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Abstract: Hyperspectral image (HSI) classification is a significant foundation for remote sensing
image analysis, widely used in biology, aerospace, and other applications. Convolution neural
networks (CNNs) and attention mechanisms have shown outstanding ability in HSI classification
and have been widely studied in recent years. However, the existing CNN-based and attention
mechanism-based methods cannot fully use spatial–spectral information, which is not conducive to
further improving HSI classification accuracy. This paper proposes a new spatial–spectral Transformer
network with multi-scale convolution (SS-TMNet), which can effectively extract local and global
spatial–spectral information. SS-TMNet includes two key modules, i.e., multi-scale 3D convolution
projection module (MSCP) and spatial–spectral attention module (SSAM). The MSCP uses multi-scale
3D convolutions with different depths to extract the fused spatial–spectral features. The spatial–
spectral attention module includes three branches: height spatial attention, width spatial attention,
and spectral attention, which can extract the fusion information of spatial and spectral features. The
proposed SS-TMNet was tested on three widely used HSI datasets: Pavia University, IndianPines,
and Houston2013. The experimental results show that the proposed SS-TMNet is superior to the
existing methods.

Keywords: multi-scale 3D convolution; convolution neural network (CNN); attention mechanism;
hyperspectral image (HSI) classification

1. Introduction

Hyperspectral image classification is a significant application of remote sensing tech-
nology. The hyperspectral remote sensing image has many spectral bands, which provides
rich information to achieve a more precise classification of the scene object. Each pixel is
a high-dimensional vector with hundreds of wavebands in a hyperspectral image. The
numerical value of each vector with hundreds of bands in a hyperspectral image, repre-
senting the spectral reflectance at the corresponding wavelengths [1]. HSI classification
is the pixel-by-pixel classification of remote sensing scenes, which is extensively used in
agriculture, aerospace, biology, and other fields [2,3].

In the past two decades, hyperspectral image classification has received significant
attention as an essential application of remote sensing technology. Some traditional ma-
chine learning methods [4–6] were proposed for HSI classification tasks in the early years.
For instance, the support vector machine (SVM) [4] and K-nearest neighbor (KNN) [5] were
used to capture abundant spectral information in HSI classification. Li et al. [6] presented a
multinomial logistic regression method to classify HSIs using semi-supervised learning
of a posterior distribution. An extended morphological profiles (EMPs) method [7] was
proposed in handing the spatial information in HSIs through multiple morphological oper-
ations. Although the above HSI classification methods have been proven effective in some
cases, the classification effect is not satisfactory when the environment is very complex.
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With the development of deep learning, CNNs have made significant breakthroughs
in many image-related fields, such as image classification [8–10], object detection [11],
and instance segmentation [12]. Owing to the numerous bands of hyperspectral images,
the ability of ordinary classifiers will decrease with the increase of dimension, and the
accuracy will also decrease. Therefore, the traditional classifier based on CNNs for RGB
images cannot directly be used for HSI classification tasks. Researchers have conducted
much work and proposed a series of methods. For instance, an HSI classification method
based on 2D-CNN proposed by Song et al. [13] used multi-layer feature fusion and residual
connection to build a network. Chen et al. [14] used a 3D-CNN-based method for HSI
classification and proposed a method combining 3D-CNN and regularization to extract
fused global characteristics. Due to the strong ability of CNNs to extract local spatial
features, they have shown optimistic results. However, CNN-based methods can not pay
sufficient attention to the representation of spectral features, resulting in low utilization of
global spectral information and hindering the further improvement of model performance.
Chen et al. [15] proposed a method based on stacked autoencoders (SAE) to classify HSIs
through layer-by-layer training. Mou et al. [16] presented a new recurrent neural network
(RNN) method for HSI classification, which takes image pixels as sequence data for analysis
and processing. However, this method can not capture the long-range relationship between
spectra, resulting in unsatisfactory classification results.

Recently, a method based on the self-attention mechanism was presented, named
Transformer [17], which shows excellent performance in natural language processing tasks.
Thereafter, many researchers [18,19] are committed to introducing Transformer into the field
of computer vision. Dosovitskiy et al. [18] used Transformer for image recognition and pro-
posed a method named Vision Transformer (ViT), which divided the image into fixed-size
patches and added position coding to obtain tokens and finally put them into Transformer
Encoder for training. Due to the excellent performance of Transformer and its powerful
ability to process sequence information, many researchers have also applied Transformer
to the hyperspectral field. He et al. [19] presented a bidirectional encoder Representation
Transformer for HSI classification (HSI-BERT) to capture the correlation between spectra
using bidirectional Transformer encode representation. However, the networks do not
effectively employ the local spatial features of HSI.

In general, all of the above methods for HSI classification have some shortcomings,
which are summarized as follows. For the CNN-based methods [20–23], it pays too much
attention to local spatial correlation, resulting in the inability to capture long-range spectral
correlation, which limits the use of high-dimensional bands of HSIs. Even in the adjacent
spectral domain, it is hard for CNN-based methods to capture the subtle discrepancies
between different spectra. For the RNN-based methods [16], due to the problems of
gradient disappearance and gradient explosion, RNN-based methods cannot learn the long-
term dependence of spectral data well. For Transformer-based methods [18,24], although it
has certain advantages for establishing remote dependency, Transformer-based methods
cannot effectively extract important spatial context information and fused spatial–spectral
features. Some improved Transformer-based methods, such as [25–29], although the well-
designed CNN is used for spatial feature extraction before Transformer processing, can not
effectively capture fused spatial–spectral information. Some HSI classification methods
based on graph convolution neural network, such as [30–34], have unsatisfactory results
due to the large number of parameters and overfitting problems.

