left/right endpoints of
the |S| segments. We next process an endpoint from either L or R in every iteration, and
there are O(|S|) iterations. Putting these together, the total complexity of Algorithm 2 is
O(|S| log |S|).

Edge

Figure 5. Property analysis of the MOI problem. The red dashed lines correspond to the left endpoints
of intervals, while the blue dashed lines correspond to the right endpoints of intervals.

Algorithm 2: MOILinearScan.
Input: A set S of segments on the edge (u, v)
Output: The most overlapped interval Imo and the number of overlapped

segments.
1 L← ∅, R← ∅, count = 0, cmax = −∞;
2 for (ps, pe) ∈ S do
3 L.add(ps), R.add(pe)
4 Sort(L), Sort(R);
5 start← L[0],L.pop_ f ront();
6 count← 1;
7 while L 6= ∅ and R 6= ∅ do
8 if L[0] < R[0] then
9 start← L[0], count← count + 1;

10 L.pop_ f ront();
11 else
12 if count > cmax then
13 cmax ← count, Imo ← (start, R[0])
14 count← count− 1;
15 start← R[0], R.pop_ f ront();
16 if L is ∅ then
17 break;
18 return Imo, cmax

2.2.2. Searching the Whole Road Network for the Optimal Location

In the previous subsection, we demonstrated how to search an edge for the optimal
location, such that a station placed on that location covered the maximum number of spatial
objects. Thus, in order to search the whole road network for the optimal point, the natural
idea is to repeat the previous procedure on every edge of the road network. For instance,
for every edge, we identify the partially covered objects and construct the corresponding
MOI problem and invoke Algorithm 2 to solve it. Unfortunately, this idea involves many
redundant operations, and it is unnecessary to examine every edge. In this subsection,
we present a method to estimate an upper bound for every edge to show the maximum
number of objects that a station on the edge can cover. With the upper bound, we can
examine the edges in a greedy manner, which greatly reduces the search space.

Estimating Upper Bounds for Edges
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The upper bound of an edge tells us what is the maximum number of covered objects
if we place a station on the edge. A straightforward idea to define the upper bound is based
on partially covered objects and fully-covered objects that we introduced in Section 2.2.1.
Recall that fully-covered objects are the set of spatial objects that any point on the edge can
reach within the radius, while partially covered objects are the set of spatial objects that
only a part of points on the edge can reach within the radius. Therefore, The total number
of fully-covered and partially covered objects is an upper bound for the maximum covered
objects if we place a station on this edge. However, the spatial objects in the road network
are usually very large and could emerge rapidly. It would be expensive to check every
spatial object’s status. In contrast, the road network is relatively small and seldom changes.
As a result, we propose computing the upper bounds on the edge level.

To this end, a key question to be answered is: what is the upper bound of the distance
between two points p1 and p2, where p1 and p2 are from two different edges? To answer
this question, we use the example in Figure 6 to explain. In the example, (u1, u2) and
(v1, v2) are two edges, and p1 and p2 are two points on the two edges, respectively. We can
easily derive the distance between p1 and p2 as

dist(p1, p2) = min(dist(p1, u1) + dist(u1, v1), dist(v1, p2),

dist(p1, u1) + dist(u1, v2), dist(v2, p2),

dist(p1, u2) + dist(u2, v1) + dist(v1, p2),

dist(p1, u2) + dist(u2, v2) + dist(v2, p2))

(2)

Figure 6. An example of analyzing the relationship between edges.

As it is obvious that dist(p1, u1) ≤ len(u1, u2), dist(p1, u2) ≤ len(u1, u2), dist(p2, v1) ≤
len(v1, v2), dist(p2, v2) ≤ len(v1, v2), where len(v1, v2)/len(u1, u2) is the length of edge
(v1, v2)/(u1, u2). We define the function UB((u1, u2), (v1, v2)) as follows

UB
(
(u1, u2), (v1, v2)

)
=min

(
len(u1, u2) + dist(u1, v1) + len(v1, v2),

len(u1, u2) + dist(u1, v2) + len(v1, v2),

len(u1, u2) + dist(u2, v1) + len(v1, v2),

len(u1, u2) + dist(u2, v2) + len(v1, v2),

1
4

(
2len(u1, u2) + 2len(v1, v2) + ∑

u={u1,u2}
∑

v={v1,v2}
dist(u, v)

))
(3)

We can easily derive that

dist(p1, p2) ≤ UB((u1, u2), (v1, v2)) (4)

The computation of function UB(·) only relies on the edge length (len(u1, u2) and
len(v1, v2)) and node pair distances (dist(u1, v1), dist(u1, v2), dist(u2, v1), dist(u2, v2)),
which means they can be efficiently computed. Moreover, as they give an upper bound
for the maximum point distances between two edges, they can be used to estimate the
coverage number upper bound on an edge. Specifically, given an edge e, we identify the set
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Ecan of candidate edges, such that for each edge e′ ∈ Ee
can, we UB(e, e′) ≤ γ. Apparently,

if an edge ê 6∈ Ee
can, it means no matter which location in e is the station placed, it cannot

cover the spatial objects in ê, as their distance would be larger than γ. We can simply add
up the number of spatial objects in every e′ ∈ Ee

can as the coverage number upper bound.

