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Abstract: Accurate and timely precipitation forecasts can help people and organizations make
informed decisions, plan for potential weather-related disruptions, and protect lives and property.
Instead of using physics-based numerical forecasts, which can be computationally prohibitive, there
has been a growing interest in using deep learning techniques for precipitation prediction in recent
years due to the success of these approaches in various other fields. These deep learning approaches
generally use historical composite reflectivity (CR) at the surface level to predict future time steps.
However, other relevant factors related to the potential motion and vertical structure of the storm
have not been considered. To address this issue, this research proposes a multisource ConvLSTM (MS-
ConvLSTM) model to improve the accuracy of precipitation forecasting by incorporating multiple
data sources into the prediction process. The model was trained on a dataset of radar echo features,
which includes not only composite reflectivity (CR), but also echo top (ET), vertically integrated
liquid (VIL) water, and radar-retrieved wind field data at different elevations. Experiment results
showed that the proposed model outperformed traditional methods in terms of various evaluation
metrics, such as mean absolute error (MAE), mean squared error (MSE), probability of detection
(POD), false alarm rate (FAR), and critical success index (CSI).

Keywords: precipitation forecasting; deep learning; radar echo; multisource; spatiotemporal
correlation

1. Introduction

Precipitation forecasting, which involves predicting the amount and type of precipi-
tation (such as rain, snow, sleet, or hail) likely to occur in a specific location at a specific
time, is vital for individuals and organizations. Accurate precipitation forecasts can help
individuals and organizations make informed decisions about transportation, agriculture,
construction, and other weather-related activities. Precipitation forecasts can also help
governments and organizations prepare for and respond to natural disasters such as floods
or landslides, which can have severe consequences for public safety and property. Based on
timescales, precipitation forecasting can include nowcasting, medium-term, or long-term
forecasts [1]. Among these time scales, short-term precipitation forecasting (within the next
few hours) is more critical, as it can provide warning information for meteorological events
such as hail, squall lines, thunderstorms, and rainstorms.

Most of the existing precipitation forecasting methods have been primarily physics-
based or statistical, which leverage the intensity and movement patterns observed in radar
echoes from the past time steps [2,3]. Observed by Doppler weather radar (DWR), these
radar echo images reflect the atmospheric convection process, such as velocity spectrum
width, radial velocity, and reflectivity, over the target radar station [4]. Physics-based
numerical weather prediction (NWP) models, such as High-Resolution Rapid Refresh
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(HRRR), use mathematical equations to simulate the physics of the atmosphere and are
used to make forecasts of weather conditions over a range of time scales. Such physics-
based models can be computationally prohibitive, especially when increasing spatial and
temporal resolutions for forecasting. In addition, the prediction time period for short-term
precipitation forecasting (up to a couple of hours ahead) is much shorter than the NWP
model’s spin-up time (~6 h), which might result in unreliable predictive outcomes. Proba-
bilistic precipitation forecasting methods use statistical models to estimate the likelihood of
different precipitation scenarios occurring but require the accurate estimation of advection-
related equations, which are not robust across different spatiotemporal ranges. Ensemble
forecasting approaches involve combining the output of multiple NWP models or other
forecasting methods to create a composite forecast and can provide a range of possible
precipitation scenarios and account for the uncertainty inherent in weather forecasting. The
predictive capability of ensemble-based methods depends heavily on each involved NWP
model and can be even more computationally expensive.

Deep learning approaches have recently been used for precipitation forecasting, pri-
marily due to breakthroughs in various fields, particularly in image processing and natural
language processing [5]. These approaches generally involve using neural networks to
analyze radar products and make spatiotemporal predictions about future precipitation.
Deep neural networks that combine convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) have been used to consider spatial and temporal dependence
for precipitation forecasting [6]. Convolutional Long Short-Term Memory (ConvLSTM)
networks, combining CNNs and long short-term memory (LSTM) networks, were used for
imminent precipitation forecasting and showed an improved predictive performance by
utilizing spatiotemporal features of radar echo images [7]. Similarly, a Convolutional Gated
Recurrent Unit (ConvGRU) model was proposed to address the blurring effects of extrapo-
lated radar images [8]. A Predictive Coding Network (PredNet) was proposed to introduce
the skip structure and hollow convolution to enhance the predictive capability performance
of short-term forecasting [9,10]. A Trajectory Gated Recurrent Unit (TrajGRU) model that
combines the concepts of trajectory modeling and gated recurrent units (GRUs) was pro-
posed to process the temporal structure of radar products and model the movements of
precipitation patterns over time [11]. Pysteps is an open-source, community-driven Python
library that supports various input/output file formats, and implements multiple optical
flow methods and advanced random generators to generate set proximity prediction [12].

