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Abstract: Total phosphorus (TP) concentration is high in countless small inland waterbodies in Hubei
province, middle China, which is threating the water environment. However, there are almost no
ground-based water quality monitoring points in small inland waterbodies, because the cost of
time, labor, and money is high and it does not meet the needs of spatiotemporal dynamic monitor-
ing. Remote sensing provides an effective tool for TP concentration monitoring spatiotemporally.
However, monitoring the TP concentration of small inland waterbodies is challenging for satellite
remote sensing due to the inadequate spatial resolution. Recently, unmanned aerial vehicles (UAV)
have been applied to quantitatively retrieve the spatiotemporal distribution of TP concentration
without the challenges of cloud cover and atmospheric effects. Although state-of-the-art algorithms
to retrieve TP concentration have been improved, specific models are only used for specific water
quality parameters or regions, and there are no robust and reliable TP retrieval models for small
inland waterbodies at this time. To address this issue, six machine learning methods optimized by
intelligent optimization algorithms (IOA-ML models) have been developed to quantitatively retrieve
TP concentration combined with the reflectance of original bands and selected band combinations
of UAV multispectral images. We evaluated the performances of models in terms of coefficient of
determination (R2), root mean squared error (RMSE), and residual prediction deviation (RPD). The
results showed that the R2 of the six IOA-ML models for training, validation, and test sets were
0.8856–0.984, 0.8054–0.8929, and 0.7462–0.9045, respectively, indicating the methods had high preci-
sion and transferability. The extreme gradient boosting optimized by genetic algorithm (GA-XGB)
performed best, with the highest precision for the validation and test sets. The spatial distribution
of TP concentration of each flight derived from different models had similar distribution character-
istics. This paper provides a reference for promoting the intelligent and automatic level of water
environment monitoring in small inland waterbodies.

Keywords: TP retrieval; IOA-ML models; UAV multispectral images; spatial distribution

1. Introduction

Inland waters are indispensable for agricultural, industrial, and recreational needs,
such as aquaculture, transport, and energy production, and as a major source of drinking
water and irrigation [1]. The deterioration of water quality has become one of the most
important topics of environmental protection and the safe use of water. More than 60% of
world’s large lakes (>10 km2) were considered eutrophic in the summer of 2012 [2]. Accord-
ing to the study of OECD (World Economic Cooperation and Development Organization),
80% of water eutrophication is attributable to phosphorus, and 10% is directly related to
phosphorus and nitrogen [3]. In China, eutrophication of rivers and lakes has become more
severe in the middle reaches of the Yangtze River, and phosphorus is the primary limiting
element [4,5]. Therefore, monitoring the spatiotemporal variability of total phosphorus
(TP) concentration is of great significance to protect the water environment.

Remote Sens. 2023, 15, 1250. https://doi.org/10.3390/rs15051250 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15051250
https://doi.org/10.3390/rs15051250
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs15051250
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15051250?type=check_update&version=1


Remote Sens. 2023, 15, 1250 2 of 18

Traditional water quality monitoring methods have great precision, mainly based
on field sampling, laboratory analysis, or automated instruments [6]. However, these
methods are labor-intensive, time-consuming, and costly, and do not meet the needs of
spatiotemporal dynamic monitoring of water quality [1,7,8].

Over the last few decades, the role of remote sensing in water quality retrieval has been
significantly increasing, with low-cost, full-coverage, and micro-dynamic characteristics
thanks to the rapid growth in technologies and applications. For many years, satellites
equipped with various sensors have been adopted for water quality assessment [9,10].
However, owing to the long return visit period, low spatial resolution, and susceptibility to
interference by clouds, the application of satellites to real-time monitoring water quality
of complex environments and small-sized waterbodies, such as small ditches and ponds,
is not very suitable. Additionally, researchers have proved that small lakes were more
vulnerable to eutrophication [11], and chlorophyll-a (Chl-a) concentrations were inversely
related to lake size in the middle and lower reaches of Yangtze River [12].

Unmanned aerial vehicles (UAV) have led to innovative, regional monitoring of
inland surface water and have successfully compensated for deficiencies in spatiotem-
poral resolution with flexibility and nonsusceptibility to interference by clouds [6,7].
UAVs equipped with multi-sensors, especially multispectral sensors, have been used to
monitor Chl-a, total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP),
chemical oxygen demand (COD), and permanganate index (CODMn) in complex inland
waterbodies [6,13]. For example, Su and Chou [14] used multispectral sensor mounted
on a UAV to map the trophic state of a small reservoir. Wang et al. [15] designed an
acquisition scheme of water quality spectral elements suitable for the complex water-
bodies of aquaculture, combining the ground wireless sensor network and UAV spectral
remote sensing technology. Liu et al. [16] constructed the inversion models of TP, TSS,
and turbidity by multispectral sensor mounted on a UAV, and achieved higher accuracy
through feature selection.