In order to solve the above problems, this work presents a spatial–spatial Transformer
network with multi-scale convolution (SS-TMNet) for HSI classification, which can more
effectively utilize local and global spatial–spectral information. SS-TMNet includes two key
modules: multi-scale 3D convolution project module (MSCP) and spatial–spectral attention
module (SSAM). Specifically, we utilize the MSCP module for initial feature mapping
to capture the fused spatial–spectral features, and employ the SSAM module to encode
the height dimension, width dimension, and spectral dimension features, respectively,
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to capture the local and global dependencies of each dimension. The main contributions of
this work are as follows.

• We design a new Transformer-based HSI classification method (SS-TMNet), which
uses multi-scale convolution and spatial–spectral attention to extract local and global
information efficiently.

• We design an MSCP module to extract the fused spatial–spectral features as the initial
feature projection. This module uses multi-scale 3D convolutions and feature fusion
to extract fused spatial–spectral features from multiple scales efficiently.

• We propose an SSAM module to encode the input features from the height, width,
and spectral dimensions. We use multi-dimensional convolution and self-attention to
extract more effective local and global spatial–spectral features.

• We have conducted extensive experiments based on three benchmark datasets. The ex-
perimental results show that the proposed SS-TMNet outperforms the state-of-the-art
CNN-based and Transformer-based hyperspectral image classifiers.

The structure of the work is as follows. Section 2 introduces the related work. Section 3
introduces the proposed SS-TMNet architecture, and then introduces the proposed MSCP
module and SSAM module in detail. Section 4 reports and analyzes the experimental
results. Section 5 summarizes this work.

2. Related Work

Hyperspectral image classification technology is one of the essential technologies
in the field of remote sensing. After years of research, researchers have presented many
methods for HSI classification tasks [35–39]. This section mainly summarizes related work
in three parts: traditional classification methods, CNN-based methods, and Transformer-
based methods.

2.1. Traditional Classification Methods

Some kernel-based methods were proposed in the early stage of HSI classification
research. For instance, Melgani et al. [4] applied the SVM method to achieve HSI clas-
sification. Unlike SVM, the multiple kernel learning (MKL) method proposed by Rako-
tomamonje et al. [40] aims to learn the kernel and related predictors simultaneously in a
supervised learning environment. However, both methods focus only on the feature infor-
mation of the spectral dimension and overlook the spatial dimension. Benediktsson et al. [7]
proposed extended morphological profiles (EMPs) to study the spatial feature information
of HSI. Extended attribute profiles and extended multi-attribute profiles (EMAP) are pre-
sented in [41] for capturing spatial information. In order to make better use of the spatial
features in HSI, Li et al. [42] presented a generalized composite kernel (GCK) method to
model spatial information from the extended multiattribute profiles. In addition, due to the
high-dimensional characteristics of HSIs, many works specifically explore how to reduce
dimension and extract features more effectively. For instance, Bandos et al. [43] presented a
linear discriminant analysis (LDA) method, which can be utilized to solve related ill-posed
problems for HSIs. Villa et al. [44] applied the Independent Component Analysis (ICA)
method to HSI classification and presented the Independent Component Discriminant
Analysis (ICDA) method, which calculates the density function of each independent com-
ponent by using a nonparametric kernel density estimator. Furthermore, linear versus
nonlinear PCA (NLPCA) proposed by Licciardi et al. [45] for HSI classification. There are
other methods in the literature, such as DSML-FS based on multimodal learning, which was
presented by Zhang et al. [46]. This method utilizes joint structure sparse regularization
to explore the relationship between the intrinsic structure of the data and its different
characteristics. Jouni et al. [47] proposed an HSI classification method based on tensor
decomposition and mathematical morphology by modeling the data as a higher-order
tensor. Additionally, Luo et al. [48] introduced a new dimension reduction method for
HSI classification, known as local geometric structure Fisher analysis (LGSFA), which
uses neighboring points and corresponding intra-class reconstruction points to enhance
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intra-class compactness and inter-class separability. However, these methods are based
on shallow feature representation, which can show unsatisfactory classification results in
complex scenes.

2.2. CNN-Based Methods

With deep learning development, CNN performs excellently in extracting local spatial
features. Therefore, numerous CNN-based methods have been presented for the HSI
classification task. Hu et al. [49] introduced the CNN into the HSI classification task and
proposed a five-tier 1D-CNN-based method. Compared with the traditional classification
methods, the effect has been improved. Hao et al. [20] presented a 2D-CNN-based method
to classify ground plants. In addition, Fang et al. [22] presented a 3D asymmetric incep-
tion network to extract spatial–spectral features and overcome the overfitting problem.
Chang et al. [23] presented a novel 3D-CNN-based method to capture the joint spatial–
spectral information by stacking layers of 3D-CNN and 2D-CNN. In order to capture fused
spatial–spectral information more effectively, He et al. [21] used multi-scale 3D-CNN for
HSI classification and presented a multi-scale 3D deep convolution neural network (M3D-
DCNN). Although CNN-based methods perform well in HSI classification, capturing the
long-range dependence between spectra is challenging. Furthermore, the excessive depen-
dence of CNN on local spatial information makes it difficult to improve the classification
accuracy further.

