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Abstract: A significant part of clouds in the tropics appears over the tropopause due to intense
convections and in situ condensation activity. These tropical tropopause layer (TTL) clouds not
only play an important role in the radiation budget over the tropics, but also in water vapor and
other chemical material transport from the troposphere to the stratosphere. This study quantifies
and analyzes the properties of TTL clouds based on spaceborne active observations, which provide
one of the most reliable sources of information on cloud vertical distributions. We use four years
(2007–2010) of observations from the joint Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) and CloudSat and consider all cloudy pixels with top height above the
tropopause as TTL clouds. The occurrence frequency of TTL clouds during the nighttime is found to
be almost 13% and can reach ~50–60% in areas with frequent convections. The annual averages of
tropical tropopause height, tropopause temperature, and cloud top height are 16.2 km, −80.7 ◦C, and
16.6 km, respectively, and the average cloud top exceeds tropopause by approximately 500 m. More
importantly, the presence of TTL clouds causes tropopause temperature to be ~3–4 ◦C colder than in
the all-sky condition. It also lifts the tropopause heights ~160 m during the nighttime and lowers the
heights ~84 m during the daytime. From a cloud type aspect, ~91% and ~4% of the TTL clouds are
high clouds and altostratus, and only ~5% of them are associated with convections (i.e., nimbostratus
and deep convective clouds). Approximately 30% of the TTL clouds are single-layer clouds, and
multi-layer clouds are dominated by those with 2–3 separated layers.

Keywords: tropical tropopause layer; cloud property; satellite observation

1. Introduction

The interface from the upper troposphere to the lower stratosphere is a transition
layer rather than a material surface, and this region in the tropics is termed the trop-
ical tropopause layer (TTL). The TTL normally ranges between approximately 14 km
and 18.5 km and has physical and chemical characteristics midway between the upper
troposphere and lower stratosphere [1,2]. Since upwelling air enters the stratosphere
preferentially through the layer, the TTL exerts important controls in the stratospheric
composition and global climate [1–3].

Although with little water vapor and high altitudes, there are still considerable clouds
within and above TTL, especially occurring in the Western Pacific, South America, and
Central Africa [4]. TTL clouds mainly contain widespread cirrus and those associated with
convections, i.e., deep convective clouds as well as corresponding horizontally extended
anvil clouds [1]. TTL convective clouds lift the water vapor and chemical species to the
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stratosphere, and TTL cirrus clouds accelerate the upwelling by enhanced radiation heat-
ing [5]. Moreover, through the greenhouse and albedo effects as well as the aforementioned
gas transport [6], TTL clouds also have an influence on Earth’s climate.

TTL cirrus clouds, optically thin clouds located around tropopause, may occur as
frequently as 20 to 50% of the observation time [7,8]. They are predominantly composed
of ice crystal particles [9] and are with physical thickness mostly less than one kilometer
but spread hundreds of kilometers horizontally [10,11]. Meanwhile, the occurrence of deep
convections and corresponding clouds decreases exponentially with increasing altitude
in the tropopause region, and only approximately 0.5% of the clouds penetrate local
tropopause in the tropics, and convection rarely penetrates the tropopause by more than
1.5 km [12]. Based on five years of Tropical Rainfall Measuring Mission data, Liu and
Zipser [13] found that 1.3% of tropical convective systems surpass the 14 km level and
0.1% of them surpass approximately the 17 km level. Earth’s radiation budget and climate
depend on cloud radiative and geometric properties. Due to the vital role of TTL clouds,
their characteristics are crucial for improving climate models and our understanding of
TTL. However, better characterization of TTL cloud properties is challenging.

The most direct measurements come from an instrumented aircraft that penetrates
convective clouds [14,15]. However, operational costs and safety concerns place severe
constraints on flights for TTL clouds. Ground-based measurements (radiosonde, lidar, radar,
etc.) are also suitable for investigating the detailed characteristics of cirrus clouds over a
given location with high vertical and temporal resolutions. Pandit et al. [16] used collocated
ground-based lidar and radiosonde measurements to study the characteristics of TTL cirrus
clouds and their relationship with TTL. Hollars et al. [17] compared retrievals of cloud
top heights (CTHs) based on ground-based millimeter-wave cloud radar measurements,
and those from satellites, and found that results from radar agree well with those from
satellite for thick clouds but are lower by as much as 2 km, and radar retrievals significantly
underestimate CTHs of deep convective clouds. Similar to the limitations of aircraft
measurements, ground-based instruments are also restricted by locations and cannot
provide a wide range of observations.