Although remote sensing can facilitate the monitoring of TP concentration, the method-
ology involved is complicated because phosphorus is nonactive and does not have spectral
characteristics [17]. Therefore, the relationships between TP concentration and surface
reflectance are nonlinear and complex [18]. The bands from visible to near-infrared have
been used to estimate TP concentration [3,19]. The traditional retrieval models of water
quality parameters based on statistical regression analysis, including linear regression,
polynomial regression, ridge regression, and other methods, have poor inversion accuracy
and weak generalization [20]. Machine learning (ML) methods are gaining momentum for
water quality retrieval due to their ability to capture the potential relationship between
remote sensing images and TP concentration [21,22]. In recent years, many researchers have
proved that TP concentration can be estimated by ML methods with UAV multispectral
images. For example, TP concentration in urban rivers was monitored by ML methods
with UAV multispectral images [6]. Zhang et al. [23] developed a hybrid feedback deep
factorization machine model to retrieve the concentration of phosphorus and trace pollution
sources in urban rivers. Chang et al. [24] directly explored the TP spatiotemporal patterns
with the aid of genetic programming models. UAV multispectral data were used to retrieve
Chl-a, TN, and TP based on six ML models [25]. Based on the spectral and spatial features,
Zhou et al. [26] used an ensemble ML model to estimate TP concentration in Shanghai.
Although previous studies have used ML methods for TP estimation in different regions,
specific models are only used for specific regions, or even only for the condition range in
training data. In addition, almost all ML methods have their limitations, such as complex
model hyperparameters. The intelligent optimization algorithm (IOA) can optimize the
hyperparameters of ML methods due to their global search and adaptive characteristics
and improve the robustness and predictability [27]. This paper establishes the TP retrieval
models by combining the global search ability of IOA with the advantages of the high
efficiency and flexibility of machine learning (IOA-ML) methods.



Remote Sens. 2023, 15, 1250 3 of 18

In this paper, six IOA-ML models were developed to retrieve TP concentration. By
incorporating the UAV multispectral images, we attempt to propose methods for small
inland waterbodies monitoring with high reliability and transferability. The main objectives
of this study include (1) evaluating the performances of TP retrieval of six IOA-ML models
with paired in situ data and UAV multispectral images divided into training, validation,
and test sets, (2) conducting the statistical analysis of TP concentration based on pixel scale,
(3) verifying the transportability of the developed IOA-ML models. This study is helpful for
monitoring the water quality in small inland waterbodies and provides technical support
for the intelligent management of water environment.

2. Materials and Methods
2.1. Study Area

In this paper, three typical small inland waterbodies on Hubei province, middle China,
were selected as the research areas (Figure 1). Research area A and B are located in Jingmen
city, Hubei province, with a linear distance of 12 km. Research area A is a drainage ditch for
crayfish–rice culture, located in Zhanghe town, Dongbao district, and research area B is a
small reservoir, located in Tuanlinpu town, Duodao district. The water quality of them both
are mainly influenced by agriculture and aquaculture. Research area C is composed of six
ponds, located in Shuangxiqiao town, Xian’an district, Xianning city. There is a domestic
sewage collection and treatment facility, and the treated tailwater circulates among these
ponds powered by engineering and is then discharged to the downstream after reaching
the standard. The detail of research areas and sampling information are shown in Figure 1.
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2.2. Data Processing
2.2.1. UAV Data and Preprocessing

The UAV platform utilized in our study is the DJI M300 RTK, manufactured by DJI
innovations company, Shenzhen, Guangdong, China. The DJI M300 RTK is a 4-rotor UAV
and integrates binocular vision, flight control system, and an FPV camera, with functions
such as six-direction positioning, obstacle avoidance, and precise reshooting. It not only
ensures flight safety but also provides necessary functions suitable for battery inspection
applications [28]. The parameter details of this UAV are shown in Table 1. The multispectral
imager mounted on the UAV is RedEdge MX Dual, manufactured by Micasense company,
the United States. Ten multispectral bands can be obtained synchronously. In addition to
the standard five-channel band of the RedEdge MX (first row of Table 2), a new five-channel
sensor is added (second row of Table 2). Therefore, it is more suitable for water environment
monitoring. The ground spatial resolution of multispectral images is 8 cm/pixel when the
flight altitude of the UAV is 120 m. The ten-band range is shown in Table 2.

