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Abstract: To understand the Arctic environment, which is closely related to sea ice and to reduce
potential risks, reliable sea ice forecasts are indispensable. A practical, lightweight yet effective
assimilation scheme of sea ice concentration based on Optimal Interpolation is designed and adopted
in an operational global 1/10◦ surface wave-tide-circulation coupled ocean model (FIO-COM10)
forecasting system to improve Arctic sea ice forecasting. Twin numerical experiments with and
without data assimilation are designed for the simulation of the year 2019, and 5-day real-time
forecasts for 2021 are implemented to study the sea ice forecast ability. The results show that the
large biases in the simulation and forecast of sea ice concentration are remarkably reduced due to
satellite observation uncertainty levels by data assimilation, indicating the high efficiency of the data
assimilation scheme. The most significant improvement occurs in the marginal ice zones. The sea
surface temperature bias averaged over the marginal ice zones is also reduced by 0.9 ◦C. Sea ice
concentration assimilation has a profound effect on improving forecasting ability. The Root Mean
Square Error and Integrated Ice-Edge Error are reduced to the level of the independent satellite
observation at least for 24-h forecast, and sea ice forecast by FIO-COM10 has better performance than
the persistence forecasts in summer and autumn.

Keywords: sea ice concentration; data assimilation; global ocean forecasting system

1. Introduction

Arctic sea ice has experienced significant changes during the past few decades [1]. Arc-
tic sea ice coverage has revealed a decreasing trend in the satellite era (1979-present) [2–4]
and September Arctic sea ice extent is now shrinking by an average of 13.0% per decade
according to National Snow and Ice Data Center (NSIDC) Sea Ice Index data (product
identifier: G02135) [5].

This ongoing retreat of sea ice opens up new opportunities for more frequent human
activities such as navigation through the Arctic Ocean [6,7]. Along with economic benefits,
the decreasing Arctic sea ice can affect the oceanic environment through many aspects,
e.g., changing circulation and overturning by affecting the salinity of the underlying ocean
and leading to ecological consequences by threatening a wide range of Arctic wildlife [8,9].
Studies have shown that the changing of Arctic sea ice has a potential broad-range of
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climate consequences, such as increasing the extremes in the Arctic [4] and in the mid-
latitudes of the Northern Hemisphere [10,11]. More reliable real-time simulations and
forecasts of sea ice are in demand to reduce potential risks that threaten marine safety, and
in turn, to benefit the ocean and climate simulations.

To understand the state and variations of the Arctic environment that are closely
related to sea ice, and to provide sea ice forecasts and predictions, coupled sea ice-ocean
models have been developed. There are many sea ice-ocean forecasting systems currently in
use. Examples of sea ice-ocean forecasting systems that can provide Arctic sea ice prediction
are the Global Ocean Forecast System (GOFS) 3.1 (GOFS 3.1) [12], the Canadian Global
Ice Ocean Prediction System (GIOPS) [13], and the global Navy Earth System Prediction
Capability (Navy-ESPC) [14]. The GOFS 3.1 provides short term, 1–7-day forecasts of global
sea ice and ocean conditions with the sea ice model Community Ice CodE (CICE) two-way
coupled to the HYbrid Coordinate Ocean Model (HYCOM). The GOFS 3.1 replaced the
Arctic Cap Nowcast/Forecast System (ACNFS) for Arctic sea ice prediction, and the CICE
model in the GOFS 3.1 is nearly the same as that employed by the ACNFS, which was
validated by Hebert et al. [6]. The GIOPS provides daily global ice and ocean analyses
with 10-day forecasts at the eddy-permitting resolution. The Navy ESPC V2 deterministic
system is designed for operational forecasting for timescales of days (16-day forecast), and
will replace GOFS 3.1 when it becomes operational (late 2023/early 2024). The global Navy
ESPC V1 ensemble system became operational in 2021, providing 45-day forecasts on a
weekly basis.

The sea ice predictive ability of a coupled ice–ocean model depends on the model
itself and initialization. Data assimilation, though still a relatively new research area [15],
has been demonstrated to be a useful technique to reduce the uncertainties in initialization
and systematic errors in the model. However, the assimilation methods used can be quite
different between these prediction systems. For example, an assimilation method varies
according to the different initial model ice concentrations used in the ACNFS system [6],
while a three-dimensional, multivariate (3DVAR) data assimilation scheme has been used
in Navy-ESPC [14]. The Optimal Interpolation (OI) algorithm, as a feasible and effec-
tive method, has been applied in simulations and forecasts in many studies, such as by
Zhang et al. [16], Stark et al. [17], and Wang et al. [18]. As a critical parameter of the polar
marine environment, sea ice concentration is often taken as the primary observational
parameter that is assimilated into forecasting systems to correct erroneous ice concentration
estimates [9,19].