2.3. Transformer-Based Methods

Recently, due to the excellent performance of Transformer in the NLP field, many
researchers have applied it to the image classification field. Dosovitskiy et al. [18] presented
a ViT method based on Transformer for image classification. However, in the top-level
feature representation of the deep ViT model the feature maps are similar, which leads to
the incapability of the self-attention mechanism to learn the deeper feature representation.
Zhou et al. [24] presented a ViT-based method that can effectively use the deep architecture,
called DeepViT, which generates a new set of attention maps by aggregating multiple
attention maps dynamically. Although spectral dependence is considered in these methods,
the effect of spatial features is omitted. Considering the superior performance of CNN in
extracting local spatial features, many researchers applied convolution on Transformer to
obtain better performance. Graham et al. [50] re-examined the CNNs, applied it to ViT,
and proposed a hybrid neural network of CNN and ViT for image classification, called
LeViT. In order to extract multi-scale features from ViT, Chen et al. [51] presented a multi-
scale Transformer using cross attention, called CrossViT, which uses multiple multi-scale
encoders with two branches for feature extraction. Many researchers also introduced
Transformer-based methods into the HSI classification field. For example, He et al. [25]
presented an HSI classification method called spatial–spectral transformer (SST), which
uses VGGNet [52] to capture basic spatial information and then inputs the Transformer to
capture spectral information. Yang et al. [53] presented a novel Transformer-based method
called HiT for HSI classification, which uses double branch 3D convolution as feature
mapping, embeds the convolution in the encoder of Transformer architecture, and extracts
feature information from different dimensions using convolution. However, these methods
do not effectively use the advantages of convolution in the attention mechanism, making
it impossible to improve the classification effect further. In this work, we propose a
novel Transformer-based method called SS-TMNet, which can effectively employ the
advantages of convolution and attention mechanisms to extract global and local spatial–
spectral features. In the SS-TMNet, two modules, MSCP and SSAM, are proposed to extract
multi-scale fused spatial–spectral information and construct cross-dimensional interactions
between different dimensions, respectively.
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3. The Proposed SS-TMNet Method

In this section, we introduce our SS-TMNet method in three aspects: the overall
architecture of SS-TMNet, the MSCP module, and the encoder sequence module.

3.1. The Framework of the Proposed SS-TMNet

This work presents a novel HSI classification method called SS-TMNet based on
Transformer. SS-TMNet consists of two key modules: the MSCP module and the SSAM
module. MSCP is used for feature projection of the initial HSI image, where multi-scale 3D
convolution is utilized to capture the fused multi-scale spatial–spectral information. SSAM
is used to capture local and global spatial–spectral dependencies from different spatial and
spectral dimensions. The encoder sequence includes four stages where a downsampling
layer is added to reduce the dimensions after the second stage. Moreover, a global residual
connection connects the input and the final output. Figure 1 shows the overall architecture
of our SS-TMNet method.

Figure 1. The overall architecture of the proposed SS-TMNet. The MSCP is a multi-scale 3D convolu-
tion projection module to extract the fused multi-scale spatial–spectral information. The extracted
features are fed into the encoder sequence with four stages. Finally, a fully connected layer is used for
category prediction.

3.2. MSCP Module
3.2.1. Multi-Scale 3D Convolution

Hyperspectral images differ from ordinary RGB images. Because of the high-dimensional
characteristics of HSI, ordinary 2D convolution can not effectively capture the fused spatial–
spectral information because it ignores the dependence between spectra. Meanwhile, 3D
convolution can process the features from three dimensions, which can extract features
more effectively. In general, HSI data can be represented by a tensor with the size of
C× S× H×W, where C represents the number of channels, S denotes the spectral domain,
and H and W are the height and width in the spatial domain. Based on this, we can
apply 3D convolution to the initial HSI data to extract more effective feature representation
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for subsequent network learning. More specifically, the formula for 3D convolution is
as follows:

vxyz
ij = F

(
bij + ∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

wpqr
ijmv(x+p)(y+q)(z+r)

(i−1)m

)
, (1)

where m represents the feature map in the (i− 1)th layer connected to the jth feature map,
and Pi and Qi are the height and width of the spatial convolution kernel, Ri is the size of
the 3D kernel along the spectral dimension, wpqr

ijm is the value at the (p, q, r)th position of
the kernel connected to the mth feature map of the preceding layer. bij is the bias of the jth
feature map in the ith layer. F represents the activation function.

We studied HSI’s data characteristics and found that multi-scale 3D can perform
feature mapping more effectively than ordinary 3D convolution. As shown in Figure 2, we
developed a multi-scale 3D convolution to build the data mapping module and proposed a
new feature mapping module called MSCP. The multi-scale convolution layer uses different
sizes of 3D convolution to extract the feature map. From a global perspective, we extract
features from the feature information of interest in the image to obtain new feature maps of
different sizes and then fuse them to obtain the spatial–spectral feature map. The feature
map obtained through the MSCP module has rich fused spatial–spectral information, which
enhances the efficiency of feature extraction of subsequent networks.

Figure 2. The overall architecture of the proposed MSCP module.