Another primary type of deep neural network used for precipitation forecasting relies
on Generative Adversarial Networks (GANs), which consist of two networks: a generator
network and a discriminator network. GANs are trained by having the generator network
try to generate synthetic radar echo data similar to a given dataset, and the discriminator
network tries to distinguish the synthetic data from the real data. A deep generative
model was proposed to incorporate temporal, spatial, and sample consistency within the
GAN-based model structure to address the blurry forecast effects at longer lead times.
Similarly, four GAN-based models were compared in extensive experiments to validate the
effectiveness of adversarial regularizations to improve their predictive capability regarding
storm structure, shape, and position.

The problem of precipitation forecasting that leverages deep learning techniques
and radar products can be formally described as follows. In space, P measurements of
a dynamical system at a given time over a spatial region with an M × N grid can be
considered as a tensor x∈RP×M×N. From the temporal point of view, a sequence of tensors,
x1, x2 . . . ., xt, can be obtained by collecting measurements at fixed time intervals over time
t. Accordingly, this nowcasting problem can be formulated as follows:
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t = argmax
yt

p(yt | xt−K+1, . . . , xt) (1)

where
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t represents the predicted value, {xt−K+1 . . . , xt} is the historical measurement
sequence data of length K, and yt is the real value obtained from historical data.
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The abovementioned deep learning approaches are limited because they usually use
composite reflectivity as their single data input to extrapolate into future time steps without
considering vertical structures and intensities of the storm. Common challenges for precipi-
tation forecasting were also identified by the abovementioned approaches, including the
difficulty of accurately capturing storm structures, shapes, and positions in predictions and
maintaining predictive accuracy at a longer lead time. Potential improvements regarding
these challenges involve the integration of multiple data sources into the training process,
especially including radar products that reflect both horizontal and vertical structure and
intensity of the precipitation pattern.

In this study, we propose to integrate radar echo features—including not only com-
posite reflectivity (CR), but also echo top (ET), vertically integrated liquid (VIL) water, and
radar-retrieved wind field data at different elevations—into a multisource ConvLSTM (MS-
ConvLSTM) model to capture the multivariate correlations and spatiotemporal movements
of precipitation patterns. Specifically, we extend from the original structure of ConvLSTM
to include a 3D convolution auxiliary mechanism that incorporates radar echo features.
The composite reflectivity (CR) is the main feature, whereas the echo tops (ET), vertically
integrated liquid (VIL) water data, and radar-retrieved wind data are auxiliary features.
This auxiliary mechanism combines the characteristics of the auxiliary channel with those
of the main channel, which helps to strengthen interdependence and improve predictive
capability. In addition, this auxiliary mechanism integrates long-term channel information
with short-term spatiotemporal information, generating enhanced characteristics for the
input sequence.

The following sections of this article are arranged in the following structure. Section 2
describes the experimental design and the MS-ConvLSTM model in detail. Section 3
describes the study area and experimental data and presents the experimental results used
to evaluate the model. Section 4 provides a conclusion and charts a way forward.

2. Materials and Methods
2.1. ConvLSTM Structure

ConvLSTM is a variant of the long short-term memory (LSTM) network that uses
convolutional layers instead of fully connected layers in the input-to-state and state-to-state
transitions [7]. The equations for a ConvLSTM cell can be written as follows:

Input gate : it = σ
(

W f [Ht−1, Xt] + bi

)
Forget gate : ft = σ

(
W f [Ht−1, Xt] + b f

)
Output gate : Ot = σ(Wo[Ht−1, Xt] + bo)

New memory cell : C̃t = tanh(Wc[Ht−1, Xt] + bc)

Updated memory cell : Ct = ft ∗ ct−1 + it ∗ C̃t
Output : Ht = Ot ∗ tanh(Ct)

(2)

where Xt is the input at time t, Ht is the output at time t, Ct is the memory cell at time t, and
it, ft, Ot, and C̃t are the input, forget, output, and new memory cell gates, respectively. The
weights W and biases b are learned during training. The symbol * denotes a convolution
operation, and σ is the sigmoid activation function. The function tanh is the hyperbolic
tangent activation function.