To meet operational demands, an operational global 1/10◦ surface wave-tide-circulation
coupled ocean forecast system (FIO-COM10) has been developed and maintained by the
First Institute of Oceanography, Ministry of Natural Resources, China [20]. The sea ice
component is a critical component of FIO-COM10, especially for the polar region. Data
assimilation of satellite-observed sea ice concentrations using an OI algorithm is employed
in the global forecasting system FIO-COM10 to improve the sea ice forecasting ability. The
main objective of this paper is to evaluate the performance of sea ice data assimilation and
its impacts on the ocean simulations and forecasts up to 5 days by FIO-COM10. A detailed
description of the model configuration, data assimilation scheme, and the observational
data used is presented in Section 2. The results from the assimilation experiments and
forecasting are given in Section 3. Discussion and conclusions are provided in Section 4.

2. Materials and Methods
2.1. Model Description

The model employed in this study is the FIO-COM10 (Table 1), which is from an
operational global ocean forecast system with a horizontal resolution of 1/10◦ × 1/10◦.
Vertically, the model has 54 levels, and the vertical layer thickness increases from 2 m at
the surface layer to about 366 m at the bottom layer. The FIO-COM10 consists of an ocean
component model based on the Modular Ocean Model version 5 (MOM5) [21], a surface
wave component model based on the third-generation MASNUM surface wave model [22],
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and a sea ice component model from the Sea Ice Simulator (SIS) [23]. The atmospheric
forcing is from the global forecast system (GFS) operated by the National Centers for
Environmental Prediction (NCEP), USA, including the surface air temperature, atmospheric
pressure at the sea surface, wind at 10 m height, precipitation, specific humidity, and
radiation fluxes. The air-sea fluxes are calculated by using the CORE bulk formula [24].
For the ocean component model of FIO-COM10, the most distinguishing feature is that
the nonbreaking surface wave-induced vertical mixing (Bv) is incorporated into the K-
profile parameterization (KPP) vertical mixing scheme in the ocean model [25–27]. The
data assimilation scheme for ocean temperature and salinity is based on the Ensemble
Adjustment Kalman Filter (EAKF) method [28]. For the seawater temperature and salinity,
the observation data assimilated into FIO-COM10 includes the optimally interpolated
microwave and infrared sea surface temperature (SST) observations (http://www.remss.
com, last assess: 31 December 2021), maps of sea level anomalies (SLA) obtained from
the Copernicus marine and environment monitoring service (CMEMS), and salinity and
temperature profiles from Argo.

Table 1. Model configurations of FIO-COM10.

Model Components Model Parameters/Schemes Values/Configurations

Surface wave model
MASNUM

Horizontal resolution 1/10◦ × 1/10◦

Spectral discretization 24 directions, 25 wave numbers

Spatial coverage global ocean

Ocean model
MOM5

Horizontal resolution 1/10◦ × 1/10◦

Vertical levels 54 levels (min: 2 m)

Spatial coverage global ocean

Horizontal grid Tri-polar grid with bi-polar region set to north of 65◦N

Vertical grid Z* coordinate configured with bottom partial cells

Horizontal diffusivity Bi-harmonic, diffusive velocities of 1.96 cm/s for
momentum and 0.65 cm/s for tracers

Vertical diffusivity KPP + Bv

Air-sea fluxes NCEP/Bulk formula

Model topography ETOPO1

Sea ice model
SIS

Ice thickness categories 5

Ice bulk salinity 0.005 PSU

Snow albedo 0.85

Ice albedo 0.72

Ice/ocean drag coefficient 3.24 × 10−4

Ice surface roughness length 5 × 10−4 m

2.2. Sea Ice Data Assimilation Method

To assimilate the gridded sea ice concentration data, we use an OI algorithm in the
sea-ice component of the coupled model. The analysis equations are given below:

xa = xb + K
[
y0 − Hxb

]
(1)

K = PbHT
[

HPbHT + R
]−1

(2)

where x denotes the state of sea ice concentration at all grid points (m). xa is the estimate
of analysis state, xb is model background state, yo is observation, H is an operator that

http://www.remss.com
http://www.remss.com
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interpolates model space into observation space, and K is a gain matrix that is determined
by the background error covariance matrix Pb and the observation error covariance matrix
R. Here, the observation errors are considered to be spatially uncorrelated, and thus R is
a diagonal matrix. Its diagonal elements are given with fixed observation error variance
based on instrumental errors.

