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Abstract: We developed a kind of fiber optic seismometer array for a high mountain glacier and
first tested it on the Kuoqionggangri Glacier in the Tibetan Plateau. The array clearly recorded
substantial passive seismic source signals of various icequakes, including shallow, deep and hybrid
events. These fracturing activities indicate that crevasses and/or fractures developed in the glacier.
We further obtained the glacial thickness of about 40 m by analyzing the active seismic source after
hitting the glacier surface with a hammer based on the seismic scattering method. Most importantly,
we observed a low shear wave velocity layer with a large velocity drop of ~28% and thickness of
about ~7 m in the lower glacier. It is inferred that the low-velocity layer may represent a temperate
ice layer. Our experiment provides a kind of feasible seismic observation to study icequakes and
the englacial structure of Tibetan glaciers, offering new insights for evaluating glacier change in the
Tibetan Plateau.

Keywords: fiber optic seismometer; icequake; glacial structure; temperate ice; Kuoqionggangri
Glacier; Tibetan Plateau

1. Introduction

Since the 1960s, the glaciers in the Tibetan Plateau (TP) have experienced a markedly
rapid retreat and accelerated melting with climate warming [1–3], leading to accelerated glacial
mass loss [2,4], glacier surging and avalanches [5–7]. These changes have produced profound
challenges for human activity [8–11]. The thermal regime and hydraulic conditions of a
mountain glacier controls its flow rheology and basal conditions affecting glacier dynamics,
which in turn affect its behaviour in response to climate change. Icequakes and glacial
structure can provide essential constraints for the thermal and hydrous states of glaciers.

Seismic observations have been broadly applied to study icequakes and glacial struc-
ture in the Alps, Himalayas, Alaska, Greenland and Antarctica [12–22]. These studies
observed various shallow and deep icequakes, englacial low seismic velocity, fluid reso-
nance and tremors, which were generally explained to be related to temperature and/or
water. Until now, there have still been relatively few seismic observations in the glaciers of
the TP, namely, a few icequake observations using sparse traditional broadband [23] and
short-period [24,25] seismometers.

With the rapid development of fiber optic sensor and photoelectron technologies, fiber
optic seismometers were born [26–28]. Compared with traditional seismometers, they use
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optical fiber as the sensing and signal transmission medium without any electronic devices,
and can work stably for a long time in an extremely low temperature and underwater
environment. What is more, fiber optic seismometers are relatively inexpensive for high-
resolution seismic observation. There are two main kinds of fiber optic seismometers,
namely, distributed optical fiber acoustic sensing (DAS) and fiber optic seismometer array
(FOSA). DAS systems typically measure the high-density distributed strain or strain rate
along a fiber optic cable. This technology inputs laser pulses into an optical cable, and
measure optical phase changes in Rayleigh backscattered light. It requires the particle
strain–velocity conversion model for the study of underground velocity structure, which
would produce some errors [26,27]. FOSA consists of many Michelson fiber interferometers
in series on one fiber optic cable, and interrogates the phase of each fiber interferometer by
laser. Compared with the DAS, the FOSA can directly measure single-component or three-
component acceleration seismic waves without needing the particle velocity conversion
model, and has a lower noise level [28]. The DAS and FOSA have been broadly applied to
study continental shallow structure and earthquakes [28–33]. Recently, there have also been
many reports about the DAS being used to detect glacial structure and seismicity [34–38].
Related research regarding the FOSA has not been performed.

We carried out an experimental observation using the dense FOSA on the Kuoqionggan-
gri (KQGR) Glacier in the TP on 7 August 2021 (Figure 1). The KQGR glacier is located at
the southern TP, with an elevation of 5540–5840 m and area of 1.02 km2. Its surface melted
significantly and developed many marginal lakes (Figure 1c). The FOSA worked well in the
extreme high mountain environment with low temperature and atmospheric pressure. We
obtained high-quality records at 16 seismometers with high-frequency sampling of 1000 Hz.
There are substantial passive source signals of shallow and deep icequakes with different
spectrum signatures in these records. Based on active source data from hitting the glacier
surface with a hammer, we obtained the thickness and seismic velocity of the glacier using the
seismic scattering method [39,40]. These results provide new observational evidences for the
glacial activity and englacial structure anomaly related to temperature and water in the TP.
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Figure 1. The installed FOSA consisting of 16 seismometers on the KQGR Glacier in the TP. (a) The 
study area. The red star marks the location of the KQGR Glacier. (b) The KQGR Glacier. The black 
box shows the location of the installed seismometers. (c) The installed 16 seismometers. The blue 
and pink pentagons are the seismometers with intervals of 10 m and 1 m, respectively. 
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2.1. Fiber Optic Seismometer Array 