An encoder–decoder structure is used to effectively predict spatiotemporal sequences
by learning both spatial and temporal features of the input data (Figure 1). The encoder
module of the model consists of three downsampling layers followed by three long short-
term memory (LSTM) layers. The downsampling layers reduce the size of the input image
features through convolution and extract spatial features from the image. The LSTM layers,
on the other hand, learn the temporal features of the input sequence, which in this case is a
sequence of radar echo images. The decoder module, on the other hand, consists of three
upsampling layers followed by three LSTM layers. The upsampling layers increase the
size of the image features through convolution and help guide the update of lower-level
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features based on higher-level features. The LSTM layers learn the sequence features of the
images and output the predicted radar echo images.
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2.2. MS-ConvLSTM

Here we describe the proposed model, MS-ConvLSTM, that is used to extrapolate
radar echo information from radar data. The model uses a three-dimensional convolutional
neural network to extract features synchronously from the spatial and temporal dimensions
of the image streams, in order to capture the motion information between images. The
model is based on the idea of a sequence-to-sequence prediction method (SEQ2SEQ)
and uses an encoder–decoder structure, with an encoding network for reading the input
sequence and a decoding network for predicting the output vector [13]. The model is
composed of multiple ConvLSTM layers stacked to form the encoder–decoder structure. In
this research, the model is trained on a sequence of 20 sets of radar product images, each
representing 6 min of data. The first 10 sets of radar echo images are used as inputs, and
the CR images in the last 10 sets of images are used as the expected outputs. The model is
trained to predict the CR images based on the input radar echo images and other data such
as ET, VIL, and wind field data.

2.2.1. Three-Dimensional Convolutional Operation

Convolutional neural networks (CNNs) are effective for image-processing tasks be-
cause they integrate the process of feature extraction and classification in a single network
structure and reduce computational complexity through value-sharing and pooling op-
erations [14]. However, traditional two-dimensional CNNs cannot accurately model the
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time dimension in a radar frame sequence. To address this problem, the use of a three-
dimensional CNN with a three-dimensional convolution kernel is proposed. This allows
the network to analyze data by considering the cube formed by stacking multiple adjacent
frames together [15]. This also allows the CNN to capture both spatial and temporal
information in the sequence, improving its ability to model the data.

The two-dimensional convolution operates on a single image, while the three-dimensional
convolution operates on a cube of stacked images. The three-dimensional (3D) convolu-
tion is an extension of traditional two-dimensional convolution that operates in the time
dimension as well as the spatial dimensions. When applied to a sequence of images, the
3D convolution is able to capture both spatial and temporal information in the data. As a
result, the output of the 3D convolution is a 3D spatiotemporal fusion structure, even if the
input data consists of fewer than 3D cubes of images. Accordingly, the calculation formula
of the 3D convolution is as follows (3):

f xyz
lj = σ

(
b′j + ∑

m
∑Pl−1

p=0 ∑Ql−1
q=0 ∑Rl−1

r=0 Wpqr
ljm v(x+p)(y+q)(z+r)

(l−1)m

)
(3)

where f xyz
lj indicates the output result of this convolutional layer, and v(x+p)(y+q)(z+r)

(l−1)m
represents the input data data sample. (l − 1)m represents the feature map with serial
number m in layer l−1; x and y represent the length and width of the spatial dimension of
input samples, respectively, and z represents the length of input samples on the time axis;
p, q and r respectively represent the specific size of the convolution operation in the above
three dimensions. Wpqr

ljm is the weight parameter whose coordinate is (l, j, m) in the feature
map; Pl, Ql, Rl represents the size of the convolution kernel; b′j represents the bias parameter
of the feature map; and σ(·) is the activation function adopted by the neural network.