Table 1. Parameters of DJI M300 RTK.

Item Parameters

Diagonal wheelbases 895 mm
Empty weight 6.3 kg

Maximum takeoff weight 9 kg
No load endurance 55 min

Maximum flight/ascending/descending speed 23 m/s/6 m/s/5 m/s
Maximum wind resistance level 15 m/s

Table 2. Band ranges of RedEdge MX Dual.

RedEdge-MX Blue475 Green560 Red668 Red edge717 Nir842
Wavelength range (nm) 475 ± 16 560 ± 13.5 668 ± 7 717 ± 6 842 ± 28.5

RedEdge-MX Blue Blue444 Green531 Red650 Red edge705 Red edge740
Wavelength range (nm) 444 ± 14 531 ± 7 650 ± 8 705 ± 5 740 ± 9

There were five flights in total from July 2021 to September 2022. The flight details
are shown in Table 3. No ground control points were added to the flights because the
multispectral imager has an integrated GPS that geo-tags each of the images acquired by the
UAV. Furthermore, it was also equipped with a Downwelling Light Sensor and a Calibrated
Reflectance Panel (CRP) to perform the radiometric calibration on the ambient light changes
during the flight. A picture of the CPR was taken before and after each flight to capture the
lighting conditions. The operational altitude of the UAV was 50–200 m, where atmospheric
influence could be ignored. The multispectral images were mosaiced with radiometric
correction after each flight. The water surface was extracted by the normalized difference
water index (NDWI), calculated by Equation (1). The threshold was set to 0.2.

NDWI =
Green560− Nir842
Green560 + Nir842

(1)

where Green560 is the reflectance of the Green560 band and Nir842 is the reflectance of the
Nir842 band.
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Table 3. Flight and sampling information.

Time Area Height Resolution Number of Photos Sampling Number

26 July 2021 Research area A 50 m 3.67 cm 1820 24
19 September 2022 Research area B 200 m 14.4 cm 3210 48
10 December 2021 Research area C 100 m 7.7 cm 6460 20 (all in pond 2)

27 May 2022 Research area C 200 m 14.3 cm 2760 10 (4 in pond 2, 2 in pond 3, 1 in
pond 4, 1 in pond 5, 2 in pond 6)

27 September 2022 Research area C 200 m 14.4 cm 2560 19 (15 in pond 2, 1 in pond 3, 1 in
pond 4, 1 in pond 5, 1 in pond 6)

2.2.2. Field Data and Preprocessing

Water samples were collected in situ, as shown in Figure 1, synchronously with
the collection of multispectral images in this study. Sampling points were 4–6 m away
from the banks to avoid the influence of mixed pixels, except for research area C, which
was evenly distributed on the water surface. Meanwhile, a real-time global positioning
system was used to record the coordinate information of sampling points. According to
the technical guidance for water quality sampling, the sampling points were arranged
0.1–0.2 m below the water surface because the water transparency was around 0.3 m,
and 0.5 L of the water samples were collected at each point. Bottles were shaded before
chemical analysis of TP concentration in the laboratory. After collecting water samples,
the chemical experiment was completed within three days through a spectrophotometric
analysis after the decomposition of potassium persulfate based on the Chinese national
standard and trade standard. Two or three parallel samples of all water samples were
analyzed, and the mean values served as the final TP concentration.

A single pixel can be easily impacted by specular reflection and water splash, making
it difficult to reflect the spectral difference induced by an actual change in water quality at
the sampling point [6]. For accurately matching UAV multispectral images with sampling
points, a spatial window with 20 × 20 pixels was used to extract the reflectance of all bands
located at each sampling point, rather than considering a single pixel in this study. The
pixel values were extracted by the function of “Regions of Interest (ROI)” using EN-VI5.3.

2.3. Model Development
2.3.1. Modeling Sets Construction

In this study, outliers deviating more than three standard deviations from the mean TP
concentration were excluded, and 121 paired TP concentration and reflectance values were
divided into training sets, validation sets, and test sets. The training sets and validation
sets were used for model training, and test sets were not put into the model to measure the
accuracy and generalization ability of the established models. In this paper, 20 sampling
points were randomly selected as test sets, and the remaining 101 sampling points were
divided into training and validation sets, with a ratio of 7:3. The model development
process is shown in Figure 2.

