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Abstract: Oblique photography technology based on UAV (unmanned aerial vehicle) provides an
effective means for the rapid, real-scene 3D reconstruction of geographical objects on a watershed
scale. However, existing research cannot achieve the automatic and high-precision reconstruction
of water regions due to the sensitivity of water surface patterns to wind and waves, reflections
of objects on the shore, etc. To solve this problem, a novel rapid reconstruction scheme for water
regions in 3D models of oblique photography is proposed in this paper. It extracts the boundaries of
water regions firstly using a designed eight-neighborhood traversal algorithm, and then reconstructs
the triangulated irregular network (TIN) of water regions. Afterwards, the corresponding texture
images of water regions are intelligently selected and processed using a designed method based on
coordinate matching, image stitching and clipping. Finally, the processed texture images are mapped
to the obtained TIN, and the real information about water regions can be reconstructed, visualized
and integrated into the original real-scene 3D environment. Experimental results have shown that
the proposed scheme can rapidly and accurately reconstruct water regions in 3D models of oblique
photography. The outcome of this work can refine the current technical system of 3D modeling by
UAV oblique photography and expand its application in the construction of twin watershed, twin
city, etc.

Keywords: oblique photography; 3D reconstruction; water region; twin watershed; real-scene
3D environment

1. Introduction

Digital watershed technology has been considered the most powerful means for
modern watershed planning and management. It can collect, represent and manage all
kinds of watershed information by adopting synthetically several modern technologies,
such as geographic information system (GIS), remote sensing (RS), virtual reality (VR),
high-performance computing (HPC) [1–4], etc. Plenty of research has indicated that people
can obtain more knowledge in 3D simulation scenes than in traditional 2D scenes [5–9].
For example, if one is in a virtual simulation scene, the impact of extreme weather can
be understood more intuitively than if one were reading newspapers or watching TV
programs. Consequently, the construction of 3D virtual simulative scenes of watersheds
has received considerable attention from relevant scholars in the past two decades [10–12].

Early research on 3D visualization of watershed objects focused mainly on the 3D rep-
resentation of watershed terrain, using digital elevation models (DEMs) and high-resolution
remote sensing images [10,13,14]. Although 3D terrains of large areas can be represented
rapidly by this kind of methods, the data volume of the generated 3D models is usually large,
putting considerable pressure on data representation. The multi-resolution tile pyramid
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technology was usually adopted to improve the rendering efficiency of 3D terrain data
without affecting the visual effect [15,16]. Limited by scale, it is difficult for 3D terrain
models generated based on DEMs to express the local detailed features of watersheds.
As a result, detailed models of some key objects were commonly constructed manually
and overlaid on the basis of a 3D terrain model [17,18]. To strike a balance between the
fidelity and loading speed of 3D models, multiple models with various levels of detail
were generally built for each entity and invoked on demand [19,20]. This problem can also
be solved to a certain extent by classifying spatial entities according to their significance;
the greater the importance of an entity, the higher the accuracy of its corresponding 3D
models [21,22]. Desired effects of 3D visualization can be obtained with limited hardware
conditions using the methods introduced in [19–22]. Nevertheless, high-precision models
were mainly constructed manually, and the modeling processes were commonly inefficient.
Moreover, traditional approaches to 3D visualization were mainly for man-made structures
and objects, e.g., buildings, roads, etc., which are not suitable for modeling most categories
of watershed factors, e.g., vegetation, farmlands and rivers.

In the past decade, 3D modeling technology based on UAV (unmanned aerial vehicle)
oblique photography has developed rapidly, providing a new solution for rapid real-
scene 3D reconstruction of watershed objects [23–25]. It collects the images of the target
region from vertical and oblique angles simultaneously by configuring multiple sensors
(cameras with five lenses are commonly used at present) on the same flight platform
(UAV) [26]. Aerial triangulation is then implemented on the collected multi-view images to
generate the total-factor 3D surface models of the target region, matching conjugate points
in various multi-view images. Compared with traditional 3D modeling methods, oblique
photography technology based on UAV has many advantages, e.g., high efficiency, low
cost, strong authenticity [27–29], etc.