The Searching Algorithm

With the upper bound defined, we can search the graph in a greedy manner. The
edges with higher upper bounds are searched first. The search is terminated if the upper
bounds of the remaining edges are less than the coverage number of the current optimal
point. Algorithm 3 shows the pseudocode for searching the whole graph. It takes as input
the road network G(V, O, E) and a radius γ, and outputs the station location that covers
the maximum number of spatial objects. It uses a priority queue h to keep the edges and
their coverage number upper bound and h is initialized as empty (line 1). Initially, for
each edge e, it computes the coverage number upper bound and pushes it into the priority
queue (lines 2–5). Specifically, it first identifies the set Ee

can of edges such that the distance
upper bound UB(e, e′) does not exceed γ for every e′ ∈ Ee

can (line 3). Then it computes
the coverage number upper bound by adding up the number of objects on every edge
in Ee

can (line 4). With all upper bounds computed and pushed into h, it starts searching
greedily (lines 7–14). It uses popt to record the currently known optimal location and cnopt
to record its coverage number. In each iteration, it pops edge e with the maximum upper
bound from h (line 8). If the upper bound is less than cnopt, it is unnecessary to examine
the remaining edges and the search is terminated (liens 9–10). Otherwise, it constructs
the corresponding MOI problem on the edge e by generating the segments on e from the
objects on Ee

can (line 11). Then it invokes Algorithm 2 to solve the MOI problem and find
the optimal point p and its coverage number cn on the edge e (line 12). The current optimal
point popt is updated accordingly if cn > cnopt (lines 13–14). When the search is finished, it
returns popt and cnopt to the users as the final result.

Remark 2. In Algorithm 3, in order to compute the coverage number upper bound for each edge,
we need to identify the edge set Ee

can (line 3). For each edge e′ ∈ Ee
can, we compute UB(e, e′),

which involves many node pair distance computations. As an edge e′ can only be added into Ee
can if

UB(e, e′) ≤ γ, we do need to compute all pair-wise distances in the road network. In contrast, we
only need to perform a length-constrained Dijkstra algorithm for each node, i.e., compute the set of
nodes whose distance is less than γ. This is much more efficient.

Algorithm 3: MCRExact.
Input: A road network G(V, O, E), a radius γ
Output: The location p of a station that covers the maximum number of objects.

1 h← a priority queue;
2 for each edge e = (u, v) ∈ E do
3 Ee

can = {e′|UB(e, e′) ≤ γ};
4 cnmax ← ∑e′∈Ee

can
O(e′);

5 h.push((cnmax, e));
6 cnopt = 0, popt = null;
7 while h is not empty do
8 cnmax, e← h.pop();
9 if cnmax < cnopt then

10 break
11 Se ← segments on the edge e generated by the objects in Ee

can;
12 I, cn←MOILinearScan(Se), p← a random point on I;
13 if cn > cnopt then
14 cnopt ← cn, popt ← p;
15 return popt
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Complexity. To compute the coverage upper bound, we need to perform a length-
constrained Dijkstra algorithm for every node. Let O(n′) be the average complexity for
such a length-constrained Dijkstra algorithm. It takes O(|V| · n′) to initialize the priority
queue h. During the search, we need to compute the segments on the edge and invoke
Algorithm 2 to solve the constructed MOI problem. Let O(s′) be the number of generated
segments. It takes O(s′ log s′) to finish one iteration. Let k be the number of iterations that
we need to search. The total time complexity is O(|V| · n′ + k · s′ log s′).

2.3. An Approximate Solution

In the previous section, we demonstrated an exact solution to the MCR problem. We
notice that the complexity of the exact solution increases when the radius becomes larger, as
we visit more nodes in the length-constrained Dijkstra algorithm. In some scenarios, people
may focus more on efficiency than accuracy. They may intend to sacrifice a little accuracy
for much better efficiency. As a result, in this section, we present two approximate solutions.
Though they may not always return the exact result, they can still find satisfactory results
and are highly efficient.