3.2.2. Module Composition

Figure 2 shows that the MSCP module comprises multiple multi-scale 3D convolution
layers and feature fusion modules. MSCP processes input HSI data in three phases. Suppose
X ∈ RC×S×H×W is a patch of the input data (in this paper, the input image is divided into
several patches with the size of H ×W for processing, and the values of H and W are 15 in
the experiments). In the first phase P1, the input data X are placed into a 3D convolution
layer with ReLU operation to extract the spatial–spectral characteristics X1, where the
convolution kernel size is set to (11, 3, 3). Then, X1 is fed into a multi-scale 3D convolution
layer M1 with four different convolution kernel sizes, mainly used to extract spectral
characteristics of different scales. Then, we fuse the output multi-scale features with the
addition operation. To prevent overfitting, we use the residual connection to link the fused
multi-scale feature to the output of the first 3D convolution layer X1. The BatchNorm
and ReLU operations are then used to produce the first stage output XP1 . The formula for
feature mapping in the first stage is as follows:

X1 = ReLU(Conv 3D(X)),

XP1 = M1(X1) = ReLU(BN(X1 ⊕
4

∑
i=1

Conv 3D(X1))),
(2)
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where ReLU represents the activation function, BN represents the BatchNorm operation, ⊕
represents the residual connection, and i represents the 3D convolution of different scales.

In the second stage P2, we first feed the output XP1 of the first stage into a 3D con-
volution layer with a ReLU operation whose convolution kernel size is (9, 3, 3) to further
extract the spatial–spectral characteristics. The output features are placed in two successive
multi-scale 3D convolution layers M2 and M3 with feature fusion and residual connec-
tion operations to extract deeper spectral features. Then, we perform BatchNorm and
ReLU operations to obtain the output XP2 . In the third stage, P3, the activation function
and 3D pointwise convolution operation are used to handle the features of the output
further XP2 in the second stage. Finally, the MSCP module outputs the final representation
XP3 ∈ RH×W×D as the extracted features. The formula for the second and third stages is
as follows:

XP2 = M3(M2(ReLU(Conv 3D(XP1)))),

XP3 = Frescale(GELU(Conv 3D(XP2))).
(3)

Overall, the proposed approach employs multiple multi-scale 3D convolution layers to
extract fused spatial–spectral feature information at multiple scales, as well as shallow local
spatial–spectral dependences. To mitigate the issue of gradient disappearance, residual
connections are used in multiple locations. The extracted fused spatial–spectral information
provides an excellent feature representation for processing subsequent encoder sequences.

3.3. Encoder Sequence
3.3.1. Encoder

As shown in Figure 1, the encoder consists of two modules: SSAM and FFN modules.
SSAM encodes features from height, width, and spectral dimensions to extract local and
global spatial–spectral features. FFN consists of linear layers with the activation function
GELU, which is used to transform features and extract deeper features. The encoder
adds LayerNorm and residual connection operations to alleviate overfitting and gradient
disappearance, and more effectively cooperates with the above two modules for feature
extraction. Given an input embedding XP3 ∈ RH×W×D, the formulas of the coding process
are as follows:

Y = XP3 ⊕ SSAM(LayerNorm(XP3)),

Z = Y⊕ FFN(LayerNorm(Y)),
(4)

where ⊕ represents residual connection, Y represents the residual connection between
XP3 and the output of SSAM, and Z represents the FFN module’s output. In general,
the SS-TMNet has four stages, and each stage consists of an encoder sequence composed of
a different number of encoders. The implementation details of SSAM will be introduced in
the next section.

3.3.2. SSAM Module

Figure 3 shows the structure of the SSAM, which encodes the inputting feature along
the height, width, and spectral dimensions to extract local and global spatial–spectral
features more effectively. We feed Xin (XP3 after layer normalization operation) into three
branches for height-spatial coding, width-spatial coding, and spectral coding.

In the height branch LH , we utilize a depthwise convolution layer with convolution
kernel size (1,3) to the Xin to obtain local height spatial features, which will be fed into
the hight spatial attention (HSA) to calculate the spatial self-attention and obtain the
global dependent XH . In the width branch LW , we employ a depthwise convolution layer
with a convolution kernel size of (3,1) to handle the Xin and obtain local width spatial
characteristics. The width spatial attention (WSA) module is then used to derive a globally
dependent XW based on the local width spatial characteristics. In the spectral branch LS,
local spectral information is captured from the Xin using a pointwise convolution layer
with convolution kernel size (1,1). Then, the spectral attention (SA) is utilized to obtain
globally dependent XS.
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Figure 3. The architecture of the SSAM module.

Then, three local residuals connecting the input Xin with the outputs of hight spatial
attention, width spatial attention and spectral attention are also added to alleviate gradient
disappearance. It is worth noting that three learnable parameters γh, γw, and γs are used
to adjust the proportion of learning to characteristics for each branch. Finally, we fuse the
feature information of the three branches with the addition operation and linear projection,
and join the global residual connection to the Xin to get the final output Xout ∈ RH×W×D.
The calculation formula for SSAM is as follows:

XH = LH(Xin) = γh ×HSA(DepthConv(X))⊕ Xin,

XW = LW(Xin) = γw ×WSA(DepthConv(X))⊕ Xin,

XS = LS(Xin) = γs × SA(PointConv(X))⊕ Xin,

Xout = F(XH + XW + XS)⊕ Xin,

(5)

where γh, γw, and γs represent the learnable parameters, DepthConv represents a depth-
wise convolution layer, PointConv represents a pointwise convolution layer, ⊕ represents
residual connection, and F denotes linear projection. Next, we will detail the spatial and
spectral attention modules.