For the 3D modeling technology based on UAV oblique photography, the matching of
the conjugate points in various multi-view images is a key step in reconstructing surface
objects. Compared with other surface objects, such as buildings and water conservancy
facilities, water regions have several unique features. Firstly, wind and waves are common
phenomena in water regions, which usually result in various surface morphologies of the
water region at different moments. Additionally, due to water reflection, the visual effects
of water regions commonly differ from various angles of photography. As such, it is quite
difficult to match conjugate points in various multi-view images when reconstructing water
regions, and the obtained 3D models are usually irregular with many holes (Figure 1).

Figure 1. The effects of 3D reconstruction of water regions by UAV-based oblique photography
technology, and the content in the red box corresponds to water regions in the real world.

In normal application scenarios, real information about water regions is not important
and is thus seldom concentrated on, and virtual digital water-surface models are usually
adopted to represent information of water regions in real-scene 3D environments [30–32].
Although the overall visual effect of the virtual scene is guaranteed, the real information
about water regions, e.g., water color, floating objects, surrounding environment, etc.,
cannot be visualized. In some specific applications, e.g., water pollution management,
water environment monitoring, etc., real information about water regions is significant for
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decision-making, and traditional 3D watershed scenes cannot meet this demand. Based on
high-resolution remote sensing images, the boundaries of water regions can be extracted
using machine learning methods [33–37]. These methods, however, are only applicable to
remote sensing images and cannot help in reconstructing water regions in 3D models of
oblique photography. In addition, these methods can only extract the boundaries of water
bodies and cannot obtain detailed texture information. In recent years, several commercial
software programs, e.g., DP-Modeler [38], Meshmixer [39] and SVSModeler [40], have been
developed to help repair the preliminary reconstruction results of water regions in 3D
models of oblique photography. Nevertheless, a significant amount of human involvement
is required when using these software programs, and the entire process of water region
reconstruction is time-consuming. More significantly, in these methods, the texture of
water-surface model is usually assigned through sample grabbing or texture interpolation,
and rich texture information of water regions is still difficult to be represented in the 3D
watershed scenes.

In summary, while UAV oblique photography technology has made it possible to
rapidly and efficiently reconstruct multiple objects in a watershed, it cannot automatically
and accurately obtain real information about water regions. As a result, information
such as water color and floating objects is rarely represented in common 3D watershed
scenes. The practicality of real-scene 3D models of watershed is not strong at present. To
make a breakthrough in this field, a rapid reconstruction scheme for water regions in 3D
models of oblique photography is proposed in this paper, the novelty of which can be
summarized as follows:

(1) A novel eight-neighborhood traversal algorithm has been designed and implemented.
This algorithm can accurately and rapidly extract the boundary points of water regions
in 3D models of oblique photography.

(2) A fully automatic algorithm for texture image selection, preprocessing and mapping
has been developed. This algorithm can intelligently map the textures of water regions
based on the multi-view images acquired by UAV.

(3) An evaluation system has been constructed for the reconstruction results of water re-
gions in 3D models of oblique photography. This system can allow for both qualitative
and quantitative evaluations of the reconstruction effect.

This paper is structured as follows: Section 2 describes the difficulties of reconstructing
water regions based on oblique photography technology. Section 3 introduces the proposed
rapid 3D reconstruction scheme for water region in detail. Finally, performance study and
conclusions are presented in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Data Acquisition

In this study, a DJI M200 UAV equipped with five lenses was used to acquire multi-
view images of the study area, which is Lake Tianmuhu watershed, a typical small wa-
tershed in the low mountains and hills in China. The main flight parameters of the used
UAV were set as follows: flight altitude of 90 m, flight speed of 5 m/s, longitudinal overlap
of 80% and sidelap of 60%. The main parameters of the camera used were as follows:
sensor type CMOS, equivalent focal length of 24 mm, image resolution of 5472 × 3078,
effective pixels of 20 million, 3 bands (red, green and blue) and calibrated IMU status. The
orientations of the five lenses equipped in the used UAV remained constant during the
data acquisition process, i.e., the orientation of the middle lens was vertically downward
and the orientations of the other four lenses were all 45 degrees tilted inward. During the
data acquisition process, images captured by different cameras were stored in independent
paths.