Satellites are widely used in cloud detection because of their advantages of being
free from geographical restrictions and all-weather detection. Passive satellite observation
tends to detect cloud-top information [18]. Sherwood et al. [19] found that CTH obtained
from thermal imagery suffers from a systematic low bias, and the highest part of the
convective clouds is missed due to the relatively low spatial resolution. Active instruments
(i.e., spaceborne lidar and radar) onboard satellites can better infer the vertical structures of
clouds. A combination of collocated observations from spaceborne lidar and radar is clearly
more advantageous in retrieving the three-dimensional structure of clouds than that from
either lidar or radar. This is also possible due to the state-of-the-art A-Train collection [20],
and joint observations from lidar onboard Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations (CALIPSO) and from radar onboard CloudSat are commonly used in
cloud researches. Sassen et al. [21] combined CALIPSO and CloudSat measurements to
study tropical cirrus and deep convective clouds. Feng and Huang [22] adopt observations
from joint CALIPSO and CloudSat to investigate the impacts of tropical cyclones on the
thermodynamic conditions in TTL. However, research on TTL cloud properties is not yet
mature, as most of the studies have been conducted separately for tropical cirrus clouds
and convection, lacking overall studies of total TTL clouds. Moreover, TTL clouds are
usually identified by a fixed TTL bottom [23] or by levels between the top of the convection
and tropopause [24]. Those definitions of tropopause are not suitable for studying the
properties of total TTL clouds.

To understand the qualitative and quantitative effect of TTL clouds on the tropopause
and their role in the TTL process, long-term observations of TTL clouds are essential.
This study uses joint active CALIPSO lidar and CloudSat radar observations to reveal
the properties of total TTL clouds and the clouds are defined as pixels with top surpass
tropopause. The data and method used are described in Section 2. TTL cloud macro-
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physical properties, e.g., CTH, cloud base height (CBH), cloud geometrical thickness (CGT),
number of layers, classification, and phase, are presented and discussed in Sections 3 and 4.
Section 5 concludes our work.

2. Data and Method

As parts of the A-Train satellite constellation, CloudSat and CALIPSO fly in the same
orbit and with a close formation [20,25] providing near-simultaneous observations. These
two active instruments detect targets in the microwave and visible and near-infrared
bands, respectively, and can retrieve reliably atmospheric vertical structures from space.
CloudSat carries a 94 GHz Cloud Profiling Radar (CPR) [20], and Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP) onboard CALIPSO is a nadir-viewing two-wavelength
(532 nm and 1064 nm) polarization-sensitive lidar [25]. The vertical resolutions of CALIOP
are 60 m and 180 m below and above 20.2 km altitude, respectively. The CPR gives
oversampled profiles with a vertical resolution of 240 m. Radar signals are sensitive to large
particles but are less sensitive to optically thin clouds, whereas lidar signals are sensitive
to optically thin clouds but are rapidly attenuated in optically thick clouds. Therefore,
their combination can provide one of the most reliable pictures of vertical structures and
microphysical properties of clouds and aerosols.

As aforementioned, the height of the TTL base is typically defined as approximately
14.5 km and the height of the TTL top is approximately 18 km. Previous studies used
average tropopause height (TH) as a threshold to classify TTL clouds, for example, Tseng
and Fu [23] used a TTL base of 14.5 km to study TTL cirrus clouds. Such simple thresholds
may cause an underestimation or overestimation of TTL clouds because tropopause itself
varies with latitude, geographic location, season, etc. [4]. The fixed tropopause is inappro-
priate for our investigation of the total TTL clouds. Therefore, the tropopause information,
including TH from Global Modeling and Assimilation Office Goddard Earth Observing
System Model version 5 (GOES-5), is used as a feasible threshold, and the cloud pixels
above the TH are considered as TTL clouds. Compare with previous research, the definition
and method used in this study are more exact and reliable.

To facilitate the use of data, the CALIPSO team has integrated and stored the tropopause
information of GOES-5 into the official CALIPSO product [26]. Therefore, we choose
CALIPSO Level 2 version 4.20 5 km cloud profile product (05kmCPro) embedded with
tropopause information [27]. The tropopause definition of GOES-5 is based on that of
the typical lapse rate tropopause [23], which is defined as the lowest level at which the
lapse rate (−dT/dz) drops under 2 ◦C/km. In this study, GOES-5 TH is used to define the
location of the tropopause and further extract TTL clouds.