2.2.2. MS-ConvLSTM Architecture

The proposed MS-ConvLSTM network structure consists of three ConvLSTM layers.
With each ConvLSTM layer containing three downsampling layers, the MS-ConvLSTM
results in a total of nine layers in the model (Figure 2). The layers are as follows:

1. Input: The model receives two inputs: a main channel and an auxiliary channel. The
main channel consists of a sequence of 10 consecutive frames of radar images, with
each frame having a spatial size of 459 × 459. The auxiliary channel consists of an
auxiliary data sequence corresponding to the main channel information, with the
same spatial size of 459 × 459.

2. ConvLSTM1 with 3D Convolution: To extract features, a spatiotemporal convolution
is conducted, which involves using 16 different 3D convolution kernels, each with
a size of 5 × 5 × 5. The size of 5 × 5 in the spatial dimensions represents the size of
the convolution kernel in the x and y dimensions of the image. The length of 5 in the
temporal dimension represents the number of time steps that the convolution kernel
considers when performing the convolution. The convolution operation is performed
on the input data, which consists of a sequence of 10 images with a spatial size of 459
× 459. The 3D convolution kernels are applied to the data, sliding across the spatial
and temporal dimensions and performing a dot product between the kernel values
and the input data at each position. This results in a feature map with eight times the
number of channels as the input data.

3. Pooling: After the convolution operation, the model performs a pooling operation.
Pooling is often used in CNNs to reduce the size of feature maps, which can reduce
the computational complexity of the model and improve its ability to generalize to
new data. Pooling can also help the model to be invariant to small translations in the
input, as the pooling operation aggregates values within a certain region and is not
sensitive to the exact positions of the values within that region. The pooling operation
involves downsampling the feature maps by taking the average or maximum value
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within a certain region. In this case, the model performs a downsampling operation
with a unit of 2 × 2 in the spatial domain and a downsampling with a unit of 2 in the
time domain. This reduces the spatial and temporal resolutions of the feature maps,
resulting in the third layer of the model. The specific parameters and configurations
used for these operations, such as the size of the convolution kernels and the size of
the downsampling operation, can affect the performance of the model and have been
determined based on experiments.

4. ConvLSTM2 with 3D Convolution: To further extract features, 3D convolution is
conducted, which involves using 32 different 3D convolution kernels, each with a size
of 5 × 5 × 5. This results in double the number of feature maps in the third layer.

5. Pooling: A 2 × 2 downsampling operation is applied to the spatial domain of each
feature map in the fifth layer, and a subsampling operation with a sampling unit of 2
is applied to the time domain.

6. ConvLSTM3 with 3D Convolution: A 3D convolution operation is applied using 48
different convolution kernels with a size of 4 × 4 × 4, resulting in a feature map that
is 1.5 times the size of the fifth layer. This is followed by a downsampling operation
with a size of 2 × 2 × 2 to obtain the seventh layer of the model.

7. Pooling: This is followed by a downsampling operation with a size of 2 × 2 × 2 to
obtain the eighth layer of the model.

8. Fully connected classification: After three data feature processing steps using Con-
vLSTM, the model uses a traditional three-layer fully connected classifier using a
softmax activation function for the final radar echo extrapolation. The ninth layer of
the model consists of the feature map of a 1 × 1 convolution kernel, which is fully
connected to all the feature maps in the eighth layer. This is defined as the input layer
of the softmax classifier, and the number of nodes in the middle hidden layer is 96.

9. Prediction: The model takes a series of radar echo images and processes them using
ConvLSTM1, ConvLSTM2, and ConvLSTM3, and finally makes a prediction about
the next 10 consecutive frames. The prediction of the model is then established based
on this processing.
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2.2.3. Evaluation Metrics

We use the following metrics to evaluate the performance of a binary classification
model based on a predetermined threshold. In meteorological services, it is important
to pay attention to different rainfall intensities, so the model was evaluated based on its
overall performance at different radar echo levels. In the experiment, three thresholds
are applied: 10 dBZ, 20 dBZ, and 30 dBZ. If the radar echo value is greater than a given
threshold, it is 1; otherwise, it is 0.