After the acquisition of multi-view images, a software named “ContextCapture” was
used to perform the aerial triangulation and generate the final 3D models of the research
areas (in .obj format).
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2.2. Boundary Point Extraction of Water Region

The definition of the spatial scope is the basis for the reconstruction of the water region.
Considering that both the elevation and the density of point clouds of water regions in
the 3D model of oblique photography are far lower than those of onshore areas, point
density and point elevation are used as two constraints to identify the boundary points
of the water regions in this section. The diagram of the boundary point extraction of the
water region is shown in Figure 2. Given the original 3D model constructed using oblique
photography technology, the process of the boundary point extraction of the water region
can be demonstrated using the following seven steps:

Figure 2. The flowchart of the procedure of boundary point extraction of water region.

Step 1. Transform the original 3D model into 3D point clouds. In this step, Point Cloud
Library (PCL) [41], an open-source library for 2D/3D image and point cloud processing,
is used to transform the 3D models obtained from oblique photography (in .obj format)
into point clouds (in .pcd format). This step is designed to improve the generality of the
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proposed method. However, if the original 3D point cloud data are available in specific
applications, this step can be skipped.

Step 2. Eliminate interference points from the obtained 3D point clouds. Due to errors
introduced during the 3D reconstruction process (specifically, the matching of conjugate
points in various multi-view images as mentioned in the Section 1), there may be some
erroneous points in the 3D point clouds with abnormal elevations (either too large or too
little). To improve the efficiency of the proposed scheme, a path-through filter of point
elevation based on PCL is constructed in this step to eliminate interference points, with the
threshold values being determined adaptively based on the point density of the obtained
3D point clouds.

The analysis results of the 3D point clouds show that the point density at the top
and bottom of the 3D point cloud data are significantly lower than in other areas. In this
step, the threshold values of the path-through filter are determined based on the minimum
(assumed e1) and maximum (assumed e2) elevations. The basis for this determination is
that the densities of the points whose elevations are larger than e2 or less than e1 are all
less than a given value.

Step 3. Divide the obtained 3D point clouds into independent grids. Construct a
regular 2D grid and divide the obtained 3D point clouds into corresponding grids based
on x and y coordinates of the 3D points. The side length of the constructed 2D grid is
determined by the average point density of the obtained 3D point clouds. All the grids are
initially marked as “unprocessed.”

Step 4. Determine the starting grid for boundary extraction of the water region
artificially. Note that the starting grid must be located on the boundary of the water
region. The result of the starting point grid selection has an impact on the accuracy of
water boundary extraction in theory. However, according to simulation experiments, the
tolerance of the proposed scheme is satisfactory, and there is almost no influence on the
result of boundary point extraction if the selected starting point grid is near the boundary
of the water region (it does not need to be very precise).

Step 5. Search the adjacent boundary grid of the starting grid using the eight-neighbor
analytical method (Figure 3). Point density and point elevation are two constraints used to
identify the boundary point grid from the eight-neighbor grids. As shown in Figure 4, the
grid marked as “S” is the starting grid, and its adjacent boundary grid will be searched from
its eight adjacent grids (i.e., the grids marked as 0, 1, 2, 3, 4, 5, 6 and 7). The determined
adjacent boundary grid must satisfy two conditions: (i) the difference in the point density
of this grid and that of the starting grid is less than a given threshold, and (ii) the average
value of point z-coordinates in this grid is the nearest one to that of the starting grid among
the adjacent grids that satisfy condition (i).