As shown in Figure 4, we introduce spatial attention for feature extraction to establish
rich spatial feature dependency. We first reshape the Xin ∈ RH×W×D to Xre ∈ R(H×W)×D,
and then send it to three parallel linear layers for feature mapping to obtain the output
{Q, K, V} ∈ RN×D, where N equals H times W. The concrete procedure of spatial attention
can be formulated as follows:

Xout = Linear(Transpose(softmax
(

Q⊗ KT
√

d

)
)⊗V), (6)

where ⊗ denotes the operation of matrix multiplication, and d is the scale factor. Finally,
a linear layer maps the feature and reshapes the dimension to obtain the final output
Xout ∈ RH×W×D. Furthermore, our spectral attention part is similar to spatial attention.
To simplify the calculation, our spectral attention discards the initial linear projection layer
and uses the input features to calculate the self-attention.

In summary, the SSAM module uses depthwise convolution and pointwise convolu-
tion to map features from height, width, and spectral dimensions, respectively, and further
extract features using spatial and spectral attention. To extract long-range relationship de-
pendences of both spatial and spectral features, we utilize spatial and spectral self-attention
mechanisms. Specifically, our SSAM module integrates convolution with self-attention
mechanisms, extracting features from three dimensions and fusing them to obtain feature
representations with both global and local dependencies.
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Figure 4. The structure of the height and width spatial attention modules. ⊗ denotes the operation of
matrix multiplication.

4. Experiments

This section introduces the HSI datasets used in the experiments, including the Pavia
University, Indian Pines, and Houston2013 datasets. In addition, we introduce the parame-
ter settings, evaluation metrics, and comparison models in experimental settings. Then,
we show and analyze the results. Finally, the ablation experiment and model performance
analysis are introduced.

4.1. Datasets
4.1.1. Pavia University Dataset

This dataset was obtained with the Reflective Optical Spectral Imaging System (ROSIS)
sensor of the University of Pavia, Italy. The spatial size of the hyperspectral image is
610 × 340 pixels, the spectral bands range from 0.43 to 0.86 µm, a total of 103 bands, exclud-
ing 12 water absorption bands. The dataset has 9 classification categories. The dataset is
shown in Figure 5.

(a) (b) (c)

Figure 5. The Pavia University dataset. (a) false-color composite image; (b) ground truth map;
(c) label color bar.
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4.1.2. Indian Pines Dataset

This dataset was collected in 1992 by the AVIRIS sensors in northwestern India, USA.
The spatial size of the hyperspectral image in the dataset is 145 × 145 pixels, and spectral
bands range from 0.4 µm to 2.5 µm. The total number of spectral bands is 200, excluding
20 water absorption bands. Available ground truths comprise 16 classes. The dataset is
shown in Figure 6.

(a) (b) (c)

Figure 6. The Indian Pines dataset. (a) False-color composite image; (b) ground truth map; (c) label
color bar.

4.1.3. Houston2013 Dataset

This dataset was captured by the CASI-1500 sensor over the University of Hous-
ton and its surroundings in Texas, USA. The spatial size of the image in the dataset
is 949 × 1905 pixels, and the spectral dimension includes 144 bands. The dataset has
15 classification categories. The dataset is shown in Figure 7.

(a)

(b)

(c)

Figure 7. The Houston2013 dataset. (a) False-color composite image; (b) ground truth map; (c) label
color bar.

4.2. Experimental Setup
4.2.1. Parameters Setting

The training samples for this work were set to 10% in three datasets, and the rest were
used as test samples. It is noteworthy that the selection of training and testing samples was
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random. To ensure the fairness of the comparative trials, we performed all the comparison
models ten times and recorded the results as mean ± standard deviation to compare the
performance of different models. The proposed SS-TMNet and the compared methods were
implemented on a NVIDIA RTX 3080Ti GPU machine with the pytorch [54] platform. We
used the Adam optimizer for gradient descent and set the initial learning rate to 1 × 10−4.
The mini-batch size was set to 32, and we set the epochs on these three benchmark datasets
to 200.

4.2.2. Evaluation Metrics

Overall accuracy (OA) and Kappa coefficient (K) were chosen in our experiments to
evaluate the results produced by different models in experiments. The OA is the average
accuracy for each category. The Kappa measures whether the classification results are
consistent with the actual underlying category. The formulas for calculating the above
evaluation criteria are as follows:

OA =

(
1
n ∑

k

(
TP + TN

TP + TN + FN + FP

)
k

)
,

K =
N ∑n

i=1 xii −∑n
i=1(xi+ × x+i)

N2 −∑n
i=1(xi+ × x+i)

,

(7)

where TP represents the true positive value, TN is the true negative value, FP represents
the false positive value, and FN represents the false negative value. n is the number of
categories, and N is the total number of data samples. xii denotes the value on the diagonal
line of the confusion matrix, xi+ and x+i denote the total value of rows i and columns i of
the confusion matrix, respectively.

4.2.3. Baselines

To validate the proposed SS-TMNet method, several representative baselines and
the most advanced backbone methods are chosen for comparison, including RNN-based
methods (such as Mou [16]), CNN-based methods (such as He [21], 3D-CNN [55], and Hy-
bridSN [56]), and Transformer-based methods (such as ViT [18], CrossViT [51], LeViT [50],
RvT [57], and HiT [53]). A more detailed description is as follows:

• Mou [16]: An RNN-based method, which uses a recurrent layer containing multiple
gated recurrent units. In addition, a fully connection layer and softmax layer are
utilized to construct the network.

• He [21]: A 3D-CNN-based method is composed of 3D convolution layers and multi-scale
3D convolution layers. Each multi-scale 3D convolution layer consists of four sublayers.

• 3D-CNN [55]: Another 3D-CNN method includes three convolution blocks and two
fully connection layers. Each convolution block includes a 3D convolution layer,
a BatchNorm layer, and an average pooling layer.