The background error covariance matrix Pb is simply estimated by a parameterization,
rather than by an ensemble method.

Given that sea ice concentration is only a single-level variable, the elements of Pb that
represent the covariance between two points of (x1, y1) and (x2, y2) in the two-dimensional
space can be expressed as follows,

Pb(x1, y1, x2, y2) = σ2exp

[
− (x1 − x2)

2

L2
x

− (y1 − y2)
2

L2
y

]
(3)

where σ2 is error variance, which is set to 2.5 × 10−3, which is non-dimensional follow-
ing sea ice concentration; Lx and Ly are the correlation lengths in zonal and meridional
directions, respectively, and they are both set to five times the grid spacing in the module.
The OI scheme adopts a 1-day window for assimilating the daily sea ice concentration
data, which is consistent with the assimilated sea ice product (OSISAF). Thus, the diurnal
variability of sea ice may be damped during the assimilation window period, while during
the forecast period, the model is unconstrained. The scheme uses a localization strategy, in
which the distance d between the model point (xm, ym) and the observation point (x0, y0)

is computed by the formula d = (x0−xm)2

L2
x

+ (y0−ym)2

L2
y

, and the 10 nearest observations (an

estimation of observations falling within the correlation length Lx and Ly) surrounding the
given model grid point are then chosen to affect the analysis field.

2.3. Data
2.3.1. Sea Ice Concentration

In this study, two daily sea ice concentration datasets are used. The ice concentration data
used for the sea ice assimilation is the AMSR-2 sea ice concentration product of the EUMET-
SAT Ocean and Sea Ice Satellite Application Facility (OSISAF, www.osi-saf.org, last assess:
31 January 2022). This OSISAF data (product identifier: OSI-408) has a spatial resolution of
about 10 km on the polar stereographic grid. It is applied using the hybrid algorithm and has
been validated by comparing it with high-resolution manual ice charts [29].

For assimilation result assessment, a well-validated observational dataset that is
independent from data used for assimilation is indispensable. The sea ice concentration data
used for evaluation are from the National Snow and Ice Data Center (NSIDC) retrieved from
the Special Sensor Microwave Imager/Sounder (SSMIS) passive microwave data (http://
nsidc.org/data/docs/daac/nsidc0051_gsfc_seaice.gd.html, last access: 29 April 2022) [30].
This data has been mapped on a polar stereographic projection with a spatial resolution
of 25 km. For derivation technique and algorithm, the revised NASA Team algorithm is
applied together with a weather filter [31] to improve the ice mask. Note that the NSIDC
ice concentration data are derived from different satellite sensors, and are processed by
different algorithms from those of the OSISAF data, so it is independent of the OSISAF
data used in the data assimilation. In this study, we assume the NSIDC data is the “truth”
and evaluate the model performance against this dataset.

2.3.2. SST Dataset

SST data used for evaluation are the Global High Resolution SST Multi-Product Ensemble
(GMPE), processed by the Met Office of the U.K. This near-real-time data is a Level-4 satellite-
retrieved product on a regular 1/4◦resolution global grid (obtained from http://marine.
copernicus.eu/ with a product identifier SST_GLO_SST_L4_NRT_OBSERVATIONS_010_005,
last access: 16 December 2020).

www.osi-saf.org
http://nsidc.org/data/docs/daac/nsidc0051_gsfc_seaice.gd.html
http://nsidc.org/data/docs/daac/nsidc0051_gsfc_seaice.gd.html
http://marine.copernicus.eu/
http://marine.copernicus.eu/
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2.4. Numerical Experiments of Sea Ice Concentration Assimilation

To examine the impact of data assimilation of satellite-derived sea ice concentrations on
sea ice and ocean simulations, twin numerical experiments, named NoSICasim and SICasim,
are conducted, respectively. The two experiments are based on the FIO-COM10, and the
original EAKF assimilation module for seawater temperature and salinity is disabled to
focus on the impact of sea ice concentration assimilation.

The NoSICasim is a numerical experiment in which the sea ice concentration assimila-
tion is turned off, while the experiment SICasim assimilates the OSISAF sea ice concentra-
tion. Therefore, using the experiment NoSICasim as the reference, the impact of assimilating
sea ice concentration in the experiment SICasim can be evaluated and investigated.

Both numerical experiments of NoSICasim and SICasim cover the time period from 1
December 2018 to 31 July 2020. Snapshots from each daily run over the period 1 January 2019
to 31 December 2019 are used to evaluate the effects of sea ice concentration assimilation.