Figure 3. The flowchart of the eight-neighbor analytical method.
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Figure 4. The flowchart of the procedure of TIN reconstruction and texture mapping of water region.
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Step 6. If the identified boundary grid is marked as “processed”, then terminate the
process of boundary point extraction. Otherwise, mark the identified boundary grid as
“processed,” take it as the starting grid and repeat Step 5 (note that any grids that were
traversed in the previous round of boundary grid searching will not be traversed again).

Step 7. Repeat Step 6 until the newly identified boundary grid is already marked
“processed.”

Finally, all points within the processed grids will be taken as the extracted boundary
points of the water region. Using these extracted boundary points, the triangulated irregular
network (TIN) model of the water region will be reconstructed, and then the corresponding
texture image(s) will be processed and mapped to the constructed TIN, which will be
introduced in detail in Section 2.3.

2.3. Triangulated Irregular Network (TIN) Reconstruction and Texture Mapping of Water Region

The diagram of TIN reconstruction and texture mapping of the water region is shown
in Figure 4. After extracting the boundary points of water region, the TIN of the water
region will be reconstructed, and the corresponding texture image will be automatically
selected and mapped based on the following six steps:

Step 1. Reconstruct the TIN of the water region. Firstly, randomly add some points
within the coordinate range of the extracted boundary points, with the number of the
added points determined according to the coordinate range of the extracted boundary
points as described in this paper. Then, construct the TIN based on the added points and
the extracted boundary points using the Delaunay algorithm [42].

Step 2. Intelligently select the texture image of the constructed TIN. Both the reflection
theory of light and practical experience indicate that the top-view images of the water
region are least interfered with by reflections of objects on the shore. On this basis, a method
of texture selection is designed and implemented in this paper, which can be summarized in
the following sub-steps: (i) calculate the coordinates of the center of the extracted boundary
points (denoted as (xc, yc)) using Equation (1), where xmax, ymax, xmin and ymin denote the
maximum x-coordinate, the maximum y-coordinate, the minimum x-coordinate and the
minimum y-coordinate of the extracted boundary points, respectively; and (ii) transform
the geographical coordinates (represented by longitude and latitude) of each top-view
image into rectangular coordinates (represented by x and y) by Equation (2), where B and L
represent the latitude and the longitude of the image center, respectively; N denotes the
radius of curvature in prime vertical; L0 represents the longitude of the Central Meridian; a
and b are the major and minor axis semidiameters of the Earth’s ellipsoid, respectively; ρ is
a constant with a value of 206,264.806247096355” and X represents the ellipsoid arc length
from the equator to the projection point of the image center on the reference ellipsoid [43].
Afterwards, all top-view images are traversed, the image whose coordinates are the nearest
to (xc, yc) is selected as the texture image.{

xc =
xmax+xmin

2
yc =

ymax+ymin
2

(1)


x = X + N

2ρ2 sin B cos Bl2 + N
24ρ4 sin B cos3 B

(
5− tan2 B + 9(a2−b2)

b2 cos2 B
)

l4

y = N
ρ cos Bl + N

6ρ3 cos3 B
(

1− tan2 B + a2−b2

b2 cos2 B
)

l3 + N
120ρ5 cos5 B

(
5− 18 tan2 B + tan4 B

)
l5

l = L−L0
ρ

(2)

Step 3. Determine whether the TIN reconstructed in Step 1 is completely contained
in the selected texture image. The inclusive relationship between the TIN and the texture
image will be considered tenable only if the conditions listed in Equation (3) are all satis-
fied. In Equation (3), xmin (resp. xmax) and ymin (resp. ymax) represent the minimum (resp.
maximum) x-coordinate and y-coordinate of points in the reconstructed TIN, while Xmin
(resp. Xmax) and Ymin (resp. Ymax) represent the minimum (resp. maximum) x-coordinate
and y-coordinate of the pixels in the selected texture image, respectively. The calculation
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methods of Xmin, Ymin, Xmax and Ymax are shown in Equation (4), where
(
X′i , Y′i

)
represents

the center coordinate of the selected image, W and H are the width and height of the
image, respectively, Res represents the pixel resolution of the image and b·c represents the
rounding function. 