• HybridSN [56]: A method integrating 2D and 3D convolution, including three 3D
convolution layers, one 2D convolution layer, and two fully connection layers.

• ViT [18]: A classic Transformer-based method, which firstly splits the input image
into 16 × 16 patches and then feed them into the Transformer encoder to learning the
representation of the image.

• CrossViT [51]: A method based on dual-branch ViT architecture, where each branch
contains a linear projection layer and a different number of Transformer encoders for
processing different sized image patches.

• LeViT [50]: Another Transformer-based method, which includes four convolution
layers and three stage codes, and each stage contains four multiple attention layers.
We replicated the methods used for HSI classification according to this architecture.

• RvT [57]: Based on ViT, the RvT method uses a pooling layer to downsample the
image and reduce the size of the images. We follow this architecture to design the
network for the HSI classification tasks.
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• HiT [53]: A method of embedding convolution into Transformer, which uses two proposed
SACP layers based on 3D convolution to process the input image. Feature extraction is
performed using a three-branch convolution layer based on transformer architecture.

4.3. Results and Analysis

This section will elaborate the experimental results and analysis, including results com-
parison and visualization of three datasets: Pavia University, Indian Pines, and Houston2013.

4.3.1. Experimental Analysis on Pavia University Dataset

Table 1 shows the experimental results produced by different comparison models
with respects to OA and Kappa metrics on the Pavia University dataset. The table shows
that our proposed SS-TMNet is superior to all comparison methods, with OA and Kappa
reaching 91.74% and 89.44%. OA was 0.6%, 0.3%, 0.16% higher than RNN-based method
Mou [16], CNN-based method HybridSN, and Transformer-based method LeViT, respec-
tively. The possible reason is that SS-TMNet can more effectively capture local and global
dependencies. Among all the mentioned methods, the original ViT method performed
the worst, with 88.92% OA and 85.81% Kappa, which indicates that it is difficult for the
original ViT network to perform the hyperspectral classification task. The reason may be
that ViT lacks effective modeling capabilities for spatial characteristics. The methods using
only 3D convolution, such as He [21] and 3D-CNN, which obtained 89.97% and 90.72% OA,
respectively, did not perform well since these methods focus on only spatial characteristics
and spectral correlation is not fully considered. Transformer-based methods, such as LeViT
and HiT, their OA metrics were 91.58% and 91.28%, respectively. They are developed on
the basis of ViT, which performs better than ViT-only and 3D convolution-only methods.
This demonstrates that combining the convolution and Transformer networks can improve
classification results.

Table 1. The comparative experimental results on Pavia University dataset (Bold numbers represent
the best results for the corresponding category).

Class Methods

# Mou He 3D-CNN HybridSN ViT CrossViT LeViT RvT HiT SS-TMNet

1 90.32 ± 0.41 93.34 ± 0.80 93.97 ± 0.74 95.30 ± 0.57 92.92 ± 0.58 94.67 ± 0.22 95.70 ± 0.37 94.63 ± 0.43 95.14 ± 0.28 96.11 ± 0.24
2 95.77 ± 0.14 92.11 ± 0.20 92.56 ± 0.10 92.65 ± 0.06 91.13 ± 0.21 92.13 ± 0.13 92.61 ± 0.10 91.95 ± 0.19 92.53 ± 0.08 92.67 ± 0.08
3 75.34 ± 0.69 84.99 ± 2.20 88.73 ± 1.39 90.68 ± 1.44 82.35 ± 1.41 87.63 ± 0.87 91.48 ± 1.04 87.41 ± 1.00 89.91 ± 1.29 92.35 ± 0.66
4 94.63 ± 0.46 97.08 ± 0.29 96.31 ± 0.40 97.30 ± 0.24 95.80 ± 0.47 96.86 ± 0.31 96.80 ± 0.26 96.92 ± 0.39 97.15 ± 0.17 96.46 ± 0.49
5 99.80 ± 0.15 99.77 ± 0.11 99.79 ± 0.16 99.93 ± 0.08 99.69 ± 0.21 99.89 ± 0.07 99.51 ± 0.77 99.94 ± 0.06 99.91 ± 0.07 99.66 ± 0.16
6 85.96 ± 0.53 97.66 ± 0.79 99.52 ± 0.29 99.77 ± 0.18 94.74 ± 0.86 98.26 ± 0.39 99.54 ± 0.14 97.61 ± 0.61 99.38 ± 0.23 99.91 ± 0.09
7 71.43 ± 2.52 91.48 ± 1.65 92.22 ± 1.68 96.51 ± 1.55 90.72 ± 1.34 95.05 ± 0.95 97.90 ± 1.08 95.92 ± 0.85 95.79 ± 1.50 99.05 ± 0.57
8 82.87 ± 0.67 94.39 ± 1.05 95.95 ± 1.26 97.25 ± 1.22 94.43 ± 0.58 96.69 ± 0.38 98.84 ± 0.29 96.44 ± 0.53 97.39 ± 0.57 98.31 ± 0.38
9 99.44 ± 0.20 98.97 ± 1.00 97.50 ± 1.63 99.61 ± 0.37 97.79 ± 0.96 99.74 ± 0.19 97.83 ± 2.12 99.83 ± 0.19 99.47 ± 0.25 98.02 ± 0.76

OA(%) 91.14 ± 0.21 89.97 ± 0.36 90.72 ± 0.37 91.44 ± 0.28 88.92 ± 0.31 90.70 ± 0.13 91.58 ± 0.17 90.55 ± 0.20 91.28 ± 0.21 91.74 ± 0.12