2.5. Real-Time Forecast of 2021

After examining the effect of sea ice concentration assimilation in the numerical
experiments, sea ice concentration assimilation was enabled in the FIO-COM10 real-time
operational forecasting system. The real-time forecasts of FIO-COM10 start at 12:00Z
for each day, with the sea ice concentration assimilation applied at the same time as the
forecasting system continues to yield a 5-day prediction. The forecasts from the period
1 January 2021 to 31 December 2021 were chosen to assess the forecasting ability for Arctic
sea ice in this study.

For consistency, all model results and observations have been interpolated onto the
polar stereographic projection of the NSIDC data, which is the main reference observation
for assimilation assessing.

3. Results

Different satellite-derived sea ice concentration products have significant deviations
due to different satellite sensors and algorithms. Even for certain data, such as the NSIDC
data, estimates of the accuracy can vary depending on sea ice conditions, methods, and
locations used in individual studies [32]. Sea ice concentration in regions of thin ice and
regions with melt ponds present on the sea ice tends to be underestimated by passive
microwave sensors such as AMSR2 [33]. The average accuracy of the algorithm that the
NASA team used in the NSIDC data was reported to be within 5% in winter in a compact
(high concentration) ice pack, while the accuracy could rise to 15% in the Arctic during
summer when melt ponds are present on the sea ice. The average accuracy of the OSISAF
data is 10% for the NH (Northern Hemisphere) product. There is more confidence in sea
ice concentration data, with at least 15% ice concentration [19,34]. Therefore, we used a
value of 15% representing observational error, and this value was taken as the threshold to
calculate sea ice extent (cumulative areas of the grid cells with at least 15% ice concentration)
and sea ice area (the integral sum of the product of sea ice concentration times the cell area
for all cells with at least 15% ice concentration).

3.1. Performance of Sea Ice Assimilation

The sea ice concentration differences of simulations with and without data assimilation
vary depending on the region and season. With the NSIDC sea ice concentration data
regarded as the “truth”, we can take a glance at the impact of the assimilation simply
by calculating the monthly averaged biases of the model simulations vs. the NSIDC
observation (Figure 1). For reference, the biases between the OSISAF and NSIDC sea
ice concentration data are also shown in Figure 1b, f. From the two observations, we
can see that the most significant difference occurs in the marginal ice zone, while there
is less difference in the compact ice pack (high concentration) areas. In winter, the sea
ice concentration biases are much smaller than those in summer. The OSISAF sea ice
concentration is slightly lower than the NSIDC observation in the high ice concentration
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area of Canadian Archipelago area and the Greenland Sea, while it is higher than the latter
in the areas with low ice concentration, especially near the sea ice edge in the Chukchi,
Bering, and Kara Seas and the Sea of Okhotsk. The corresponding Root Mean Square Error
(RMSE) of regions with a sea ice concentration larger than 15% of the two datasets is lower
in winter, with a value of 9–12% (figure not shown). However, in summer, it can reach up
to 20%. This is mainly caused by the uncertainty due to increased variability in sea ice
emissivity, the presence of melt ponds [35], and effects from oceanic processes, such as ocean
surface waves and tides [7], etc. The ice concentration of OSISAF is generally higher than
NSIDC in summer. Especially in the area near the sea ice edge; the deviation of the two can
reach as high as 60%. Keeping these deviations in mind, the main metrics used to evaluate
the assimilation performance are the bias, RMSE, and Integrated Ice-Edge Error (IIEE).
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Figure 1. Arctic sea ice concentration from NSIDC (a,e) which is regarded as the “truth”, the biases of
OSISAF (b,f) and model biases (c,d,g,h) of the Northern Hemisphere in March (a–d) and September
(e–h), 2019.

The effect of data assimilation can be seen by comparing the sea ice numerical exper-
iments of NoSICasim and SICasim (Figure 1c vs. Figure 1d for March and Figure 1g vs.
Figure 1h for September). The large error in experiment NoSICasim is remarkably reduced,
especially in the low-concentration regions. In wintertime, not only is the strong overesti-
mation of sea ice extent in the Greenland Sea corrected toward satellite observations, but
also the overestimations of sea ice concentration, such as in the Labrador Sea, the Chukchi
Sea, and the Sea of Okhotsk, as well as the underestimation in the Canadian Archipelago
region, are improved in experiment SICasim. In summer, there is a large systematic bias of
sea ice extent in experiment NoSICasim, which could be caused by errors in atmospheric
forcing or uncertainties in model physics. This bias is corrected towards the true state by
assimilating the observational sea ice concentration data. The erroneous patches of sea ice
in the Canadian Archipelago region are also removed when assimilation is applied. Over-
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all, the sea ice concentration is overestimated in the Arctic Ocean in experiment SICasim.
However, note the deviations in sea ice concentration between the OSISAF and the NSIDC
data; the biases in experiment SICasim are acceptable. The assimilation performance is
closely related to the assimilation data used. We can assume that the model simulation can
obtain a sea ice concentration dataset closer to the “truth” if the different observations have
less difference and are closer to the real world.