xmin ≤ Xmin
xmax ≥ Xmax
ymin ≤ Ymin
ymax ≥ Ymax

(3)



Xmin = Xi
′ −
⌊

W
2

⌋
× Res

Xmax = Xi
′ +
⌊

W
2

⌋
× Res

Ymin = Yi
′ −
⌊

H
2

⌋
× Res

Ymax = Yi
′ +
⌊

H
2

⌋
× Res

(4)

Step 4. Determine the final texture image to be mapped to the TIN. If the inclusive
relationship between the TIN and the texture image is tenable, the current selected image
will be taken as the final texture image to be mapped. Otherwise, if the relationship is not
tenable, the nearest image to the current image will be firstly selected from the top-view
images based on coordinate comparison. Then, the two images will be merged to generate
a mosaic image. The process of image mosaicing involves three main stages [44]: feature
point extraction and matching, image registration, and image fusion. Afterwards, take the
obtained mosaic image as the selected texture image and repeat Step 3 and Step 4 until the
inclusive relationship between the TIN and the texture image is tenable.

Step 5. Map the final determined texture image to the reconstructed TIN of the
water region. First, clip the selected texture image based on the vector boundary of the
reconstructed TIN so that only the texture of the water region is retained. Then assign the
clipped texture image to the reconstructed TIN, and the reconstructed 3D model of the
water region can be obtained.

Step 6. Replace the original model data of the water region with the obtained 3D
model. Delete all points within the boundary of the reconstructed TIN, and then place the
reconstructed 3D model in the original model data.

After completing the steps described in Sections 2.2 and 2.3, the water region can be fully
reconstructed, and the original 3D real-scene environment of the watershed can be optimized.

2.4. Accuracy and Effect Evaluation of Water Region Reconstruction

The 3D reconstruction of water regions in 3D models of oblique photography is cur-
rently a rarely researched topic, and thus effective indexes for evaluating the reconstruction
results are lacking. In this paper, the corresponding index system is constructed to evaluate
the reconstruction results of the water region, both qualitatively and quantitatively.

To evaluate the reconstruction results, qualitative comparisons will be made between
the scene photos of the water regions and the screenshots of reconstructed results. Moreover,
to further assess the reconstruction accuracy, boundary points of water regions in 3D
models of oblique photography will be manually selected, and then an error analysis will
be performed between the selected boundary points and the boundary points extracted by
the proposed algorithm. Four indexes are adopted in this paper to assess quantitatively
the reconstruction accuracy: average error (AE), root mean square error (RMSE), standard
deviation (SD) and error of area (EOA).

3. Experiments and Results

Ten 3D models generated by UAV oblique photography technology in Figure 5 (in .obj
format) are used in this section as experimental data to test the performance of the proposed
3D reconstruction scheme for water regions. Table 1 lists the basic properties of the ten
experimental 3D models, i.e., number of points and coordinate ranges. In this section, the
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experiments were conducted on a PC with a configuration: CPU Inter Core i7-8700 3.20 GHz,
GPU Intel® UHD Graphics 630, RAM 64 GB and OS Windows 10 Education (×64).

Figure 5. The experimental 3D models of oblique photography.
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Table 1. Properties of the experimental 3D models.

3D Model Number of Points Coordinate Range (x) Coordinate Range (y) Coordinate Range (z)

model_01 185,581 −83.8019~25.1597 196.6981~293.4608 15.4556~40.8227
model_02 55,318 −83.8019~0.0464 199.0290~330.9512 20.4495~36.4812
model_03 76,291 −98.4907~50.1999 516.4602~588.6694 65.4179~84.0148
model_04 60,339 325.1720~369.3640 −159.8860~−106.2403 38.4707~53.2799
model_05 170,346 10.6901~107.8690 −130.7712~−48.9058 95.0714~110.2020
model_06 18,701 −15.1823~26.1760 303.8401~338.9920 125.6604~134.7461
model_07 372,732 −158.1614~−32.8305 −153.5332~−31.5963 38.0605~69.0925
model_08 348,132 −523.1904~−377.0732 52.6536~223.9019 20.9784~67.3059
model_09 72,168 32.6015~93.5034 −262.7206~−200.4312 77.8785~97.9674
model_10 120,951 −157.7250~−93.8586 −37.0853~26.7636 19.6439~52.9920