This study considers a combination of CALIOP and CPR observations, i.e., 2B-CLDCLASS-
LIDAR version R05 product [28], to better infer TTL clouds including both optically thick clouds
(i.e., deep convective clouds) and optically thin cirrus clouds. Compared with the original
cloud classification product from either CloudSat or CALIPSO, the 2B-CLDCLASS-LIDAR can
better detect complete cloud vertical structure to improve overall cloud detection and provide
more reliable cloud type information. The 2B-CLDCLASS-LIDAR classifies clouds into high
(cirrus and cirrostratus) clouds, altostratus (As), altocumulus (Ac), stratus (St), stratocumulus
(Sc), cumulus (Cu), nimbostratus (Ns), and deep convective (cumulonimbus) clouds. The
2B-CLDCLASS-LIDAR product can also provide high-precision cloud vertical distributions,
i.e., CTH and CBH in each layer and their corresponding phase information.

Studies have shown that the signal-to-noise ratio decreases during the daytime due to
solar background noise [29]. However, due to a battery supply problem, CloudSat cannot
collect detection measurements during the nighttime after 2011. To better compare the
diurnal difference of TTL clouds and considering the observation limitation, we only collect
continuous measurements from 2007 to 2010 of joint CALIPSO–CloudSat, and regions with
latitudes between 30◦S and 30◦N are analyzed.

We perform the spatiotemporal collocation between 2B-CLDCLASS-LIDAR and 05km-
CPro products to obtain the all-sky property dataset. According to the aforementioned
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definition, the TTL clouds and the corresponding cloud property, including TH and TT,
CTH, CBH, cloud classification, and cloud phase in each profile, are extracted. In this study,
TTL cloud pixels are within the uppermost cloud layer of each profile identified by the
joint CloudSat–CALIPSO classification algorithm. Based on the layer identified by the 2B-
CLDCLASS-LIDAR algorithm, we divide total TTL clouds into single-layer, multi-layer, and
total TTL clouds. The number of total pixels are almost 50 million and approximately 9.2% of
them (5 million) are TTL clouds.

3. Results

Spatial distributions of the seasonal TTL cloud fractions are shown in Figure 1, and
both daytime (left panels) and nighttime (right panels) results are illustrated. The fraction
is defined as the ratio between TTL cloud pixels and total observed pixels. The TTL cloud
fraction is significantly lower during the daytime than that during the nighttime. During
the nighttime, the average cloud fraction in the study area is about 13%, whereas the value
halves to about 5% during the daytime. TTL cloud pixels detected during the nighttime
and daytime are approximately 3.2 million and 1.3 million, respectively, indicating that the
observation during the nighttime is approximately 2.5 times. This suggests that TTL clouds
observed during the daytime are sparser than those during the nighttime. The diurnal
discrepancy of cloud occurrence is also observed in previous studies for lidar detection. For
example, Sassen et al. [28] used CALIPSO lidar observations to study the global distribution
of cirrus clouds, which shows an approximately 10% diurnal variation in the tropics. It is
consistent with our result that the average occurrence of high cloud (cirrus and cirrostratus)
is 12% during the nighttime and that during the daytime is 4.7%, which is a 7.5% diurnal
discrepancy. Although the detection efficiency of high clouds during the nighttime is
higher for CALIOP due to the lower signal-to-noise ratio caused by solar background noise
during the daytime [29], such instrumental and retrieval bias may result in a global loss of
~2–5% cirrus clouds [21,30]. Thus, the diurnal discrepancy is also possible to be caused by
meteorological effects and should be further investigated in future studies.
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Figure 1. The spatial distribution of the tropical tropopause layer (TTL) cloud fraction with a
2.5◦ × 2.5◦ grid resolution from the joint Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) and CloudSat observations from 2007 to 2010. Winter, spring, summer, and
fall represent boreal ones, i.e., months 12–2, 3–5, 6–8, and 9–11, respectively.