True positive (TP) is the number of times the model correctly predicted that an event
would occur (i.e., predicted the radar echo would exceed the threshold). False positive
(FP) is the number of times the model incorrectly predicted that an event would occur
(i.e., predicted the radar echo would exceed the threshold, but it actually did not). True
negative (TN) is the number of times the model correctly predicted that an event would
not occur (i.e., predicted the radar echo would not exceed the threshold). False negative
(FN) is the number of times the model incorrectly predicted that an event would not occur
(i.e., predicted the radar echo would not exceed the threshold, but it actually did). The
probability of detection (POD) is a measure of the model’s ability to correctly predict events.
The false alarm rate (FAR) is a measure of the model’s tendency to predict events that do
not actually occur. The critical success index (CSI) is a measure of the overall performance
of the model [16]. The calculation formulas of POD, FAR, and CSI are described as follows:

POD = TP
TP+FN

FAR = FP
TP+FP

CSI = TP
TP+FN+FP

(4)

Conventional metrics—mean absolute error (MAE) and mean squared error (MSE)—
were also used. Balanced mean absolute error (B-MAE) and balanced mean squared
error (B-MSE) were also calculated to account for the imbalanced frequencies of different
reflectivity magnitudes [11]. B-MAE is calculated as the MAE of the model’s predictions,
weighted by the frequency of each class or value. The weight for each class or value is set
according to its frequency, with higher weights assigned to less frequent classes or values.
In order to better apply the effect of the model in this paper, this article calculates the sum
of MAE, MSE, B-MAE, and B-MSE (unit: dBZ) of each pixel pair of the predicted image
and the ground truth radar echo image. Its calculation unit is the radar echo intensity unit
dBZ. The B-MAE and B-MSE scores obtained are calculated as:

B-MAE =
1
N ∑N

n=1 ∑459
i=1 ∑459

j=1 wn,i,j | xn,i,j − x̂n,i,j | (5)

B-MSE =
1
N ∑N

n=1 ∑459
i=1 ∑459

j=1 wn,i,j
(
xn,i,j − x̂n,i,j

)2 (6)

where N is the number of radar echo images and wn,i,j is the weight corresponding to the
(i, j) pixel. W(x) is set as 1, 2, and 5 according to reflectivity, respectively. More weight is
allocated for larger reflectivity.

2.2.4. Model Parameter and Experiment Design

Considerations have been taken in designing and training the proposed MS-ConvLSTM
model, including initialization of the model’s parameters and softmax activation function.
Initialization of the model’s parameters is an important step in the training process, as it
can affect the performance and convergence of the model. In this research, we utilized the
Xavier initializer, which is a method for initializing the parameters to ensure that the input
and output distributions of each layer are similar, which can help to avoid issues such as
the output values of the activation function tending to zero or the gradient variance being
affected by the number of outputs of the layer [17]. The softmax activation function is used
in this study, and it maps the input values to a probability distribution over the different
classes. It takes a vector of input values and produces a corresponding vector of output
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values between 0 and 1, with each value representing the probability of the input belonging
to a particular class. By normalizing the output values in this way, the model can choose
the class with the highest probability as the output of the classifier.

In this study, the module uses a three-layer MS-ConvLSTM network with 5 × 5 cores
in each layer. The first layer has 64 hidden states, while the second and third layers have 96
hidden states. To validate the proposed model’s ability to predict radar echoes, experiments
were conducted to compare with the original ConvLSTM model. The original learning
rate is set to 0.0001, and the batch size is 4. The mean squared error is used as the loss
function. The Adam optimization algorithm is used to minimize the loss function by
training the optimization parameters. Adam is a first-order optimization algorithm that
updates the neural network weights iteratively based on training data and is an effective
optimizer in many cases. Before training, all the radar echo images are normalized to the
range [0, 1]. The training and testing are performed using PyTorch on an NVIDIA GeForce
RTX 3080 GPU.