2.3.2. Feature Selection

To reduce the interference of background information and extract effective spectral
information, it is important to try a variety of combined computing modes. Band ratio,
a semiempirical method for retrieving water quality parameters, has been extensively
researched and applied in monitoring inland waterbodies and has achieved promising
results [29]. This method is often used in satellite remote sensing research to weaken
the impact of atmospheric effects. The flight altitude of the UAV is sufficiently low that
atmospheric effect could be ignored. Therefore, any 2–4 bands were combined as a feature
through four fundamental admixture operations in this study, and 10,020 features were
produced in total.
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However, some features may be redundant because the information they add is
contained in other features [30]. A good feature subset contains features that are highly
related to target variable but are not related to each other. Feature selection is helpful
to avoid overfitting and therefore improve model generalization. To better exploit the
complex interaction between TP concentration and the reflectance of multispectral images,
correlation-based feature selection (CFS) was used to select the feature subset used for the
IOA-ML models [31]. The feature subset selected by CFS and the original ten bands are
selected as the input variables of all IOA-ML models. The steps of CFS are as follows:

Step 1: find the feature that has the highest r (Pearson’s correlation coefficient) value with
the target variable and the feature is the first variable of the feature subset.
Step 2: select the feature that maximizes Merits calculated by Equation (2) and add the
selected feature to the feature subset.
Step 3: repeat step 2 until the value of Merits does not increase.
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Merits =
krc f√

k + k(k− 1)r f f

(2)

where Merits is the heuristic “merit” of the feature subset, k is the feature number of the feature
subset, rc f is the average of the correlation between the target variable and the feature subset,
and r f f is the average intercorrelation of any two features in the feature subset.

The feature subset and TP concentration were processed by Z-score normalization to re-
duce the difference of feature ranges with the following equation before model establishment.

Xi
′ =

Xi − X
Xstd

(3)

where Xi
′ denotes the normalized result, Xi denotes the reflectance values or TP concen-

tration of the training, validation, and test sets. X denotes the mean of the training and
validation sets and Xstd denotes the standard deviation of the training and validation sets.

2.3.3. IOA-ML Models

Hyperparameter is a kind of predetermined parameter before the learning process,
and their values directly affect the performance of the ML models [31]. To improve the
robustness and predictability of the ML models, IOAs were used to optimize the hyper-
parameters of the ML models. Six IOA-ML models, including support vector regression
optimized by particle swarm optimization (PSO-SVR), categorical boosting regression
optimized by genetic algorithm (GA-CBR), gradient boosting regression optimized by
GA (GA-GBR), deep neural network (DNN), extreme gradient boosting optimized by GA
(GA-XGB), and random forest optimized by grid search algorithm (GS-RF), have been
developed. The details of the six IOA-ML models were as follows.

SVR can effectively deal with small sample and nonlinear problems and is a useful
ML regression method. The radial basis function was chosen as the kernel of SVR in this
paper. The hyperparameters of SVR, including penalty parameters C, gamma, and epsilon,
were optimized by PSO [32].

The CBR model is a new gradient boosting decision tree algorithm that can handle
categorical features well. This algorithm can deal with categorical features during train-
ing time instead of during preprocessing time and allows the use of whole datasets for
training [33]. The hyperparameters of CBR, including number of iterations, learning rate,
maximum tree depth, and regularization, were optimized by GA in this paper.

The GBR model is designed based on boosting. The GBR algorithm rebuilds the model
in the gradient descent direction of the loss function of the previous iteration. Generally,
the smaller the loss function, the better the model performance. The hyperparameters of
GBR, including learning rate, number of estimators, subsamples, and maximum tree depth,
were optimized by GA in this paper.

The XGB model, which was developed in 2016, is based on regression trees [34]. It
improves the operational efficiency of the optimization process while reducing overfit-
ting by employing second-order derivative data and integrating a regular component
in the cost function. In this study, the hyperparameters of the XGB model, including
learning rate, number of estimators, maximum tree depth, and minimum leaf weight,
were optimized by GA.

DNN is the basic form of deep learning and one of the most efficient and powerful tools
to model complex nonlinear relationships. DNN is a connectionist system with multiple
hidden layers between the input and the output layers [35]. For tuning hyperparameters in
this study, LeakyReLU and adam were set as the active function and optimizer, respectively.
The neural units of each layer of the DNN model were (64, 128, 256, 512, 512, 1024, 1024).
Additionally, dropout, batch normalization, and early stopping techniques were used in
the model.
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RF is an ensemble ML algorithm based on decision trees developed in 2001 by Leo
Breiman [36]. RF is widely used in regression analysis, because of its high prediction
accuracy. The GS algorithm tries the list of all combinations of values given for a list
of hyperparameters and records the best performance based on evaluation metrics. The
hyperparameters of RF, included number of estimators, maximum number of features,
minimum number of samples to split a node, minimum number of samples to be at a leaf
node, and maximum allowable depth, were optimized by GS.