TTL clouds are more frequently observed in the Western Pacific, South America, and
Central Africa during both daytime and nighttime, where TTL cloud fraction can reach
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~50–60% during the nighttime. The distribution characteristics of cloud fraction in Figure 1
closely resemble those of the TTL cirrus clouds as shown by Tseng and Fu [23]. In terms
of the annual distribution, the highest TTL cloud fraction is found in the Western Pacific,
followed by Central Africa and South America. The average cloud fraction is evidently
higher in winter. The regions with frequent TTL clouds match with previous study [31], as
described in Section 1.

Figure 2a,b show the monthly mean TH and tropopause temperature (TT) of the
all-sky and the TTL cloud sky, respectively. Mean TTL CTH and difference of CTH−TH are
displayed in Figure 2c,d. Black lines represent pixels observed under the all-sky conditions,
and blue lines represent those with TTL cloud sky. Observations during the nighttime and
daytime are represented by solid and dashed lines, respectively. Detailed statistics for the
results are given in Table 1. Overall, TH, TT, and CTH show significant annual cycles with
the coldest and highest tropopause and cloud top in boreal winter. TH varies from 15.5 to
16.8 km, TT ranges from −80 to −75 ◦C, and CTH is located at altitudes between 15.9 and
17.4 km.
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Figure 2. Time series of the monthly mean (a) tropopause heights (THs), (b) tropopause temperatures
(TTs) for the all-sky (black lines) and only TTL cloud conditions (blue lines), (c) cloud top height
(CTH), and (d) CTH−TH during the daytime (dashed lines) and during the nighttime (solid lines)
over 30◦S–30◦N from joint CALIPSO and CloudSat observations from 2007 to 2010. The major tick
mark for each year indicates January.

Table 1. Detailed statistics of TH, TT, CTH, and CTH−TH in TTL cloud sky and all-sky as well as
during the daytime and nighttime as shown in Figure 2.

TTL cloud sky All-sky

Night TH (km) 16.27 16.11
TT (◦C) −80.97 −77.07

CTH (km) 16.75 —-
CTH−TH (km) 0.48 —-

Day TH (km) 16.04 16.12
TT (◦C) −80.11 −76.99

CTH (km) 16.41 —-
CTH−TH (km) 0.37 —-
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Figure 2 investigates the influence of clouds on tropopause. During the daytime, the
average TH over the tropics is 16.04 km, whereas the average TH over TTL cloud pixels is
16.27 km; during the daytime, the values are 16.12 and 16.04 km, respectively. It shows that
TTL clouds can cause the TH to increase by about 160 m during the nighttime but decrease
by about 84 m during the daytime. Furthermore, the presence of TTL clouds reduces
TT from −77.07 to −80.97 ◦C during the nighttime by approximately 3.89 ◦C, and from
−76.99 to −80.11 ◦C during the daytime by approximately 3.12 ◦C. It is probably because
the structure of TTL clouds changes the atmospheric temperature profile, which finally
manifests as that TH increases during the nighttime and decreases during the daytime in
the presence of TTL clouds. The decrease in TT can be explained by the cooling effect of
TTL clouds.

The diurnal differences between the tropopause and cloud top are also illustrated in
Figure 2. Remarkably, the monthly average values vary according to whether data is collected
during the daytime and nighttime: TH value for the night is 16.27 km and is about 230 m higher
than that during the day; TTs during the nighttime and during the daytime are −80.97 and
−80.11 ◦C, respectively, and is 0.86 ◦C colder during the nighttime than during the daytime.
During the nighttime, CTH is about 340 m higher than that during the daytime. In addition,
CTH is on average 480 m higher than TH during the nighttime, with a maximum of no more
than 570 m, whereas CTH is 370 m higher than TH during the daytime.