Before we present the approximate solutions, we first analyze the search space of the
exact algorithm MCRExact. Recall that we computed the upper bound for each edge in
the network. The edges are searched in a greedy manner until the upper bound of the
remaining edges is smaller than the current result. As shown in Figure 7a, the edges that
are searched are marked in red. Apparently, it takes most of the runtime to search the
edges. There are infinite candidate locations on each edge. Even though we constructed a
corresponding MOI problem and reduce the search space from infinity to O(|S|), it is still
inefficient when there are many spatial objects. Moreover, when the network consists of
many edges, the total runtime will be much longer. Thus, to achieve better efficiency, we
propose two approaches, namely NodeApprox and EdgeApprox, which will be elaborated
on next.

(a) MCRExact (b) NodeApproximate (c) EdgeApproximate

Figure 7. The high-level idea of the exact approach and the two approximate approaches. The search
space of each approach is highlighted in red.

The NodeApprox approach. Instead of searching the edges in a greedy manner, the
NodeApprox approach adopts a totally different idea. Specifically, it only considers the
nodes in the network as the candidate locations, i.e., the station can only be placed on a
node in the road network. As shown in Figure 7b, only the nodes in the road network
are marked in red, which means we will only examine every node and find the node
that covers the maximum number of spatial objects. To examine a node, we can invoke a
length-constrained Dijkstra algorithm to obtain the number of covered spatial objects.

The complexity of this approach is O(|V| · n′), where n′ is the average complexity for
the length-constrained Dijkstra search, and |V| is the number of nodes in the road network.

The EdgeApprox Approach. The NodeApprox approach only considers the nodes in
the road network as candidate station locations. It totally disregards the candidate locations
on the edges, which makes it difficult to find satisfactory results in some scenarios. To
tackle this issue, we design EdgeApprox with the following ideas: We first apply a length-
constrained Dijkstra search for each node in the road network. Let cn(v) be the coverage
number of node v, i.e., the number of spatial objects that v can reach within the radius.
For each edge (u, v), we compute its score as Score((u, v)) = cn(u) + cn(v). Intuitively, if
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the two nodes have large scores, it is likely that the edge connecting the two nodes will
contain a satisfactory location for the station. We pick the edge with the maximum score
and construct a MOI problem on this edge. We invoke Algorithm 2 to solve the constructed
MOI problem and return the best point on this edge to the user as the approximate result.

The complexity of this approach is O(|V| · n′ + s log s), where |V| is the number of
nodes, n′ is the average complexity for the length-constrained Dijkstra search, and s is the
number of segments in the constructed MOI problem.

3. Results and Discussion
3.1. Experimental Setup

Datasets. In this paper, we use five real-world public datasets, namely NY, BAY, COL,
FLA, and NW (http://www.diag.uniroma1.it//challenge9/download.shtml (accessed on
31 January 2023)). These datasets are the road networks in New York City, San Francisco
Bay Area, Colorado, Florida, and Northwest USA, respectively. In the road network, each
edge represents a road segment and its weight is the physical distance of the road. For
each dataset, we randomly generate spatial objects and place them on the road network.
Specifically, the number of spatial objects on an edge is proportional to p((u, v)) ∝ deg(v) ·
deg(u) · dist(u, v), where deg(v)/deg(u) is the degree of node u/v, and dist(u, v) is the
length of the edge. Informally, if an edge is connected to nodes with a higher degree, or if
the edge is longer, it is likely to hold more spatial objects. Each edge holds about 15.2 spatial
objects on average. The details of the five datasets are reported in Table 1. We illustrate the
distribution of edge lengths in each dataset in Figure 8. As can be observed from the figure,
the lengths of most of the edges are smaller than 6000.

Table 1. Details of the datasets. # nodes, # edges, and # objects represent the numbers of nodes, edges,
and objects, respectively.

Dataset # Nodes # Edges Avg. Edge
Length

Median of Edge
Lengths # Objects

NY 264,346 733,846 1293.30 951 11,191,261

BAY 321,270 800,172 1630.17 992 12,202,944

COL 435,666 1,057,066 3499.81 1400 16,118,109

FLA 1,070,376 2,712,789 2043.46 1148 41,366,187

NW 1,207,945 2,840,208 3335.88 1449 43,309,864

(a) NY. (b) BAY. (c) COL.

(d) FLA. (e) NW.
Figure 8. Distribution of edge length in each dataset.

http://www.diag.uniroma1.it//challenge9/download.shtml
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Evaluated Algorithms. We evaluate the following algorithms. (a) MCRExact, the exact
algorithm for the MCR problem; (b) NodeApprox, the method that only considers nodes in
the road network as the candidate locations for the station; (c) EdgeApprox, the method that
only search the most promising edge.