The annual-mean RMSE (averaged from daily RMSE) of sea ice concentration with
respect to the NSIDC data in Figure 2 shows that the biases are significantly reduced by
the data assimilation. In experiment NoSICasim, RMSEs are larger than 20% in most
regions of the Arctic Ocean (mainly the regions where sea ice in the satellite observation
in summer does not exist), but the RMSEs are reduced to less than 10%, a level similar
to the OSISAF data uncertainty. Eliminating the biases from the OSISAF data itself, the
biases in experiment SICasim are mainly located in the marginal ice zones in summer when
the minimum extent occurs, and in winter when the maximum extent occurs. This may
be caused by the inappropriate SST simulation in areas with patches of sea ice, which is
related to incoming atmospheric radiation, as suggested by Hebert et al. [6].
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Figure 2. Annual-mean RMSE of Arctic sea ice concentration of the OSISAF observation (a), the
numerical experiment NoSICasim (b), and the numerical experiment SICasim (c) with respect to the
NSIDC observation during 2019.

The temporal evolution of the mean RMSE of sea ice concentration with respect to
the NSIDC data, which are regarded as the “truth” for 1 January to 31 December 2019, is
shown in Figure 3. For the RMSE calculation, the criteria may vary in different studies.
For example, areas where sea ice concentration is higher than 5%, either in the model
or in observation, were chosen in Lisæter et al. [36], Strong [37], and Yang et al. [38].
With consideration to separating the performance in the compact ice areas and in the
areas influenced by oceanic processes (such as ocean surface waves and tides), a sea ice
concentration of 80% was additionally adopted as a criteria in Mu et al. [7]. Considering the
accuracy of different observations mentioned above and following Mu et al. [7] to assess the
data assimilation performance in the high-concentration areas, we calculated the averaged
RMSE of areas with NSIDC observation between 15% and 80% (Figure 3a), and areas where
the sea ice concentration of NSIDC observation is larger than 80% (Figure 3b), respectively.
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respect to the NSIDC observation is shown in gray. Note that (a) is computed over the area where the
NSIDC observation is larger than 15% and below 80%, and (b) is computed over the area where the
NSIDC observation is larger than 80%. Date format for x-axis is day/month.

The averaged RMSEs for the whole year of 2019 for numerical simulations of NoSI-
Casim and SICasim, and the observational data OSISAF against the NSIDC data (as the
“truth”) in the areas where the NSIDC concentration are larger than 15% and below 80%,
are 34.5%, 22.4%, and 20.2%, respectively. The mean RMSE is greatly reduced by the
assimilation scheme throughout the year (orange line vs. blue line). The RMSE of sea ice
concentration in experiment SICasim shows varying biases for different seasons, with a
bias trend similar to that of the OSISAF observation. The RMSE in experiment SICasim is
slightly higher than that of the OSISAF observation before late March, but is then reduced
and shows a quite similar level to the satellite observation errors from mid-April to late
September. The RMSE of SICasim increases as new ice forms, but it is still much lower
than the value of experiment NoSICasim. In the compact ice regions, the mean RMSE of
experiment SICasim is comparable with that of the OSISAF concentration, except for the
period from to 10 April to 30 July, and the RMSE in experiment SICasim during April to
July leads to an annual mean RMSE of experiment SICasim (with a value of 6.9%) that
is slightly higher than the OSISAF data (6.4%). Figure 3 shows that the impact of data
assimilation is more pronounced in areas with relatively low sea ice concentrations.

The simulation of NoSICasim overestimates the sea ice area all through the year of
2019, and data assimilation results pull this value back to the observational uncertainty
level. The sea ice area calculated from simulation SICasim is larger than that of the OSISAF
data, but still lies within the deviation range between the two satellite observations used in
this study (Figure 4a). In summer, the sea ice area of SICasim tends to have a similar value
to that of OSISAF. Results of the sea ice extent are not shown, but they are similar to those
of sea ice area.
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The location of the sea ice edge is extremely important for marine safety [39]. The
presence of the sea ice edge can lead to strong anisotropies and nonstationary features
in the sea ice ocean system [36]. Therefore, the ice edge position is a critical variable of
sea ice cover. We use the metric IIEE proposed by Goessling et al. [39] to assess data
assimilation performance. Corresponding to the overestimation of sea ice extent (and
thus, sea ice area), the simulation of NoSICasim has a large IIEE, especially in summer
time (Figure 4b). The mean IIEE of experiment NoSICasim for the period from June to
December is 1.93 × 106 km2, nearly 2.5 times larger than the value calculated from results
of experiment SICasim, while this ratio decreases to 0.64 for the rest of 2019.