Figure 3 illustrates the seasonal variations of the TH and TTL cloud properties av-
eraged over four years. Compared to Figure 2, Figure 3 shows more clearly the seasonal
changes and the condition of cloud tops beyond tropopause. As expected, TH, TT, and TTL
CTH show significant seasonal variations. The same is seen with the result in Figure 2, the
season cycle pronounces that TH and CTH are highest and TT is coldest during the boreal
winter, which is originally attributed to the deeper convection within the Hadley cell and
can be subsequently explained by stronger stratospheric pumping driven by stratospheric
planetary waves at extratropical latitudes, which causes lower tropical cold point tempera-
tures and deeper convection [7]. In Figure 3d, both TH and CTH over the tropics differ over
0.5 km, between 15.8 and 16.5 km or between 16.5 and 17.2 km, respectively. Due to the
differences in the TH, the TT shows reasonably opposite variations with higher TH over
boreal winter and colder TT over boreal summer. However, the variations for CTH−TH
are not significant, representing that TTL CTH is strictly limited by the tropopause.
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Figure 4 illustrates probability distributions of TTL CTH, CBH, and cloud CGT. The
averages of CTH, CBH, and CGT are 16.65, 13.52, and 3.13 km, respectively. CTH is
basically from 16 to 18 km, mainly influenced by the tropopause (Figure 4a). The probability
distribution of CBH has two peak values. One is around 16 km caused by high clouds, and
the other is around 1 km caused by clouds with a very deep thickness (i.e., Ns and DC).
The probability distribution of CGT also has two peaks at approximately 16 km and 1 km,
which is similar to that of CBH. However, clouds causing the two peaks are the opposite of
that in the CBH distribution.
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Figure 4. Probability distribution of (a) CTH, (b) cloud base height (CBH), and (c) cloud geometrical
thickness (CGT) over 30◦S–30◦N from 2007 to 2010.

Figure 5 displays the proportion of profiles with different TTL cloud layer numbers to
total cloud profiles. TTL clouds of 1-layer, 2-layer, and 3-layer structures account for ~30,
~40, and ~20%, respectively. Overall, ~30% of TTL clouds have a single-layer structure and
the other ~70% have a multi-layer structure. Clouds with vertical structures of 2–3 layers
account for about 85% of multi-layer clouds, indicating that TTL clouds generally have
fewer layers. However, some pixels do detect an appreciable number of cloud layers.

Figure 6 depicts the CGTs of different cloud layers at different CTH levels and the corre-
sponding ratios. The blue, orange, and green bars represent the single-layer TTL cloud, the
uppermost layer of multi-layer clouds, and the uppermost layer of total layers, respectively.
The TTL CTHs are divided into five levels: <15 km, 15–16 km, 16–17 km, 17–18 km, and
>18 km. In Figure 6a, the average CGT tends to become thinner as the CTH level increases.
The average CGTs are approximately 5.5, 2.1, and 3.1 km for single-layer, multi-layer, and total
layers, respectively. The average CGT for multi-layer clouds is significantly thinner, which is less
than half of the CGT of single-layer clouds. Figure 6b suggests that CTH is mainly distributed
between 16 and 18 km (i.e., ~76%) and approximately 44% of TTL clouds have tops located
between 16 and 17 km. It is consistent with the result of Figure 4a. The proportion of single-layer
and multi-layer at each level is similar.
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Figure 7 illustrates the ratio and partially enlarged ratio of different types of single-
layer clouds, multi-layer clouds, and total layers. Clouds are divided into five types (high
cloud, As, Ns, DC, and other types) based on the eight categories of the 2B-CLDCLASS-
LIDAR product, and high cloud consists of cirrus and cirrostratus cloud though they could
not be further classified in the dataset. As described in Section 2, As, Ns, and DC represent
altostratus, nimbostratus, and deep convective clouds, and the other cloud type includes
Ac, St, Sc, and Cu. Figure 7 shows that TTL clouds are predominately composed of high
clouds (cirrus and cirrostratus) with an average ratio of ~91% and ~4.8% of TTL clouds are
Ns and DC overall. For single-layer TTL clouds, high clouds and As occupy ~75% and ~9%,
respectively, and the ratios of Ns and DC are approximately 15.5%. For multi-layer TTL
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clouds, high clouds take up ~98%. Figure 7 indicates that convection-associated clouds,
i.e., Ns and DC, tend to be a single-layer structure.
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We count the pixel numbers and the corresponding percentage of the cloud phase
for single-layer, multi-layer, and total layers (not shown here). Over 4 million pixels are
collected in this study, of which ~30% are single-layer clouds while the remaining 70% are
multi-layer clouds. Overall, TTL clouds are in a predominate ice phase with a ratio of ~94%
and a small water phase with ~6% percentage. For single-layer clouds, ~81% of TTL clouds
are with the ice phase and ~19% of TTL clouds are with the water phase, while almost all
TTL clouds are with the ice phase for multi-layer clouds. The result is consistent with that
of the cloud type in Figure 7. The water phase of single-layer TTL clouds is mainly from
Ns and DC and partly from As.