As described in Step 1 of Section 2.2, the ten experimental 3D models of oblique
photography were first transformed into 3D point clouds (in .pcl format). The results of the
transformation are shown in Figure 6. Afterwards, interference points were eliminated from
the obtained 3D point clouds, and all 3D point clouds were then divided into independent
grids, as mentioned in Step 2 and Step 3 of Section 2.2. Then, the boundary points of water
regions were extracted from the ten pretreated 3D point clouds, using the method explained
in Step 4, Step 5, Step 6 and Step 7 of Section 2.2. The results of boundary point extraction
of water regions are shown in Figure 7.

As mentioned in Section 2.3, after extracting the boundary points of water regions of
the ten experimental 3D models, TINs of water regions were then constructed, and texture
images were automatically selected and mapped. Afterwards, the original model data
of water regions were replaced by the reconstructed 3D models. The final results of 3D
reconstruction of water regions are shown in Figure 8.

3.1. Qualitative Evaluation

It can be seen from Figure 5 (the original 3D models of oblique photography) and
Figure 8 (the final results of the water region reconstruction) that water regions in the
original 3D models of oblique photography can be effectively reconstructed. Holes can be
filled, and the real information of water regions can be represented in the real-scene 3D
environments, thanks to the proposed scheme.

In order to further assess the reconstruction effect of water regions, visual comparisons
were conducted between the final obtained 3D models of water regions and the scene
photos captured by UAV. The comparison results indicate that the reconstruction effect
of water regions is visually good. Taking one of the ten experimental 3D models as an
example, the comparison results are shown in Figure 9.
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Figure 6. Cont.
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Figure 6. Results of 3D point clouds transformation of the ten experimental 3D models. (a–j) are
the 3D point clouds of model_01, model_02, model_03, model_04, model_05, model_06, model_07,
model_08, model_09 and model_10, respectively.

Figure 7. Cont.



Remote Sens. 2023, 15, 1211 13 of 19

Figure 7. Results of boundary point extraction of the ten experimental 3D models. (a–j) are the
results of boundary point extraction of water regions in model_01, model_02, model_03, model_04,
model_05, model_06, model_07, model_08, model_09 and model_10, respectively.

Figure 8. Cont.
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(d) (e) (f) 

(g) (h) (i) (j) 

Figure 8. Results of water region reconstruction. (a–j) are the reconstruction results of water regions in
model_01, model_02, model_03, model_04, model_05, model_06, model_07, model_08, model_09 and
model_10, respectively. For each result, the upper image is the reconstruction result, the bottom image is
the original 3D model of photography, and the framed regions are the effects of local alignment.

Figure 9. Comparison results of reconstruction effect of water regions. (a) is the scene photo captured
by UAV, and (b–d) are the screenshots of the reconstruction result from three different angles.
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3.2. Quantitative Evaluation

In addition to qualitative assessments, quantitative evaluations have also been carried
out in this paper. Firstly, an accuracy comparison was made among this scheme and two
state-of-the-art works, i.e., schemes in [33,37], in terms of water boundary extraction. The
accuracy of each scheme was evaluated based on the manually selected boundary points
of water regions using the four indexes explained in Section 2.4. Moreover, tests were
performed with a general hardware configuration to evaluate the efficiency of the proposed
scheme.

(1) Accuracy Evaluation

For each experimental 3D model, the water boundary was firstly manually depicted,
and then extracted using the proposed scheme. The corresponding texture image generated
in Step 4 of Section 2.3 was also adopted for the water boundary extraction of the schemes
in [33,37]. Afterwards, the point coordinate errors of this scheme and the schemes in [33,37]
were calculated and analyzed based on the manually depicted water boundary, using the
four indexes explained in Section 2.4, i.e., AE, RMSE, SD and EOA. The experimental results
are shown in Table 2. It can be seen from Table 2 that the average values of AE, RMSE
and SD of this scheme are all less than 0.6 m, and the average value of EOA is less than
4%. In addition, the accuracy of the water boundary extraction of the proposed scheme is
acceptable compared with state-of-the-art works.