We developed a kind of FOSA, which consists of 16 fiber optic seismometers. Each 
seismometer is connected by a 25 m 16-core single-mode optical cable. The seismometer 
is an all-metal optic fiber accelerometer based on an optic fiber Michelson interferometer 
and double diaphragm structure [41]. The acceleration sensitivity of the accelerometer is 
calibrated by a standard shake table. The seismometer has a flat sensitivity response, and 
good sensitivity consistency. The sensitivity of the seismometer is about 41 dB (re: 0 dB = 
1 rad/g) with a fluctuation less than ±1.5 dB within the frequency range from 1 to 500 Hz. 
The seismometer is vertical with a tilt tolerance of 25°. Its metal shell has good sealing 
performance. The seismometer can be directly used in underwater or glacial melt water 
and has a wide working temperature range from −80 °C to above 100 °C.  

The signal interrogator of the FOSA is based on the optic interferometric phase de-
modulation method and phase generation carrier (PGC) algorithm [42]. The phase noise 
level is about 118 dB @5 Hz (1.26 × 10−6 rad/√Hz @5 Hz), which is two or three orders of 
magnitude better than the DAS. The system noise level is about 12.6 ng/√Hz @5 Hz con-
sidering the sensitivity of FOSA. The working principle of the FOSA is as follows: When 
an external seismic wave or environmental background noise acts on the FOSA, the in-
ertial structure of each optic fiber accelerometer vibrates and deforms the internal du-
al-diaphragm structure. Then the optic fiber interferometer wrapped on the du-
al-diaphragm structure produces deformation and phase output. We can obtain the ex-
ternal vibration acceleration signal by measuring the phase change in the optic fiber in-

Figure 1. The installed FOSA consisting of 16 seismometers on the KQGR Glacier in the TP. (a) The
study area. The red star marks the location of the KQGR Glacier. (b) The KQGR Glacier. The black
box shows the location of the installed seismometers. (c) The installed 16 seismometers. The blue and
pink pentagons are the seismometers with intervals of 10 m and 1 m, respectively.
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2. Seismic Observations
2.1. Fiber Optic Seismometer Array

We developed a kind of FOSA, which consists of 16 fiber optic seismometers. Each
seismometer is connected by a 25 m 16-core single-mode optical cable. The seismometer
is an all-metal optic fiber accelerometer based on an optic fiber Michelson interferometer
and double diaphragm structure [41]. The acceleration sensitivity of the accelerometer is
calibrated by a standard shake table. The seismometer has a flat sensitivity response,
and good sensitivity consistency. The sensitivity of the seismometer is about 41 dB
(re: 0 dB = 1 rad/g) with a fluctuation less than ±1.5 dB within the frequency range
from 1 to 500 Hz. The seismometer is vertical with a tilt tolerance of 25◦. Its metal shell has
good sealing performance. The seismometer can be directly used in underwater or glacial
melt water and has a wide working temperature range from −80 ◦C to above 100 ◦C.

The signal interrogator of the FOSA is based on the optic interferometric phase demod-
ulation method and phase generation carrier (PGC) algorithm [42]. The phase noise level is
about 118 dB @5 Hz (1.26 × 10−6 rad/

√
Hz @5 Hz), which is two or three orders of magni-

tude better than the DAS. The system noise level is about 12.6 ng/
√

Hz @5 Hz considering
the sensitivity of FOSA. The working principle of the FOSA is as follows: When an external
seismic wave or environmental background noise acts on the FOSA, the inertial structure of
each optic fiber accelerometer vibrates and deforms the internal dual-diaphragm structure.
Then the optic fiber interferometer wrapped on the dual-diaphragm structure produces
deformation and phase output. We can obtain the external vibration acceleration signal
by measuring the phase change in the optic fiber interferometer through the optic fiber
signal interrogator because the phase output of the fiber optic seismometer is linear with
the external acceleration.