4. Discussion

As presented in Section 3, we discuss the diurnal and seasonal differences in the spatial
distributions of TTL clouds. To reveal the influence of clouds on the tropopause, we further
compare the time series and seasonal cycles of tropopause in the presence of TTL cloud sky
and all-sky condition and investigate the diurnal differences between the tropopause and
cloud top. The probability distributions of CTH, CBH, CGT, and cloud layer numbers are
studied as well. Based on the number of cloud layers, clouds are divided into single-layer,
multi-layer, and total layers. The corresponding CGT and the ratio at different CTHs are
studied, as well as cloud categories and phases.

The influence of clouds on tropopause and the diurnal differences between tropopause
and cloud top are presented in Figures 2 and 3. Generally, the existence of TTL clouds can
cool TT by ~3.5 ◦C both during the daytime and nighttime, which can be explained by the
release of condensation heat in the TTL cloud formation. The cold surrounding in the TTL
is called “cold trap” [32] and is common in the Western Pacific during the boreal winter.
Our results show that the average TH with TTL clouds is ~160 m higher than that with the
all-sky cases during the nighttime, and Fu et al. [24] and Ali et al. [33] indicated that the
TTL clouds may lift TH due to their radiative effects. However, the differences on TH for
TTL cloud and all-sky cases during the daytime are less noticeable, and such discrepancy
should be investigated by further comparison of cloud radiation effects as well as other
factors during the daytime and nighttime.
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Generally, the accuracy of TH based on either reanalysis data or model assimilation is
with small errors, i.e., typically less than ±150 m [34]. To be more specific, the uncertainty of
GOES-5 TH we used is approximately 140 m (average differences) according to the study of
Pan and Munchak [35] by comparing with radiosonde measurements. Another important
source of uncertainties in our TTL cloud study is those related to the observations, which
can be caused by many factors, e.g., the vertical sampling grid size (see Section 2), the
magnitude of signal-to-noise, the interference of stratospheric aerosols with clouds, and so
on. For the signal-to-noise magnitude, the detection sensitivity of CALIOP measurements
averaged over 5 km during the daytime is around 1.5 orders of magnitude lower than
during the nighttime [36]; therefore, CALIOP daytime data may miss roughly 5% of clouds
due to reduced lidar sensitivity during the daytime [30].

Using four years of observations, we quantified and analyzed TTL cloud properties.
This analysis is important for understanding TTL clouds and the effects of clouds on the
tropopause in TTL. We focus on the diurnal discrepancy of TTL clouds, which were less
reported, and also notice that the impacts, i.e., lifting or lowering, of cloud presence on
TH during the nighttime and daytime was opposite, and more efforts should be made to
further quantify and understand such differences in future studies.

5. Conclusions

This study quantifies and analyzes TTL cloud properties based on CALIPSO and
CloudSat joint measurements from 2007 to 2010. More reliable tropopause information
based on the GOES-5 reanalysis dataset is considered to extract TTL clouds. TTL clouds
are defined as cloudy pixels with CTH above the TH. TTL cloud pixels we used are
within the uppermost cloud layer in each profile identified by the joint CloudSat–CALIPSO
classification algorithm. During the four years, the combined product gives a total of
approximately 50 million pixels within the tropics, and ~4.5 million are TTL cloudy pixels.
Thus, the cloud classification, CTH, CBH, and phase information are summarized.

It is shown that TTL cloud occurrence frequency during the daytime is half of that
during the nighttime due to significant missing of cirrus cloud detection during the daytime.
The average TH, TT, and CTH are 16.2 km, −80.7 ◦C, and 16.6 km, respectively, and the
cloud top average exceeds tropopause by approximately 500 m. The presence of TTL clouds
causes a corresponding change in TH and TT, with an average decrease of 3–4 ◦C in TT,
an increase of 160 m in TH during the nighttime, and a decrease of 84 m in TH during
the daytime. The diurnal differences between the tropopause and cloud top indicate that
tropopause is higher (i.e., 230 m of TH and 340 m of CTH) and colder (~0.86 ◦C) during
the nighttime. Among the 30% single-layer clouds, ~15% are convection-related clouds,
~75% are high clouds, while multi-layer clouds are ~98% high clouds. However, this study
considered all TTL clouds together, and we will further investigate their regional differences,
e.g., differences between TTL clouds over ocean and land, in the future. Furthermore, the
radiative effects of TTL clouds of different kinds would also be discussed.
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