K(%) 88.19 ± 0.27 87.17 ± 0.47 88.13 ± 0.47 89.06 ± 0.35 85.81 ± 0.40 88.11 ± 0.17 89.24 ± 0.22 87.92 ± 0.25 88.85 ± 0.27 89.44 ± 0.16

The visualization experiment results produced by the comparison methods are shown
in Figure 8. As shown in the red rectangle box in the figure, most methods produce much
noise in the classification maps compared to our SS-TMNet method. It is worth noting that
although the classification maps of the HybridSN and LeViT methods are similar to ours,
there is still a small amount of noise, and from the evaluation metrics in Table 1, the results
of the method we presented are still better. The possible reason is that compared with
HybridSN and LeViT, SS-TMNet learns the fused local spatial–spectral features through the
proposed MSCP module and more effective local and global feature representations through
the SSAM module. The visualization proves that our proposed method can produce better
results than most existing methods.
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Figure 8. Visualization of the experimental results on Pavia University dataset. (a) Original image,
(b) Ground truth, (c) Mou, (d) He, (e) 3D-CNN, (f) HybridSN, (g) ViT, (h) CrossViT, (i) LeViT, (j) RvT,
(k) HiT, (l) SS-TMNet(Ours).

4.3.2. Experimental Analysis on Indian Pines Dataset

Table 2 shows the evaluation results of our presented and compared models on
the dataset. Our proposed SS-TSNet shows the best results, with OA and Kappa reach-
ing 84.67% and 82.66%. The OA metric of our proposed method is 9.40% higher than
RNN-based methods (i.e., Mou), 12.08% higher than CNN-based methods (i.e., 3D-CNN),
and 1.04% higher than Transformer-based methods (i.e., LeViT). One possible reason is
that we have improved the encoding of feature projections and spatial–spectral features to
enable more efficient feature encoding.

Our method differs from the existing methods (i.e., CrossViT, LeViT, RvT, and HiT).
We use MSCP to capture the spatial–spectral dependence of the fused multi-scale features.
Meanwhile, the SSAM is presented to capture the local and global spatial–spectral infor-
mation of multidimensional data. Thus, our proposed model can more effectively model
the HSIs from spatial–spectral dependence and local–global features. Figure 9 shows the
dataset’s visualization results, which shows that our proposed model produces the classifi-
cation map with the least noise and achieves satisfactory results. For example, as shown in
the red rectangle in the figure, compared with other comparison methods, the SS-TMNet
method generates the slightest noise in the classification map. The reason HiT does not
perform well relative to our proposed method may be due to its ineffective integration
of convolution into Transformer, leading to a lack of effective modeling of global feature
dependencies. From the overall effect, our proposed method produces a classification map
closer to the ground truth image than other methods, which proves the validity of our
proposed method.
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Table 2. The comparative experimental results on Indian Pines dataset (Bold numbers represent the
best results for the corresponding category).

Class Methods

# Mou He 3D-CNN HybridSN ViT CrossViT LeViT RvT HiT SS-TMNet

1 31.28 ± 11.84 70.82 ± 13.59 49.33 ± 19.93 34.68 ± 26.05 50.11 ± 10.28 62.57 ± 11.25 65.77 ± 11.61 51.24 ± 14.29 80.64 ± 8.22 87.48 ± 8.15
2 72.76 ± 1.68 62.45 ± 10.18 68.47 ± 4.06 67.37 ± 20.83 65.46 ± 2.57 62.14 ± 8.14 88.59 ± 4.60 76.48 ± 3.17 86.18 ± 4.40 88.56 ± 2.34
3 55.39 ± 2.30 48.96 ± 12.23 51.89 ± 7.60 44.89 ± 22.79 52.57 ± 2.58 41.82 ± 9.88 72.43 ± 3.22 65.42 ± 5.50 69.94 ± 4.99 76.50 ± 3.23
4 47.20 ± 6.37 48.86 ± 14.14 40.95 ± 10.33 34.47 ± 25.45 57.92 ± 7.50 65.34 ± 11.69 77.73 ± 3.51 77.96 ± 5.31 75.63 ± 5.39 82.19 ± 3.92
5 85.59 ± 2.77 62.62 ± 19.22 75.29 ± 4.92 55.75 ± 24.99 52.76 ± 5.08 55.28 ± 5.24 79.78 ± 2.11 50.33 ± 3.87 75.26 ± 2.71 81.71 ± 3.49
6 93.19 ± 0.92 91.35 ± 4.93 93.40 ± 3.30 81.17 ± 21.38 79.49 ± 2.52 88.64 ± 1.35 95.69 ± 1.53 86.43 ± 2.16 94.79 ± 1.60 97.76 ± 0.92
7 50.16 ± 17.71 46.70 ± 15.68 22.49 ± 17.72 13.61 ± 16.56 43.72 ± 16.49 38.62 ± 33.31 21.61 ± 25.55 62.93 ± 21.35 73.03 ± 18.03 72.09 ± 16.30
8 93.37 ± 0.81 92.52 ± 2.77 91.76 ± 1.40 75.92 ± 26.44 89.41 ± 2.32 89.45 ± 2.41 91.48 ± 1.89 92.02 ± 1.13 93.09 ± 0.78 94.39 ± 0.47
9 33.62 ± 14.20 63.57 ± 18.28 35.74 ± 23.68 32.78 ± 29.91 31.35 ± 13.48 13.99 ± 19.46 23.43 ± 26.35 47.50 ± 13.45 59.99 ± 16.58 68.66 ± 17.26
10 66.05 ± 1.98 62.03 ± 17.77 72.40 ± 4.64 52.51 ± 32.21 61.48 ± 2.95 59.01 ± 6.94 83.09 ± 3.11 73.70 ± 4.17 85.34 ± 3.43 87.19 ± 1.98
11 72.82 ± 1.14 75.50 ± 6.83 79.24 ± 2.16 80.16 ± 9.91 72.26 ± 1.33 70.54 ± 4.43 92.85 ± 1.22 79.74 ± 3.35 89.73 ± 2.47 90.70 ± 1.63
12 60.66 ± 2.77 50.03 ± 15.02 58.43 ± 8.37 49.05 ± 25.87 51.64 ± 2.99 40.73 ± 14.18 83.30 ± 5.45 66.83 ± 6.57 76.38 ± 7.70 81.85 ± 3.97
13 94.23 ± 2.25 92.96 ± 4.79 96.80 ± 2.83 70.88 ± 25.35 86.61 ± 3.46 87.18 ± 3.73 92.75 ± 5.96 88.69 ± 5.38 95.57 ± 1.90 97.18 ± 3.02
14 92.56 ± 0.75 92.44 ± 2.79 93.60 ± 1.34 89.57 ± 10.91 88.50 ± 1.37 90.59 ± 0.57 97.09 ± 0.66 89.64 ± 1.10 94.53 ± 1.25 96.21 ± 0.89
15 61.43 ± 3.35 48.79 ± 5.36 44.69 ± 9.52 29.38 ± 13.56 44.94 ± 3.84 47.55 ± 4.32 58.74 ± 6.96 48.06 ± 7.94 58.84 ± 7.65 63.92 ± 3.78
16 84.57 ± 2.65 55.79 ± 16.94 55.15 ± 15.24 30.91 ± 30.87 48.29 ± 12.06 27.14 ± 28.65 87.47 ± 10.02 94.67 ± 3.59 86.10 ± 6.24 87.73 ± 3.15