The performance of the sea ice edges simulation in experiment NoSICasim varies due
to different regions and different seasons (Figure 5). For example, in March, other than
a slight deviation from the NSIDC observation in the Bering Sea and the Sea of Okhotsk
(Figure 5b), the main deviation occurs in the Greenland Sea (Figure 5c). The reason may be
that this area is significantly affected by the convective process, and the model has some
common problems in parameterization of this process [40,41]. Data assimilation of SICasim
removes erroneous patches of sea ice in areas such as the Greenland Sea and the Bering
Sea, and thus produces the sea ice edge much closer to the observation. In September
(Figure 5d), as suggested by Liang et al. [42], the assimilation can have a better performance
in terms of the sea ice edge simulation once SST is close to the freezing point, which, in
our model, occurs in the areas between the sea ice edge of the NoSICasim experiment
and that of the SICasim experiment. This improvement of IIEE may be attributed to a
better representation of the surface energy balance in the marginal ice zones in the model
simulations, as suggested by Lindsay and Zhang [19].



Remote Sens. 2023, 15, 1274 10 of 17

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 18 
 

 

 

Figure 4. Sea ice area (a) and IIEE (b) time series in the Arctic region from 1 January to 31 December 

2019. The experiments without and with data assimilation are shown in blue and orange, respec-

tively. Sea ice areas of NSIDC and OSISAF are shown in green and gray, respectively. IIEEs between 

NSIDC and OSISAF are shown in gray. 

 

Figure 5. Simulated and observed sea ice edge locations in March (a–c) and September 2019 (d). 

Areas where sea ice concentration in the NSIDC observation is higher than 15% are denoted by the 

blue patch. The ice edges in the experiments NoSICasim and SICasim are denoted by green and red 

Figure 5. Simulated and observed sea ice edge locations in March (a–c) and September 2019 (d).
Areas where sea ice concentration in the NSIDC observation is higher than 15% are denoted by the
blue patch. The ice edges in the experiments NoSICasim and SICasim are denoted by green and red
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the Nordic Seas.

3.2. Impact on SST

The improvement of sea ice simulation has a profound impact on model simulation
by effecting ocean state [17]; for example, effecting salt or heat fluxes. Since there are few
observations for temperature and even less for salinity under sea ice in the central Arctic
Ocean, we compare the simulated SST with GMPE SST and focus on the influence on SST
by ice concentration assimilation in the areas with a sea ice concentration of less than 15%
(Figure 6). According to Martin et al. [43], SST under the sea ice in GMPE is estimated using
a variety schemes, and most of them are based on the estimation of freezing under sea ice.
In our model, the SST under the sea ice is also the freezing of sea water. Therefore, the SST
under the sea ice of GMPE and the model are comparable.

As the sea ice coverage biases are corrected through data assimilation of sea ice
concentration, the experiment SICasim can provide a more reliable SST simulation in
the area between the sea ice edge difference area of the NoSICasim and SICasim. SST
simulations are greatly improved in the marginal ice zones, such as in the Greenland Sea
in March and in the Canadian Archipelago, Greenland Sea, as well as Kara Sea regions in
September. The mean SST uncertainties of the observational data are reported to be as high
as 1.0 ◦C in most of the Arctic marginal seas [42]. The large averaged SST biases of about
1.1 ◦C between the results of experiment NoSICasim and the observations are reduced to
0.22 ◦C by data assimilation. This improvement in SST has potential influence on ocean
state simulation, such as improving surface flux estimates [44] and convection simulation
in the Greenland Sea.

In winter time, there is a systematic SST bias in the Labrador Sea for the NoSICasim,
which is not corrected by data assimilation. This usually happens when the systematic SST
bias is too large, as pointed out by Liang et al. [42]. In summer time, the SST bias in the
Barents Sea and Kara Sea, which cannot be reduced by the present sea ice concentration
data assimilation, may need additional SST data assimilation.
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Figure 6. Spatial distributions of SST (unit: ◦C) based on the GMPE SST Observation (a,d), the
absolute biases of NoSICasim (b,e), and SICasim (c,f). The results for March are shown in (a–c), while
for September they are shown in (d–f). Areas either with sea ice concentrations above 15% in the
NSIDC observation or ice-free regions in NoSICasim are represented as white.