2.3. Study Area and Materials
2.3.1. Study Area

The study area is Ningbo, a subprovincial city located in northeastern Zhejiang
Province, China (Figure 3). This region has a temperate and humid subtropical mon-
soon climate with four distinct seasons. It has a complex and variable climate, with high
rates of severe convective weather. The southwest part of the region is steep, while the
northeast is low-lying.
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2.3.2. Data Description

Data used in this research were obtained from the Ningbo Meteorological Bureau using
an S-band Doppler weather radar (DWR) system at wavelengths of 8–15 cm [18]. DWR
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is a piece of equipment that is widely used in meteorological observation; it can measure
the position, intensity, and velocity of cloud droplets, raindrops, and other particles in the
air, as well as some air molecules. This allows it to determine the corresponding weather
conditions and internal structures. Weather radar data has a high spatial and temporal
resolution of 1 km/6 min, and can provide information on the location, intensity, and
motion of rainfall particles [19]. These data are used to study the correlation between the
height and echo strength of the radar echo top and the occurrence of intense convective
weather [20].

Multiple radar products are included in this dataset. Composite reflectivity (CR) is
the maximum value of the fundamental reflectivity that occurs in a vertical column within
the radar umbrella [21]. It can be used to predict the future movement of radar echoes.
Echo top (ET) is the height of the top of the radar echo, measured from mean sea level, at
the highest elevation angle at which the reflectivity coefficient is greater than or equal to
18 dBZ (adjustable threshold). ET is an important indicator of the intensity of convective
weather and indirectly reflects the intensity of vertical updrafts in clouds [22]. Vertically
integrated liquid (VIL) water content is a parameter obtained from volume-scanning radar
representing the atmospheric water content that can be measured by classical (C- or S-band)
weather radars. It is a useful indicator for detecting severe storms and may be useful for
short-term rainfall prediction methods [23]. Radar-retrieved wind field data is used to
calculate the average radial velocity of precipitation targets in each volume through the
Doppler effect. It can detect atmospheric structure and determine wind direction [24,25].
In this study, a two-layer average of radar-retrieved wind field data is used to achieve
computational efficiency. They are all important product data of radar and have high
correlation with radar echo to a certain extent. Among them, CR, ET, and VIL data can
reflect echo characteristics, and wind data have an important indicative role for the trend
of radar echo. Therefore, this article selects these four types of data to predict radar echo.

2.3.3. Training Data Preparation

The weather radar data used in this study were collected from 2018 to 2020. These
data were preprocessed to match the time and space of the radar data. The time matching
process involved aligning the radar product data within the corresponding 6-min time
based on the time of the CR radar product. The spatial matching process involved aligning
the radar product data based on longitude and latitude. To ensure data quality, the data
were also filtered to retain only radar products with reflectivity greater than 10 dBZ. The
resulting dataset was used to construct a summer radar echo feature dataset for Ningbo
in 2018, 2019, and 2020. This dataset was split into a training set of 21,984 sequences, a
validation set of 2671 sequences, and a test set of 2773 sequences, each containing 20 radar
images for a period of 6 min. The input data for the model consists of the radar product
dataset (CR, ET, VIL, and wind field data), with CR as the main channel data and ET, VIL,
and wind field data as auxiliary channel information. The output of the model is the future
time CR image.

3. Results

In this experiment, the model was used to predict radar echo maps for the next 10 time
steps based on the radar echo maps of the previous 10 time steps. This means that the radar
echo data for the next hour was predicted using the historical data for the previous hour.
To better understand the forecast performance, two cases from the test set were selected for
analysis. These cases represent the general features of microscale and mesoscale weather
and contain regions of strong echoes. They cover the creation, progression, and dissipation
phases of convective processes.

The overall performance scores comparing ConvLSTM and MS-ConvLSTM are demon-
strated in Table 1, where the MS-ConvLSTM model has better extrapolation performance
than the ConvLSTM model. It is important to consider the specific context in which these
models are being used and the goals of the prediction task when interpreting the results. In
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general, lower values for the evaluation metrics indicate better performance, but this can
depend on the specific cases and the relative importance of different types of errors.

Table 1. Comparison of the prediction results of the two models. The best results are marked in bold.