2.3.4. Model Accuracy Assessment

To verify the performances of the models, we adopted three evaluation indicators:
coefficient of determination (R2), root mean square error (RMSE), and residual prediction
deviation (RPD) to evaluate the accuracies of the TP retrieval models. Among them, R2

is the most commonly used indicator to evaluate the performance of regression models.
The value range of R2 is [0, 1]. The RMSE indicates the relative error between the
predicted value and the measured value. The closer it is to zero, the better the fitting
model. The RPD is the ratio of standard deviation of measured value to MSE. The models
can be divided into three categories according to RPD: (1) RPD > 2 indicates the model
is stable and reliable; (2) 2 > RPD > 1.4 indicates the model is general and reliability
needs to be improved; (3) 1.4 > RPD indicates poor stability of the model and retrieval is
unreliable [37]. The formulas of these evaluation indicators are as follows, respectively.

R2 = 1− ∑n
i=1(xi − yi)

2

∑n
i=1(xi − x)2 (4)

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (5)

RPD =

√
1
n ∑n

i=1(xi − x)2

RMSE
(6)

where n is the number of data pairs, yi is the predicted TP concentration, xi is the value of
the measured TP concentration, and x is the mean of measured TP concentration.

3. Results
3.1. Spectral Response to TP Concentration

The reflectance curves of sampling points are illustrated in Figure 3. The spectral
signature was characterized by a strong absorption peak in blue444 and red668, and
by a reflection peak in green560 and rededge705, which had similar characteristic with
Lu et al. [29]. However, the TP concentration showed different laws with the reflectance
values in research area A and B (Figure 3a) and research area C (Figure 3b). Overall,
the reflectance curves were positively correlated with the TP concentration in research
areas A and B, while the reflectance curves had a negative correlation with the TP
concentration in research area C. This phenomenon can be explained by different water
components or concentration in different regions, such as TP concentration and relative
active parameters. It is worth noting that the water in research areas A and B is mainly
affected by agriculture and aquaculture, while in research area C it is mainly affected by
domestic sewage. The relationships between TP concentration and reflectance values in
different regions were variable in previous studies. Research has demonstrated that there
was a strong positive correlation between concentration of phosphorus and spectral
reflectance [7,38]. Other studies showed that the spectral reflectance was inversely
proportional to TP concentration in the lakes and rivers [25,39].
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3.2. Selection of Band Combinations

Band combinations were used to obtain sensitive bands to extract effective spectral
information. The approach in Section 2.3.2 was used to create and select the best feature
subset based on the training and validation sets for the input of the IOA-ML models. The
best feature subset selected by CFS with maximum Merits is shown in Table 4. The selected
five-band combinations along with the ten initial multispectral bands were used as input
variables in the development of the six IOA-ML models for retrieving TP concentration.

Table 4. Bands combinations selected by CFS.

Selection Order Feature Merits

1 rededge740 × rededge714 × rededge705 × nir842 0.8329
2 (blue444 − red668 − nir842) ÷ rededge714 0.8796
3 rededge740 × red668 × red650 × nir842 0.8952
4 red668 ÷ green560 ÷ green531 ÷ rededge714 0.923
5 rededge740 × rededge714 × red650 × nir842 0.9394

Note, × represents multiply, ÷ represents divide, − represents subtract.

3.3. Evaluation of IOA-ML Models

Six IOA-ML models (PSO-SVR, GA-CBR, GA-GBR, DNN, GA-XGB, GS-RF) with
hyperparameters determined by the training sets and slightly adjusted by the evaluation
indicators of the validation sets were developed to retrieve TP concentration. The scatter
plots of measured and predicted TP concentrations on the training sets, validation sets,
and test sets, derived from the developed IOA-ML models, are shown in Figure 4. The
scatters were near and uniformly distributed on both sides of the 1:1 line, which proved the
established models obtained better results. However, there still existed certain problems.
For example, some models, such as PSO-SVR, GA-GBR, DNN, GA-XGB, and GS-RF, did
slightly underestimate the high TP concentration where TP concentration was more than
0.7 mg/L due to the paucity of samples available with a high TP concentration.