Query Radius. Recall that the proposed approach involves many length-constrained
Dijkstra searches. Apparently, the edge length in the road network influences the efficiency
of the algorithm. Thus, it is not a good idea to use the same query radius on different
datasets. To consider the effect of edge length, we set τ = 0.5 · avg. edge length as the unit
query radius, where avg. edge length is the average edge length of the road network. We set
the query radius as γ = kτ. We can change the query radius by using different values for k.

Performance Measure. We consider the following performance measures: (1) the
runtime of each algorithm and (2) the coverage number, i.e., the number of spatial objects
that can be covered if the station is placed at the location returned by the algorithm.

All algorithms were implemented in Python 3.9.7. All experiments were run on a
Windows desktop with AMD Ryzen 7 5800H CPU and 16 GB memory.

3.2. Experimental Results

The efficiency of the proposed approaches. In this set of experiments, we evaluated
the efficiency of the proposed approaches on different datasets by varying the query radius.
The runtimes of the evaluated algorithms are reported in Table 2. From the table, we can see
that the proposed approximate solutions are much more efficient than the exact solution,
especially when the radius is small. This is because when the radius is large, the coverage
of a station is more likely to cover complete edges, which makes the upper bound more
tight. With a tighter upper bound, more edges can be pruned. In some cases, the runtimes
of the approximate solutions are about 1

8 of that of the exact solution. This illustrates that
the proposed approximate approaches are much more efficient than the exact algorithm.

Table 2. Runtime of the proposed approach vs. query radius (seconds).

NY

Method Radius
500 1000 1500 2000

MCRExact 40.37 46.12 18.48 19.67
NodeApprox 5.05 8.85 12.54 18.18
EdgeApprox 5.35 9.21 13.29 18.34

BAY

Method Radius
500 1000 1500 2000

MCRExact 48.46 48.43 48.23 39.90
NodeApprox 5.47 8.76 12.02 16.28
EdgeApprox 5.91 9.34 12.57 16.52

COL

Method Radius
1500 3000 4500 6000

MCRExact 80.63 45.34 38.94 56.29
NodeApprox 11.77 21.82 34.49 49.63
EdgeApprox 12.27 22.33 35.38 50.70

FLA

Method Radius
1000 2000 3000 4000

MCRExact 126.84 70.95 104.18 139.55
NodeApprox 27.18 48.15 74.20 102.48
EdgeApprox 28.86 49.44 76.55 104.92

NW

Method Radius
1500 3000 4500 6000

MCRExact 116.94 64.97 86.47 125.33
NodeApprox 32.05 57.96 91.57 129.75
EdgeApprox 34.08 59.99 94.09 132.28
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Quality of Results of the Approximate Solutions. We will now investigate the quality
of results of the approximate solutions. We vary the coverage radius and report the number
of covered spatial objects when the station is placed at the location returned by the solution
in Table 3. We observe that the approximate solutions return a comparative result as the
exact solution. For instance, in most datasets, the results of the two approximate algorithms
are about 98% of the results of the exact algorithm. In addition, we notice that when the
radius is larger, the gap between the quality of results of the approximate solution and the
exact solution is smaller.

Table 3. Result Quality of the approximate approach vs. query radius.

NY

Method Radius
500 1000 1500 2000

MCRExact 276 651 1172 1815
NodeApprox 275 648 1142 1765
EdgeApprox 245 650 1152 1815

BAY

Method Radius
500 1000 1500 2000

MCRExact 224 443 719 1133
NodeApprox 223 442 718 1110
EdgeApprox 195 442 718 1126

COL

Method Radius
1500 3000 4500 6000

MCRExact 331 1085 2224 3375
NodeApprox 330 1082 2223 3349
EdgeApprox 330 1080 2224 3375

FLA

Method Radius
1000 2000 3000 4000

MCRExact 453 1162 1716 2451
NodeApprox 451 1160 1713 2447
EdgeApprox 453 1162 1707 2448

NW

Method Radius
1500 3000 4500 6000

MCRExact 486 1453 2981 4802
NodeApprox 480 1447 2957 4777
EdgeApprox 480 1450 2980 4802

Effectiveness of upper bound. Recall that in the exact solution, we design an upper
bound for each edge so that we can search the edges in the graph in a greedy manner. In
this set of experiments, we investigate the effectiveness of the upper bound.