Model MAE MSE B-MAE B-MSE

ConvLSTM 7511 2973 14,647 5729

MS-ConvLSTM 7038 2667 14,501 5613

Based on the ground truth and prediction results in Figure 4, it seems that both the
ConvLSTM model and the MS-ConvLSTM model can forecast the development of radar
echoes at 6 min. At 30 min, some echo details are missing, but both models can capture the
change in the strong echo position and movement. The MS-ConvLSTM model appears to
be more effective at forecasting the strongest echo region than the ConvLSTM model. After
30 min, the predicted image is based on the echo features obtained from the model due to
the long extrapolation time, and some strong echo areas can still be recognized. However,
compared to the ground truth, the edge details of the radar echoes of different intensities in
the model-predicted radar echo maps are progressively missing.
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Figure 4. The visualization results of test sample 1: (a1–a5) represent part of the input of the model;
(b1–b5) the ground real radar echo charts of 6, 18, 30, 42 and 60 min; and (c1–c5) and (d1–d5) are the
corresponding prediction results of ConvLSTM and MS-ConvLSTM, respectively.

To quantitatively compare the predictions of test sample 1, we provide the POD, FAR,
and CSI values of the two models at 6, 30, and 60 min, respectively (Table 2). The POD
and CSI values decrease, and the FAR value increases as the prediction time increases. The
MS-ConvLSTM model has better prediction performance than the ConvLSTM model at all
intensities and time intervals, based on the average scores.
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Table 2. The probability of detection (POD) values, false alarm rate (FAR) values, and critical success
index (CSI) of the two models in test sample 1 at 6 min, 30 min, and 60 min. The best results are
marked in bold.

Model
Time
(min)

POD FAR CSI

dBZ Threshold dBZ Threshold dBZ Threshold

10 20 30 avg 10 20 30 avg 10 20 30 avg

ConvLSTM

6 0.8915 0.8581 0.5806 0.7767 0.0953 0.0994 0.2125 0.1357 0.8222 0.8004 0.6048 0.7425

30 0.8302 0.7372 0.4409 0.6694 0.1682 0.1718 0.2397 0.1932 0.7105 0.6804 0.3870 0.5926

60 0.7540 0.5659 0.1280 0.4826 0.1886 0.1963 0.3628 0.2492 0.6415 0.5337 0.1104 0.4286

MS-
ConvLSTM

6 0.9002 0.8778 0.7228 0.8336 0.0655 0.0735 0.1403 0.0931 0.8391 0.8031 0.5303 0.7242

30 0.8411 0.7720 0.4620 0.6917 0.1279 0.1510 0.2367 0.1719 0.7487 0.7165 0.4041 0.6231

60 0.7978 0.6357 0.1646 0.5327 0.1531 0.1842 0.4284 0.2552 0.6972 0.5918 0.1568 0.4818

Based on the ground truth and prediction results shown in Figure 5, both the ConvL-
STM model and the MS-ConvLSTM model can accurately forecast the location of intense
radar echoes at 6 min for a test sample with weaker total reflectivity compared to test
sample 1. As in test sample 1, the MS-ConvLSTM model appears to be more effective at
predicting the position of the strongest echo, although some echo details are missing at
15 min. After 30 min, the predictions lose more details due to the long extrapolation time,
and the strong echo areas are difficult to recognize in the corresponding prediction maps.
The prediction maps also combine the regions into one wide echo, creating a stronger and
larger echo region than the ground truth map. This flaw may need to be addressed in
future work.
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Figure 5. The visualization results of test sample 2: (a1–a5) represent part of the input of the model;
(b1–b5) are the ground real radar echo images of 6, 18, 30, 42 and 60 min; and (c1–c5) and (d1–d5) are
the corresponding prediction results of ConvLSTM and MS-ConvLSTM, respectively.

Table 3 shows the POD, FAR, and CSI values for the test sample 2 prediction framework
acquired by the two models at 6, 30, and 60 min, respectively. The MS-ConvLSTM model
had better predictive scores than the ConvLSTM model at all forecast times (6, 30, and 60
min). It also seems that both POD and CSI values decrease with increasing forecast time
and rainfall intensity, while FAR values increase. This suggests that the models become
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less accurate as the forecast time increases and the intensity of the event increases, and that
the MS-ConvLSTM model is better at avoiding false alarms than the ConvLSTM model.

Table 3. The probability of detection (POD) values, false alarm rate (FAR) values, and critical success
index (CSI) for test sample 2 at 6 min, 30 min, and 60 min. The best results are marked in bold.