2.2. Seismic Array Layout

The FOSA including 16 fiber optic seismometers was installed in a line with seismome-
ter intervals of 10 and 1 m on the KQGR Glacier (Figure 1c). The seismometers were buried
underneath the glacier surface with a depth of about 30 cm (Figure 2a). The seismic array
was designed along the direction of the glacier flowline with a tent in the middle part
(Figure 2b). The data collector and battery were placed in the tent. To avoid the effects of
the vibration of the engine on the seismic signal recording, we used a 12 V battery to power
the data collector. The total observed time lasted for about 40 h.
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Figure 2. Field photos of seismic observations with the fiber optic seismometers on the KQGR Glacier.
(a) A buried seismometer in the ice. (b) Installed seismic array. (c) Producing active seismic source by
hitting the ice surface using a heavy hammer.

To study the glacial structure, active seismic sources were generated by hitting the
glacier surface for 20 times using a heavy hammer of 7 kg (Figure 2c). The sources were
arranged in a line with the seismic array. For the observation of the seismometer interval
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of 10 m, the sources were set as 15 m, 30 m and 50 m away from the seismometer No. 1.
For 1 m, the distances between the sources and the seismometer No. 1 were 20 m and 50 m.

2.3. Seismic Records
2.3.1. Passive Seismic Source

We obtained seismograms with high signal to noise ratios recorded by the FOSA.
Substantial icequakes were observed with greatly different waveforms, suggesting a variety
of possible source mechanisms.

Numerous shallow icequakes occurred frequently and were visually identified.
Figure 3a exhibits an example of the seismograms with lasting time of 0.6 s. There were
at least five visible shallow icequakes (marked by orange shadows in the Figure 3a) that
occurred with time intervals varying from about 0.05 s to 0.23 s. The lasting times for these
icequakes were extremely short, no more than 0.03 s. Their waveforms were similar and
dominated by obvious low-frequency Rayleigh waves.
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icequake. (c–f) Seismic waveforms of four deep icequakes. The waveforms are normalized
by individual largest amplitudes. The origin times of seismograms are 23.7 s at 01:26 a.m.
(a), 39.8 s at 04: 43 a.m. (b), 33.2 s at 01:55 a.m. (c), 11.6 s at 04:42 a.m. (d), 42.4 s at 04:42 a.m.
(e) and 39.35 s at 01:43 a.m. (f) on 8 August 2021 in Beijing time.

Figure 3b shows another type of shallow icequake whose lasting time was longer.
There were higher frequency P waves and its codas had weak energies before the low-
frequency Rayleigh waves. Moreover, there was a resonance of the obvious low-frequency
monochromatic coda lasting for about 0.4 s after the Rayleigh wave, indicating that this
event was a hybrid icequake [18]. In addition, there was another icequake after the hybrid
event, shown with blue shadow in Figure 3b.

We also observed many different types of deep icequakes (Figure 3c–f). They featured
impulsive P and/or S waves and did not have a notable Rayleigh phase. The deep icequakes
in Figure 3c,d both lasted about 1.5 s and had obvious S phases but different S waveforms.
The S waves for the deep icequakes in Figure 3e,f were obscure. These two icequakes lasted
no more than 0.1 s.

There were obvious refracted waves of ice–rock interface that arrived first before direct
P waves for the icequake in the Figure 3e. The refracted waves traveled downward first,
then refracted at the ice–rock interface, and finally traveled up toward the receiver. Due
to the higher velocity of rock than ice, the refracted waves arrived first before the direct
waves traveling in ice only (directly from source to receiver) when the epicentral distance
increased to a critical value. Therefore, the existence of the refracted waves may indicate
that it was an intermediate-deep icequake.

2.3.2. Active Seismic Source

Figure 4 shows the seismograms with active source generated by the hammer hitting.
Their waveforms lasted about 0.1 s. The onsets of the direct P wave are clearly recorded.
The polarities of the P waves are downward, which is consistent with the directions of the
hammer hitting.

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 13 
 

 

We also observed many different types of deep icequakes (Figure 3c–f). They fea-
tured impulsive P and/or S waves and did not have a notable Rayleigh phase. The deep 
icequakes in Figure 3c and 3d both lasted about 1.5 s and had obvious S phases but dif-
ferent S waveforms. The S waves for the deep icequakes in Figure 3e and 3f were obscure. 
These two icequakes lasted no more than 0.1 s. 

There were obvious refracted waves of ice–rock interface that arrived first before 
direct P waves for the icequake in the Figure 3e. The refracted waves traveled downward 
first, then refracted at the ice–rock interface, and finally traveled up toward the receiver. 
Due to the higher velocity of rock than ice, the refracted waves arrived first before the 
direct waves traveling in ice only (directly from source to receiver) when the epicentral 
distance increased to a critical value. Therefore, the existence of the refracted waves may 
indicate that it was an intermediate-deep icequake. 