3.3. Impacts on Real-Time Sea Ice Forecasts

Motivated by the results of data assimilation numerical experiments, the data assim-
ilation of sea ice concentration is implemented into the operational global 1/10◦ surface
wave-tide-circulation coupled ocean forecast system (FIO-COM10) to improve its sea ice
forecast ability. Since there are differences between different sea ice concentration datasets
themselves, we chose the assimilated OSISAF data as the “truth” when evaluating forecasts,
just as Stark et al. [17] did. A reforecast without sea ice concentration assimilation from
the model period from 1 August to 30 September 2021 is implemented. After ~25 days,
the forecasts without sea ice concentration assimilation become stable. We can clearly see
the improvement of forecast ability by applying sea ice concentration assimilation from
the comparison between the forecasts with and without sea ice concentration assimilation,
both for RMSE and IIEE (Figure 7).
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Figure 7. Sea ice concentration RMSE (a) and IIEE (b) time series of the FIO-COM10 forecast from
1 August to 30 September 2021. The forecasts with and without sea ice concentration assimilation are
shown in thick and thin lines, respectively. The RMSE and IIEE of NSIDC with respect to the OSISAF
observation are shown in thick gray lines.

Spatially, the forecast performance varies in different regions, which is quite similar
to that of the SICasim numerical experiment. There are relatively large concentration
biases in forecasts in the marginal areas, such as the Canadian Archipelago, Greenland,
and Okhotsk regions (figure not shown). Here, we present the forecast performance in sea
ice concentration RMSE averaged for each month over the Arctic domain, a region with
existing summer sea ice and with more frequent human activities (Figure 8a). The monthly
averaged sea ice concentration RMSE eliminates the high frequency variations in daily
resolution (figure not shown), but the overall trends of the two are highly consistent. As
expected, the sea ice concentration RMSEs increase from 24 to 120 h (Figure 8b). For the
sea ice concentration RMSE, a 24-h forecast is slightly higher than that of NSIDC data in
spring and winter times, but is lower than the latter in the period from sea ice melting to
new ice formatting. The overall performance of 24-h forecasting is at a similar level as the
independent NSIDC data.

For annual-mean concentration RMSE, the forecasting system has a value slightly
higher than persistence forecasts, i.e., an unchanging forecast for 24, 48 and 72 h, but has a
superior performance than the latter for 96 and 120 h (Figure 8c). When the period is limited
between August and November, a period with more human activities such as scientific
investigation and commercial activities in the Arctic Ocean, the forecasting system has a
better performance than persistence forecasts from 48 h (Figure 8d). The sea ice concentration
forecasts can be taken as a reference for shipping routes with a 2–5 days lead-time.
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Figure 8. Sea ice concentration RMSE between FIO-COM10 forecast and the OSISAF observation.
(a) The Arctic domain (blue patched area), averaging region for sea ice concentration RMSE analysis.
(b) Monthly-mean sea ice concentration RMSE from January to December 2021 over the Arctic domain.
(c) Annual-mean RMSE of forecast and the corresponding persistence forecast for different lead time
in 2021. (d) Mean RMSE during 1 August to 30 November 2021 of forecast and the corresponding
persistence forecast for different lead time.

The forecast results for IIEE are shown in Figure 9. Similar to that of RMSE, forecast
performances degrade from 24 to 120 h, and forecasts on all time scales share similar trends.
The IIEE of the 24-h forecast is lower than that of the NSIDC data for all months, meaning
it lies within the satellite observation uncertainty range. In late spring and summer time,
even the 72-h forecast has a reliable performance in the IIEE estimation.
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Figure 9. The IIEE between FIO-COM10 forecast and OSISAF observation. (a) Monthly-mean IIEE
time series from January to December 2021 in the Arctic region. (b) Annual-mean IIEE of forecast and
the corresponding persistence forecast for different lead time in 2021. (c) Mean IIEE during 1 August
to 30 November 2021 of forecast and the corresponding persistence forecast for different lead time.

The annual-mean IIEE of the forecasts is slightly higher than persistence forecasts,
which could be attributed to errors in atmospheric forcing or uncertainties in model physics.
However, the forecasting system can produce reliable sea ice edge predictions, and has
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outstanding performance for 48 to 120 h between August and November for the Northern
Hemisphere (Figure 9c).