Table 5 reveals the performances of six IOA-ML models with respect to R2, RMSE,
and RPD, and the best results are shown in boldface. In general, all models showed high
accuracies in the training sets, validation sets, and test sets. The prediction accuracies for the
validation and test sets were all lower than the prediction accuracies for their training sets
for the GA-CBR, GA-GBR, DNN, GA-XGB, and GS-RF models. For the PSO-SVR model,
the prediction accuracy of the training sets, validation sets, and test sets were similar. RPD
are more than 2 of the six IOA-ML models and three sets, except for the test sets of the
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GA-CBR model with 1.9849, proving the six IOA-ML models are stable and reliable on
predicting TP concentration.
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Table 5. Performances of the six IOA-ML models.

Model
R2 RMSE (mg/L) RPD

Training Validation Test Training Validation Test Training Validation Test

PSO-SVR 0.9015 0.8929 0.9045 0.0649 0.0583 0.0486 3.1859 3.0561 3.2351
GA-CBR 0.9506 0.8148 0.7462 0.0445 0.0742 0.0792 4.5 2.3234 1.9849
GA-GBR 0.984 0.8458 0.8281 0.0253 0.0677 0.0651 7.9153 2.5466 2.4125

DNN 0.8856 0.8054 0.8143 0.0699 0.0786 0.0677 2.9565 2.2667 2.3206
GA-XGB 0.9584 0.9082 0.9124 0.0422 0.054 0.047 4.906 3.3005 3.379

GS-RF 0.9534 0.8579 0.8624 0.0447 0.0672 0.0583 4.6304 2.6528 2.6962

In this study, the paired data were divided into three sets, and the model performances
on the validation and test sets were used to select the best retrieval model. Overall, the
GA-XGB model outperformed the other models because it had the highest R2 and RPD with
the lowest RMSE. Many studies showed the XGB model had good performance on water
quality retrieval, because the XGB model can control the model complexity and prevent
the model from overfitting [1]. The accuracy of the water quality parameter retrieval
model based on the GA-XGB algorithm also significantly higher compared with other
methods [25]. As a second option, the PSO-SVR model also had better generalization
capability and transferability, with the three evaluation indicators of the validation and test
sets almost equal to the training sets, demonstrating the good fitting properties of the SVR
model, even for non-linear data [18]. Additionally, Yang et al. [39] also concluded that the
SVR model had the best performance for TP retrieval for Sentinel-2 in lakes and rivers. The
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GA-CBR model presented the poorest performance on the validation and test sets, even
with high R2 for the training set compared to the other methods, which was overfitting in
the training sets, to some extent.

3.4. Spatial Distribution of TP Concentration

The spatial distribution of TP concentration derived from the six established IOA-ML
models with UAV multispectral images are mapped in Figures 5–7. Variability of TP
concentration can be observed through the color change of each figure. The ranges
of the color bars are retained consistently for better comparison for each flight. TP
concentration derived from different IOA-ML models had similar spatial distribution
characteristics. Statistical analysis of the retrieved TP concentration of each flight and
the six IOA-ML models based on pixel scale and measured value are shown in Figure 8.
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The spatial distribution of TP concentration in research area A derived from the six
IOA-ML models were consistent, to some extent (Figure 5). All retrieval models had
high TP concentration in the center region of southern part and are more pronounced
in the GA-CBR model. The measured TP concentration in the ditch of crayfish–rice
culture was 0.046 ± 0.012 mg/L (mean ± standard deviation, hereinafter same). Ac-
cording to the statistics of the retrieval results of all pixels, the retrieved TP concen-
tration of the PSO-SVR, GA-CBR, GA-GBR, DNN, GA-XGB, and GS-RF models were
0.0633 ± 0.0336 mg/L, 0.0752 ± 0.0195 mg/L, 0.067± 0.0251 mg/L, 0.0401± 0.0217 mg/L,
0.0693 ± 0.0079 mg/L, and 0.067 ± 0.0192 mg/L, respectively. Most of the retrieval models’
predicted values were greater than the measured values, and only the performance of DNN
was close to the measured value. The main reason for this was that the retrieval models
overestimated the low TP concentration where the TP concentration lies in research area A.