2.3.2. Active Seismic Source 
Figure 4 shows the seismograms with active source generated by the hammer hit-

ting. Their waveforms lasted about 0.1 s. The onsets of the direct P wave are clearly rec-
orded. The polarities of the P waves are downward, which is consistent with the direc-
tions of the hammer hitting. 

 
Figure 4. Vertical normalized seismograms of the hammer hitting recorded by the 16 fiber optic 
seismometers with intervals of 10 m (a) and 1 m (b). The offsets between the seismic source of 
hammer hitting and the seismometer No. 1 are 15 m in (a) and 50 m in (b). The origin times of 
seismograms are 16.6 s at 12:36 p.m. on 8 August (a) and 22.0 s at 11:47 a.m. (b) on 9 August 2021 in 
Beijing time. 

3. Seismic Waveform Analyses 
3.1. Spectral Analysis 

Different types of icequakes have different seismic sources and spectrum features 
[20]. We calculated the spectrograms of the seismic traces from the seismometers No. 2, 7 
and 15 for the different types of icequakes. Although the energies for different frequen-
cies may be affected by the response between the source and the receiver, these seismic 
traces generally show similar spectrum characteristics. Figure 5 shows the spectrograms 
from the seismometer No. 7. The main frequencies are less than 80 Hz for the shallow 
icequakes (Figure 5a,b). The seismograms of the deep icequakes (Figure 5c–f) show 
higher frequencies. The main frequencies of P wave and its coda wave are in the range of 
300–400 Hz and 100–250 Hz for the S wave. 

Figure 4. Vertical normalized seismograms of the hammer hitting recorded by the 16 fiber optic
seismometers with intervals of 10 m (a) and 1 m (b). The offsets between the seismic source of
hammer hitting and the seismometer No. 1 are 15 m in (a) and 50 m in (b). The origin times of
seismograms are 16.6 s at 12:36 p.m. on 8 August (a) and 22.0 s at 11:47 a.m. (b) on 9 August 2021 in
Beijing time.
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3. Seismic Waveform Analyses
3.1. Spectral Analysis

Different types of icequakes have different seismic sources and spectrum features [20].
We calculated the spectrograms of the seismic traces from the seismometers No. 2, 7 and
15 for the different types of icequakes. Although the energies for different frequencies
may be affected by the response between the source and the receiver, these seismic traces
generally show similar spectrum characteristics. Figure 5 shows the spectrograms from the
seismometer No. 7. The main frequencies are less than 80 Hz for the shallow icequakes
(Figure 5a,b). The seismograms of the deep icequakes (Figure 5c–f) show higher frequencies.
The main frequencies of P wave and its coda wave are in the range of 300–400 Hz and
100–250 Hz for the S wave.
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3.2. Seismic Scattering Method

We used the seismic scattering profile (SSP) method [39,40] to image the velocity
structure of the KQGR Glacier. The seismic signals were generated by using a heavy
hammer to strike the ice surface. Seismic scattering and reflected waves are generated when
seismic waves propagate in a heterogeneous medium. According to the seismic scattering
theory, the seismic record is the isochronous superposition of the scattered signals in the
ellipsoid between the seismic source and the receiver. Taking rays as a basic unit, the
superposition energy maximization principle is used to determine scanning velocity, and
then migration imaging is applied to obtain the underground velocity structure.

The SSP method mainly includes filtering, velocity scanning and migration imaging.
Firstly, frequency-wavenumber filtering was used to reduce the effects of surface and sound
waves, and enhance the energies of the englacial scattering and reflected waves. Secondly,
Radon transform was applied to seismic velocity scanning. Integral transformation was
performed along the hyperbolic path based on varied seismic velocities. When the seismic
velocity is consistent with the real velocity, the energy of the scattered waves is the strongest.
Finally, the synthetic aperture imaging based on the Kirchhoff integral was used to obtain
the glacial velocity structure.