Model Time
(min)

POD FAR CSI

dBZ Threshold dBZ Threshold dBZ Threshold

10 20 30 avg 10 20 30 avg 10 20 30 avg

ConvLSTM

6 0.8616 0.8213 0.5604 0.7477 0.1161 0.2123 0.3772 0.2352 0.7361 0.7182 0.5386 0.6637

30 0.8020 0.7121 0.4251 0.6464 0.1865 0.3720 0.6384 0.3989 0.6205 0.5732 0.3203 0.5046

60 0.7825 0.5480 0.1346 0.4883 0.2115 0.4975 0.7628 0.4906 0.6115 0.5223 0.1087 0.4141

MS-
ConvLSTM

6 0.8802 0.8636 0.6282 0.7906 0.0928 0.1807 0.3437 0.2057 0.7491 0.7143 0.4674 0.6402

30 0.8331 0.7402 0.4517 0.6750 0.1680 0.3531 0.6367 0.3859 0.6487 0.6878 0.3914 0.5759

60 0.7946 0.6194 0.1427 0.5189 0.1931 0.3741 0.7075 0.4249 0.6172 0.5973 0.1582 0.4575

Based on multisource data, we propose a deep learning network named MS-ConvLSTM
for radar echo extrapolation. MS-ConvLSTM can effectively achieve 0–1 h radar echo ex-
trapolation. Two radar echo extrapolation cases demonstrate that our MS-ConvLSTM
model is proved to be effective through qualitative and quantitative analysis.

The MS-ConvLSTM model has a strong feature learning ability, which can effectively
realize the fusion of multisource data. Among these auxiliary data, ET can help the model
to better learn the change characteristics of radar echo, VIL can help the model understand
the variability properties of the water vapor content in the study area, and wind field data
can add some dynamic promotion or constraint. This work is an attempt to realize the
comprehensive application of multisource data. Deep learning has strong feature extraction
ability, so it will become a promising method of radar echo extrapolation.

4. Discussion

This research proposes the MS-ConvLSTM model that extends from the original
ConvLSTM using a combination of 3D convolutions and auxiliary mechanisms. In order
to extrapolate the radar echo more effectively, we incorporate an auxiliary data channel
into the network, which enables the model to incorporate multiple data sources into the
prediction process to improve the accuracy of radar echo extrapolation. We have conducted
extensive experiments to verify the effectiveness of the proposed MS-ConvLSTM. The
model is trained on a large dataset of multisource radar data, and experimental results
show that it has competitive prediction accuracy and can delay the loss of predictive
radar information to some extent. The visualization results and quantitative metric score
analysis show that the MS-ConvLSTM model can efficiently capture the temporal and
spatial features of radar echo maps, and that the predicted radar echoes more closely
resemble the ground truth than the ConvLSTM model. The MS-ConvLSTM model has
lower values of B-MAE and B-MSE, and significantly lower values of MAE and MSE,
compared to the ConvLSTM model. This suggests that the MS-ConvLSTM model has a
lower error rate and is more accurate than the ConvLSTM model. The MS-ConvLSTM
model also performs better on the POD, FAR, and CSI scores, indicating that it has better
predictive capability and effectiveness than the ConvLSTM model.

5. Conclusions

This study proposed an MS-ConvLSTM model based on 3D convolutions and auxiliary
mechanisms for the spatiotemporal prediction of radar echoes. It showed that incorporating
multisource data could improve the accuracy of radar echo extrapolation of the proposed
model compared to traditional ConvLSTM.
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Despite the improved prediction accuracy of the MS-ConvLSTM, many shortcomings
are still evident in the prediction stages. Many prediction details are gradually lost, and
the best input sequence prediction performance under different thresholds is unstable. In
addition, most CNN-based deep learning technologies have an over-smoothing problem
when dealing with image problems because convolution is essentially an aggregation
method. When the convolution kernel takes a specific value, it is a smoothing operation. In
future work, we will conduct experiments with different convolution kernels to alleviate the
problem of over-smoothing. There is potential for refinement by combining a meteorology
physical conceptual model with extrapolation, and the model’s generalizability could
be evaluated by applying it to larger datasets in the future. Factors such as terrain and
temperature could potentially be incorporated into the forecast in the future.
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