Firstly, Table 4 reports the number of edges that are searched in the road network and
its ratio to the total number of edges. A smaller value means that many edges are pruned by
their upper bounds. We observe that only a small ratio of edges are searched. In most cases,
less than 1% of edges are searched. This demonstrates the effectiveness of our proposed
pruning technique. In addition, as can be observed from the table, the ratio of the edges
that are searched decreases as the radius increases. This is because more complete edges
are fully covered when the radius is large. Recall that in the upper bound computation, we
consider all spatial objects on both fully-covered edges and partially covered edges. When
there are more fully-covered edges, the upper bound is tighter, which means we can prune
more edges.

Secondly, we compare the runtime of the exact solution when the upper bound-based
pruning technique is removed, i.e., we do not terminate the algorithm early and keep
searching until all edges have been examined. Figure 9 reports the runtime of the exact
solution with and without the upper bound-based pruning. As can be observed from
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the figure, when there is no pruning, the runtime increases as the radius increases. The
gap becomes more obvious when the radius is large. When the radius is 2000, the exact
algorithm with pruning is about an order of magnitude faster than the counterpart without
pruning. This demonstrates the effectiveness of the upper bound.

Table 4. Effectiveness of the pruning technique based on the upper bound. The table reports the
number of edges that are searched, and the ratio to the total number of edges.

NY

Radius 500 1000 1500 2000

#examined edge 82,614 37,777 4739 2243

Ratio 11.26% 5.15% 0.65% 0.31%

BAY

Radius 500 1000 1500 2000

#examined edge 102,053 53,284 32,089 14,749

Ratio 12.75% 6.66% 4.01% 1.84%

COL

Radius 1500 3000 4500 6000

#examined edge 109,971 14,911 1751 1736

Ratio 10.40% 1.41% 0.17% 0.16%

FLA

Radius 1000 2000 3000 4000

#examined edge 133,825 18,203 16,395 15,455

Ratio 4.93% 0.76% 0.60% 0.57%

NW

Radius 1500 3000 4500 6000

#examined edge 115,775 5886 477 311

Ratio 4.08% 2.07% 0.02% 0.01%

Figure 9. The effect of upper-bound-based pruning on runtime.

The efficiency of MOIEnumerate and MOILinearScan. Recall that in order to solve
the constructed MOI problem, we designed two algorithms, namely MOIEnumerate and
MOILinearScan. In this set of experiments, we investigated the efficiency of the two al-
gorithms. Specifically, we randomly generated segments on an edge to obtain two types
of instances of the MOI problem: (1) In the first type, the segments were generated by
following the uniform distribution, i.e., the endpoints of the segments were randomly
drawn from uniform distribution independently. Thus, the segment length was not fixed.
(2) In the second type, the length of the segments was fixed. The center of each segment was
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randomly drawn from a normal distribution. Figure 10 reports the runtimes of MOIEnumer-
ate and MOILinearScan w.r.t. the number of segments. From the figure, we observe that (1)
the runtime of MOIEnumerate increases rapidly as the number of segments increases. This
is consistent with its complexity, which is O(|S|2), where |S| is the number of segments in
the MOI problem. (2) MOILinearScan scales well and is almost linear w.r.t. the number of
segments. The results show that the proposed Algorithm 2 is highly efficient.

(a) Runtime of MOIEnumerate. (b) Runtime of MOILinearScan.

Figure 10. Runtime of MOIEnumerate and MOILinearScan vs. the number of segments.

Scalability. Finally, in this set of experiments, we evaluated the scalability of the three
proposed approaches. We used the largest road network NW and increased the number of
spatial objects in the road network from 2,200,849 to 107,215,000. We used a fixed query
radius of 1500 and report the runtime of the three approaches in Figure 11. As can be
seen from the figure, all three approaches scaled well with respect to the number of spatial
objects. This demonstrates the superiority of our proposed approaches.

Figure 11. Scalability.

4. Conclusions

In this paper, we propose a novel problem named max coverage region (MCR). The
problem aims to select the optimal location for a station in the road network, such that the
station can cover as many spatial objects as possible. There are an infinite set of candidate
locations in the road network. To tackle this challenge, we propose the most overlapped
interval (MOI) problem and show that we can solve the MCR problem by solving the MOI
problem. With this reduction, we propose a linear scan-based algorithm to efficiently solve
MOI in O(|S| log |S|) time. We further propose an edge-level upper bound estimation
method to prune unnecessary edges to improve the efficiency. In addition to the exact
solution, we propose approximate solutions to sacrifice a little accuracy for much better
efficiency. We conducted extensive experiments on five real-world road networks and
demonstrate the effectiveness and efficiency of the proposed solutions.
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