The spatial distribution of TP concentration derived from the six IOA-ML models were
highly consistent in most parts of research area B (Figure 6). The observed and retrieved
TP concentration of the PSO-SVR, GA-CBR, GA-GBR, DNN, GA-XGB, and GS-RF models
were 0.415± 0.113 mg/L, 0.3971± 0.128 mg/L, 0.3617± 0.1104 mg/L, 0.35± 0.1051 mg/L,
0.3908 ± 0.1165 mg/L, 0.3546 ± 0.097 mg/L, and 0.374 ± 0.0954 mg/L, respectively. It
was obvious that the quantiles and mean value of the measured TP concentration were
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slightly higher than all of the retrieved results in Figure 8b, with relative errors between
predicted and measured mean values from −15.77% to −5.83%. This can be explained
by the high TP concentration on the shore and low concentration in the center of research
area B (Figure 6), and the number of sampling points near the shore were more than that of
the center (Figure 1). However, TP concentration at the bank of the northern part derived
from the six IOA-ML models showed huge difference, where the TP concentration of
the PSO-SVR and DNN models was very high, while that of the GA-GBR and GA-XGB
models was very low. We extracted the reflectance curves of this region and found that the
reflectance curves are slightly more than the reflectance curves with high TP concentration
in Figure 3a. Therefore, we thought the retrieval results at the bank of the northern part in
research area B of the GA-GBR and GA-XGB models may be inaccurate.
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Figure 8. Statistics of measured TP concentration and derived TP concentration from the six IOA-ML
models at the pixel scale: (a) research area A, (b) research area B, (c) research area C on 10 December
2021, (d) research area C on 27 May 2022, (e) research area C on 27 September 2022.

The TP maps derived from different IOA-ML models in research area C on
10 December 2021, 27 May 2022, and 27 September 2022 are presented in Figure 7. The
visual inspection conveyed a high correspondence between different methods, though
some differences were evident. The retrieval results delineated that the TP concentration
in the center of Pond 2 and Pond 6 was high, while the near shore was low, and all the
sampling points are near the shore of ponds on 10 December 2021. Therefore, the mean
value of the measured values should be lower than the retrieval results, which was in
accordance with Figure 8c. On 27 September 2022, all sampling points are located 4–6 m
near the shore of ponds, with most in Pond 2. The results showed that the retrieved TP
concentration at the shore of Pond 2 was high (Figure 7m–r). The measured values were
high (Figure 8e) just right verifying the reliability of the retrieval results of the IOA-ML
models. Therefore, sampling points should be evenly distributed throughout the study
area in water quality parameter retrieval.

In research area C, there were a total of three flights. The TP concentration of the first
and second flights were 0.02–0.28 mg/L and 0.02–0.23 mg/L, respectively, which were
significantly lower than the third flight on 27 September 2022. The main reason for this
was that the Yangtze River basin experienced continued drought in summer and autumn
2022, resulting in a great reduction of water volume in the ponds, and it was obvious that
the water surface of Pond 6 on 27 September 2022 was almost half that of the previous.
Studies proved that drought could increase water pollutant concentration. For example,
researchers indicated that Chl-a concentration was negatively correlated with precipitation
and water level in extreme drought events [40] and TP concentration in drought summer
was significantly higher than those in the other years [41].
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4. Discussion

Feature engineering before ML model establishment is necessary, and previous studies
have confirmed that optimal input features can improve the performance of water quality
retrieval models [12,42]. For example, there are generally perfect correlations between
water quality parameters and band combinations of Landsat images [43]. However, there
are only typically 4–7 multispectral bands in their study, and the feature selection is only
based on the correlation between features and water quality parameters [6,10,16,42]. The
multispectral imager used in this research has ten bands, and it is still unknow weather
or not feature amplification and CFS can promote the model performance on TP retrieval
in small inland waterbodies. The performances in the validation and test sets of the
six IOA-ML models with feature amplification and CFS improved compared with those
without feature amplification and CFS (Table 6). For validation sets, the RMSE decreased
5–18.91%, R2 improved 0.49–6.62%, and RPD improved 1.5–16%. For the test sets, the
RMSE decreased 1.04–30.11%, R2 improved 0.2–7.29%, and RPD improved 0.95–23.15%.
Among the six IOA-ML models, the DNN improved the most in the validation sets and
the second most in the test sets, although the r values between the selected feature subsets
and the measured TP concentration were 0.83, 0.66, 0.82, −0.12, and 0.83, respectively. The
robustness of established IOA-ML models with feature amplification and CFS showed
great improvement. Research indicated that CFS-PSO feature selection can identify and
remove irrelevant variables [44] and revealed the superiority of the CFS procedure for the
detection of optimal wavelengths [45]. Therefore, choosing a suitable feature subset by CFS
can effectively improve the accuracy of the TP retrieval models.