We obtained the seismic velocity structure of the KQGR Glacier in the TP for the two
kinds of seismic arrays with intervals of 1 and 10 m, respectively. The results from the two
seismic arrays show a similar glacial structure (Figure 6). There is a large velocity increment
at a depth of about 40 m, depicting the ice–rock interface depth. The ice thickness model
reveals a similar thickness of about 47 m, which is calculated based on the glacier surface
motion and slope (Figure 7) [43]. Most importantly, our results reveal small-scale structure
heterogeneity. A low-velocity layer is found at a depth of about 30 m with a thickness of
about 7 m with a large S wave velocity drop of about 28%. A similar S wave velocity drop
has also been observed at the polar ice sheets with a value of about 25% [19].
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4. Discussion

We observed many different types of icequakes including shallow, deep and hybrid
events. Shallow icequakes are associated with ice surface crevasse opening or propaga-
tion [14,44], which is a valuable tool for assessing strain rates and changes thereof [20].
Their signals occupy the frequency range between 10 and 50 Hz [13,14,44–46], which are
basically close to our observations. Previous studies suggested that near-surface icequakes
constitute most short-duration seismic detections in high-melt areas [16,17]. Figure 3a
shows an example also showing that the surface crevasse icequakes occurred frequently (at
least 5 events in 0.6 s) on the high-melt KQGR Glacier.

We observed some resonances in the coda wave of some icequakes. Figures 3b and 5b
show an example of a hybrid icequake that is characterized by high-frequency onset
followed by a lower frequency monochromatic coda. Similar hybrid events were detected
in the Alaska [47] and Alpine [18] glaciers. These events were explained as brittle fractures
triggered by fluids, and the following resonances were induced by water rushing into a
newly opened fracture.

We also detected many deep icequakes characterized by extremely high main fre-
quencies of 300–400 Hz, which are much larger than the 100–200 Hz of most icequakes
that occurred in Alpine, Greenland and Antarctica [16,18,20]. The deep icequakes can be
divided into intermediate-deep and basal icequakes. The intermediate-depth icequakes
are usually linked to hydraulic fracturing [18]. Basal icequakes are usually interpreted as
the results of the opening or closing of tensile faults near the ice–rock interface induced
by varied water pressure [48] or basal slip [49]. There is at least one intermediate-deep
icequake identified by the obvious refracted waves (Figure 3e) among the four examples of
deep icequakes. The existence of these intermediate-deep and/or basal icequakes in the
KQGR Glacier indicates that water may play an important role in glacier activity.

Interestingly, we observed a low S wave velocity layer with a velocity drop of about
28% in the lower glacier. Such a strong decrease in the S wave velocity with depth cannot
be explained by temperature change only [50]. The presence of water can explain the strong
velocity drop [19,51,52]. The temperate ice is known as water-rich ice at the melting tem-
perature at a given pressure [53,54]. Thus, the observed low-velocity layer may represent
a temperate ice layer. A temperate ice layer was also found by GPR anomaly in the Jima
Yangzong Glacier of the western Himalayas [53]. The existence of the temperate ice may
shorten the timescale of the thermal regime change of the glacier in response to climate
warming and accelerate the ice deformation rate [53,55], which would play an important
role in the evolution of the glacier.

The meltwater on the KQGR Glacier surface is very rich during the summer season.
Substantial shallow, deep and hybrid icequakes may indicate that crevasses and/or frac-
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tures developed in the glacier. The surface meltwater of a glacier can be mostly routed to its
interior through crevasses and moulins [55,56]. Given sufficient water supply, a water-filled
fracture can propagate in the base of a glacier [57–60]. Valley-type mountain glaciers in
cold climates are greatly affected by water percolation into crevassed fields, which release
latent heat into the ice body [61]. Therefore, the temperate ice layer may be induced by the
surface ice-melting water percolating through crevasses.

This experiment indicates that the FOSA can work well in the extreme high mountain
environment with low temperature and atmospheric pressure, and can be used for dense
seismic observations for icequakes and glacial structure. Because of the linearly distributed
seismic array and the short observation period, we did not detect all the possible icequakes
and locate them. Instead, we visually checked some of them. The time and space features of
the icequakes will be further considered using more reasonably distributed seismometers
with a longer observation in the future.

5. Conclusions

The fiber optic seismometers can work well in an extreme high mountain environment
on the Kuoqionggangri Glacier in the Tibetan Plateau. We detected abundant various
shallow, deep and hybrid icequakes with different spectrum features. The estimated
thickness of the glacier is about 40 m. There is a low-velocity layer with an S wave
velocity drop of 28% and thickness of about 7 m in the lower glacier, possibly indicating
a temperate ice layer that may accelerate the glacier change rate in response to climate
warming. These findings provide a new insight for assessing glacial deformation and
dynamics in the Tibetan Plateau. This experiment also documented that our developed
fiber optical seismometer is a feasible measuring method for glacier seismology.
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