Table 2. Comparison results of accuracy of water boundary extraction.

3D Model Schemes AE (Unit: m) RMSE (Unit: m) SD (Unit: m) EOA (Unit: %)

model_01
This scheme 0.293671 0.436409 0.246782 1.162059

Scheme in [33] 0.502648 0.623545 0.532614 5.369245
Scheme in [37] 0.456841 0.598413 0.508592 6.326541

model_02
This scheme 0.154879 0.342610 0.107922 0.070159

Scheme in [33] 0.559348 0.657246 0.501236 4.895633
Scheme in [37] 0.585645 0.623598 0.486235 5.632154

model_03
This scheme 0.470261 0.613727 0.297445 2.343532

Scheme in [33] 0.523648 0.641235 0.526354 5.553241
Scheme in [37] 0.513647 0.623194 0.543969 5.763215

model_04
This scheme 0.302912 0.399930 0.595390 2.802301

Scheme in [33] 0.469216 0.615623 0.586324 5.230684
Scheme in [37] 0.521853 0.612548 0.572694 4.796523

model_05
This scheme 0.891332 0.797488 0.676160 7.293576

Scheme in [33] 0.493257 0.665123 0.563247 5.639521
Scheme in [37] 0.462584 0.691254 0.586218 5.326566

model_06
This scheme 0.392715 0.567713 0.236397 6.951579

Scheme in [33] 0.562415 0.665238 0.563241 5.845524
Scheme in [37] 0.512398 0.698423 0.543697 6.320227

model_07
This scheme 0.272851 0.458527 0.185233 4.731892

Scheme in [33] 0.521563 0.652347 0.536247 5.369656
Scheme in [37] 0.486325 0.642359 0.512398 5.785544

model_08
This scheme 0.389727 0.488049 0.344092 1.054049

Scheme in [33] 0.554236 0.631251 0.563244 4.763565
Scheme in [37] 0.542169 0.657358 0.523692 5.221526

model_09
This scheme 0.677022 0.707902 0.489006 11.141575

Scheme in [33] 0.516974 0.684592 0.553622 5.912548
Scheme in [37] 0.536958 0.645963 0.543669 5.632411

model_10
This scheme 0.221631 0.405329 0.160023 1.247305

Scheme in [33] 0.542354 0.676523 0.523687 6.231521
Scheme in [37] 0.523627 0.645286 0.526384 5.454217

Average of ten models
This scheme 0.406700 0.521768 0.333845 3.879803

Scheme in [33] 0.5245659 0.6512723 0.5449816 5.4811138
Scheme in [37] 0.5142047 0.6438396 0.5347548 5.6258924
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(2) Efficiency Evaluation

For each experimental 3D model, the consumed time of 3D reconstruction of the
water region was recorded and is presented in Table 3 (the configuration of the used PC
is described in the first paragraph of Section 3). The consumed time includes the entire
process of water region reconstruction, except the manual determination of the start-grid
for boundary extraction of water regions, i.e., Step 4 of Section 2.2. It can be concluded
from Table 3 that the proposed scheme is quite efficient.

Table 3. Results of efficiency evaluation of this scheme.

3D Model Consumed Time (Unit: s)

model_01 10.851
model_02 5.053
model_03 8.833
model_04 6.262
model_05 7.522
model_06 18.135
model_07 34.599
model_08 33.561
model_09 16.542
model_10 31.755
Average of ten models 17.311

4. Discussion

A novel, rapid and accurate reconstruction scheme for water regions in 3D models of
oblique photography is proposed in this paper. Accurately reconstructing the water region
in 3D models of oblique photography poses two main problems: (i) accurately modeling
the water surface, and (ii) real-texture mapping of the reconstructed water surface model.