Table 6. Improvement of the six IOA-ML models with feature amplification and CFS.

Model
R2 RMSE (mg/L) RPD

Validation Test Validation Test Validation Test

PSO-SVR 1.18% 0.20% −8.77% −1.04% 5.11% 0.95%
GA-CBR 5.61% 7.29% −16.30% −14.12% 14.07% 12.32%
GA-GBR 4.84% 6.07% −17.74% −20.33% 15.07% 16.97%

DNN 6.62% 6.65% −18.91% −20.46% 15.96% 17.09%
GA-XGB 2.53% 6.65% −11.85% −30.11% 10.57% 23.15%

GS-RF 0.49% 4.72% −5.00% −20.45% 1.50% 16.93%

One of the limitations of the ML-based TP retrieval model is that its transferability is
limited [42]. Many studies used cross validation or splitting data into three sets to verify
the feasibility of the ML-based water quality parameter retrieval models [17,25,26,46].
The paired TP concentration and reflectance values in this study were split into train-
ing, validation, and test sets, and model performances on the validation and test sets
(R2 = 0.7462–0.9124, RMSE = 0.047–0.0792 mg/L, RPD = 1.9849–3.379) showed a slight
decline in different degrees compared to those on the training sets (R2 = 8856–0.984,
RMSE = 0.0253–0.0699 mg/L, RPD = 2.9565–7.9153), but the overall performances main-
tained a good balance. The results suggested that slight overfitting existed in the de-
veloped IOA-ML models, but it was controlled at a good level. Remotely-sensed TP
estimation is complex, and Politi et al. [47] assessed 28 empirical algorithms sourced
from the peer-reviewed literature using new satellite remote sensing data to identify
the best water quality parameter retrieval algorithms in terms of accuracy and trans-
ferability and concluded that none of them exhibited satisfactory promise. One study
showed that the best TSS retrieval model developed by a local dataset was accurate
when applied to other areas [48]. Another UAV multispectral images without water sam-
pling on 12 May 2022 in research area B were directly used to retrieve TP concentration
combined with the established models. The retrieved TP concentration of the PSO-SVR,
GA-CBR, GA-GBR, DNN, GA-XGB, and GS-RF models were 0.1273 ± 0.0346 mg/L,
0.1946 ± 0.0108 mg/L, 0.2356 ± 0.0117 mg/L, 0.151 ± 0.0273 mg/L, 0.224 ± 0.0226 mg/L,
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and 0.1432 ± 0.0111 mg/L, respectively. The r values of TP concentration based on pixel
scale derived from any two IOA-ML models were 0.4342–0.9083. Although the accuracy
of the developed models may be mediocre when directly used in other flights under
different external environments, such as temperature and sunlight intensity and hydro-
logical regimes [22], it can still estimate the TP concentration of each pixel in the entire
research area. In summary, the developed IOA-ML models have certain transferability
at the research areas and can be easily applied to other regions by retraining the models
with new data.

Although several approaches, including dividing the paired data into three sets and
applying established models to other multispectral images, had been adopted to verify the
transferability of the established models, the established models had not been verified using
datasets in a separate waterbody. In addition, we only sampled at the edge of the ponds in
research area C due to the constraints of financial support and time. For further research,
we should collect more samples from various waterbodies and ensure that the sampling
points are distributed as evenly as possible, and further establish more generalized and
adaptable models.

5. Conclusions

In this study, six IOA-ML models were developed to retrieve TP concentration with
UAV multispectral images in small inland waterbodies in Hubei province, middle China.
The paired in situ TP concentration and reflectance values were divided into training sets,
validation sets, and test sets. Feature selection was performed by CFS to find the most
suitable feature subset. The developed IOA-ML models with hyperparameters tuned with
training sets and slightly adjusted with validation sets achieved satisfactory performance
in term of R2 (0.7462–0.984), RMSE (0.0253–0.0792 mg/L), and RPD (1.9849–7.9153). The
GA-XGB and PSO-SVR models had the best performances according to the accuracies
of the validation and test sets. The TP concentration of each flight derived from six
IOA-ML models had a similar spatial distribution, and quantiles and mean values of TP
concentration based on pixel scale retrieved from the six IOA-ML models was lower than
the measured value when most water sampling points were located in the high value
area of the retrieval models. Additionally, the developed IOA-ML models have certain
transferability at the research areas and can be easily applied to other regions by retraining
the models with new data. This study provides an efficient and practical way for TP
monitoring in small inland waterbodies.
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