The choice of “reference” will influence the statistics of evaluation of forecast. When
taking the NSIDC as reference, the RMSE and IIEE time series for 2021 for each forecast
time are at the same level as those of OSISAF. The forecast has a slightly worse performance
than the persistence forecast for RMSE, while it is better than the latter for IIEE (figure not
shown). The statistics of the evaluation are closely related to the assimilation data used.
We assume the forecasts will have a consistent performance if the different observations
have less difference.

4. Discussion

Data assimilation is thought to be a useful technique to reduce the uncertainties in
initialization and systematic errors in the numerical model. For better understanding of sea
ice concentration assimilation performance, we compared the results of model simulation
with and without assimilation. Overall, the large biases in ice concentration simulation
could be significantly reduced by sea ice concentration assimilation, not only for the sea ice
edge estimation, but also for the value of the ice concentration itself. The performance of
concentration assimilation varied according to different regions and seasons, and the most
significant improvement occurred in the marginal ice zones. For several scattered areas,
the large biases in annual-mean RMSE of sea ice concentration in marginal ice zones that
could not be corrected by this OI data assimilation may be related to inappropriate SST
simulation, which could be related to inappropriate incoming atmospheric radiation, as
suggested by Hebert et al. [6].

In addition to the direct effects on the sea ice itself, the improvement in sea ice sim-
ulation could have profound indirect effects on the simulation of other ocean variables;
for example, salt content [19], ocean circulation [8], SST [42], and thus the sea ice state in
the subsequent seasons [45]. In our study, the significant improvement in SST simulation
was made more robust by the sea ice concentration data assimilation, and these improve-
ments were mainly achieved through improvements in sea ice coverage simulation. There
were still some systematic SST biases that could not be corrected by sea ice concentration
assimilation in the marginal areas, such as the Labrador Sea. This may need implementing
an additional SST assimilation and considering the covariance between SST and sea ice
concentration [36,46].

5. Conclusions

For a real-time operational forecast system, an effective and low-cost data assimilation
scheme is desirable. In this study, a practical, lightweight yet effective data assimilation
scheme of sea ice concentration based on the OI algorithm was designed and used to assim-
ilate satellite-derived sea-ice concentration data into an operational global ocean forecast
system. The data assimilation performance and assimilation effect in forecasting system
were investigated and evaluated using results from twin numerical experiments with and
without data assimilation in 2019, and from 5 days operational forecasting evaluation
in 2021, respectively. To assess the assimilation performance in different concentration
areas, the averaged RMSE with respect to the NSIDC observation in the areas with sea ice
concentration of the NSIDC data between 15% and 80%, and in the areas where the NSIDC
observation are larger than 80%, were calculated, respectively. The results showed that
the effect of concentration assimilation was more pronounced in areas with relatively low
sea ice concentrations, where sea ice is supposed to be significantly influenced by oceanic
processes, such as ocean surface waves and tides. To assess the assimilation effect on the
operational ocean forecasting system, we focused on two metrics: RMSE and IIEE. The
relatively large concentration biases in forecasts in the marginal areas, such as the Sea of
Okhotsk, were not surprising due to the original deviation between the observations. Both
sea ice concentration RMSEs and IIEEs increased from 24 to 120 h. For RMSEs, the best
performances were derived from 24-h forecasting, with a similar level as the independent
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NSIDC data. For IIEEs, even the 72-h forecast had a reliable performance and was within
the satellite observation uncertainty range. From August to November, a period with more
human activity in the Arctic Ocean, the forecasting system had a much better performance
than the persistence forecast; i.e., an unchanging forecast with a 2–5 days lead-time for sea
ice concentration and sea ice edge location.

In summary, by applying a practical, lightweight yet effective sea ice concentration
assimilation scheme, the simulated and forecast sea ice concentration and edges of Arctic
in our operational global ocean-ice coupled forecast system were significantly improved.
Furthermore, the simulated SST of the Arctic was also improved due to sea ice concentration
assimilation. Since the ocean-ice model adopted in this study (MOM5 and SIS) is widely
used in the ocean climate modeling community, we believe that the practical scheme can shed
light on other ocean climate numerical experiments to improve the simulation of polar region.

The model errors could be ascribed to varying aspects of spatial errors (e.g., a shift in
the location of a formation event) to the misrepresentation of physical processes [13,14,38].
There is no doubt that the model’s forecast ability can be improved by including more
reasonable physical processes and by employing more realistic parameterizations. We
showed in this study the impact of sea ice concentration data assimilation in the coupled
ocean model FIO-COM10 on sea ice concentration forecast. There is still potential for
further optimization; for example, by employing SST and sea ice thickness data assimila-
tion, upgrading the convection scheme in the Greenland Sea, and increasing vertical and
horizontal resolutions. These will be explored in future studies.
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