For the first problem, it is assumed that the surfaces of water regions are flat. In this
case, the modeling of water surface can be transformed into the boundary extraction of
the water region. The distinct point cloud characteristics (i.e., elevation and density) of
water regions and other objects provide the foundation for the accurate identification of
the boundary of land and water regions. On this basis, an algorithm for the boundary
point extraction of the water region in 3D models of oblique photography is designed in
this paper (explained in Section 2.2). Experimental results indicate that the accuracy of
boundary extraction results can be at the centimeter level.

For the second problem, both the reflection theory of light and practical experience
indicate that the top-view images of water regions are least interfered with by reflections
of objects on the shore. In this case, the real-texture mapping of the reconstructed water-
surface model can be transformed into the intelligent optimization and processing of
top-view images. In fact, the metadata of each image captured by digital cameras are
recorded and bound to themselves (named EXIF information). The content of EXIF contains
image coordinates, image resolution, shooting time, etc. On this basis, a method of texture
selection is designed and implemented in this paper. Furthermore, there was a situation
where the spatial range of the selected top-view image cannot completely contain the
target water region. To solve this problem, another method was designed in this paper
(mentioned in Step 3 of Section 2.3). Experimental results have verified the effectiveness of
the proposed methods.

In summary, the scheme presented in this paper can improve the current technical
system of 3D modeling by UAV oblique photography. The outcomes of this paper can
contribute to the construction of real-scene 3D environments in many application fields,
e.g., twin watershed, twin lakes, twin city, etc. Meanwhile, there are four aspects of work
that are valuable to be further researched in future studies. Firstly, in this work, the starting
grid for boundary point extraction is determined manually, which is the only step requiring
manual intervention in this scheme. Therefore, automatic determination methods for the



Remote Sens. 2023, 15, 1211 17 of 19

starting grid should be studied further in the near future. Secondly, in the proposed scheme,
both the TIN and the corresponding texture image are only processed and represented at
the finest level, and the LOD (levels of detail) technology is not applied to improve the
rendering efficiency of 3D scenes. In future work, more attention should be paid to the
generation of TINs and texture images of water regions with various levels of fineness
based on LOD technology to obtain an efficient rendering operation. Thirdly, the texture
information is obtained only based on the top-view images of UAV in this paper, and
there are some interfering factors in the final generated texture images of water regions,
especially shadows of objects on the shore. Thus, there is still much room for improvement
in texture mapping. In future studies, it is worthy to further develop intelligent algorithms
for detecting and eliminating interfering factors in the texture images of water regions.
Finally, it is assumed in this paper that the surfaces of water regions are flat, and thus
objects within water regions, such as islands, towers, etc., cannot be 3D reconstructed,
which is worthy of further study.

5. Conclusions

UAV oblique photography technology is providing a new and efficient solution for
the 3D reconstruction of ground objects on a watershed scale. Although real-scene 3D
environments can be established rapidly, water regions cannot be effectively reconstructed
using this technology and real information about water regions is rarely visualized in 3D
watershed scenes. As such, traditional 3D simulation environments of watersheds cannot
meet the increasing demands of integrated watershed management.

To address the aforementioned problem, this paper proposes a rapid 3D reconstruction
scheme for water regions in 3D models of oblique photography. Firstly, boundary points of
the water region are extracted using a designed eight-neighbor traversal-based algorithm.
Next, the TIN of the water region is constructed using the Delaunay algorithm. Afterwards,
the corresponding texture image is intelligently selected and automatically processed.
Finally, the processed texture image is mapped to the TIN to obtain the reconstructed 3D
model of the water region. Simulation experiments have shown that the proposed scheme
is accurate, efficient and effective.

In future studies, further research should be conducted on automatic determination
methods for the starting grid, the generation of TINs and texture images of water regions
with varying levels of fineness based on LOD technology, the detection and elimination
of interfering factors in the texture images of water regions and the 3D reconstruction of
objects within water regions.
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