OA(%) 75.27 ± 0.77 69.25 ± 6.60 72.59 ± 2.80 67.26 ± 13.98 66.21 ± 0.89 65.71 ± 4.03 83.63 ± 1.13 73.98 ± 2.35 82.13 ± 2.65 84.67 ± 1.25

K(%) 71.57 ± 0.87 64.72 ± 8.00 68.69 ± 3.27 62.21 ± 16.96 61.65 ± 0.98 60.79 ± 4.76 81.55 ± 1.27 70.55 ± 2.65 79.77 ± 3.02 82.66 ± 1.41

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 9. Visualization of the experimental results based on Indian Pines dataset. (a) Original image,
(b) Ground truth, (c) Mou, (d) He, (e) 3D-CNN, (f) HybridSN, (g) ViT, (h) CrossViT, (i) LeViT, (j) RvT,
(k) HiT, (l) SS-TMNet(Ours).

4.3.3. Experimental Analysis on Houston2013 Dataset

The experimental results of our proposed SS-TSNet and compared models on the
Houston2013 dataset are shown in Table 3. We can see that our model works best with OA
and Kappa, reaching 96.22% and 96.22%, respectively. In addition, the standard deviation of
our model is the smallest, only 0.12, indicating the stability of our model. It is worth noting
that the LeViT performs much worse on this dataset than the other two datasets in the
experiment with respect to OA and Kappa, only 87.36% and 86.34%, which indicates that
the generalization capability of the LeViT model is relatively weak. Our model performs
well on all three datasets, possibly because our SSAM models both local and global features
effectively from three dimensions.

Figure 10 shows the visualization results of the experiment. To make it clearer to
see the difference at the pixel level, we crop local details to show the classification map.
As shown in the red rectangle in the figure, the classification map generated by our method
is less noisy than comparison methods and closer to the ground truth image, which shows
the superiority of our presented method. Other methods, such as HybridSN, may not
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perform well because only the combination of 3D convolution and 2D convolution is used.
Although it has a good model of local spatial characteristics, it lacks the dependence on the
relationship between capturing long-range spectra. As for the CrossViT method, it only
uses Transformer to build the network without considering the effect of convolution on
classification results, which may result in unsatisfactory performance.

Table 3. The comparative experimental results on Houston2013 dataset (Bold numbers represent the
best results for the corresponding category).

Class Methods

# Mou He 3D-CNN HybridSN ViT CrossViT LeViT RvT HiT SS-TMNet

1 95.49 ± 0.92 95.45 ± 1.45 96.31 ± 1.91 97.74 ± 0.72 95.82 ± 0.84 94.36 ± 2.16 94.66 ± 1.51 97.50 ± 0.54 96.99 ± 0.87 97.60 ± 0.64
2 96.28 ± 0.68 97.04 ± 1.46 96.40 ± 1.51 97.54 ± 0.91 96.03 ± 0.98 94.91 ± 2.60 95.37 ± 2.58 98.42 ± 0.24 97.69 ± 0.52 98.44 ± 0.56
3 99.97 ± 0.05 99.03 ± 0.31 98.91 ± 0.94 99.21 ± 1.00 98.15 ± 0.65 98.59 ± 1.07 92.46 ± 8.68 99.70 ± 0.29 99.28 ± 0.69 99.50 ± 0.23
4 96.50 ± 0.97 95.59 ± 1.18 96.54 ± 1.52 98.35 ± 0.84 95.25 ± 0.79 97.10 ± 0.37 94.50 ± 1.50 98.32 ± 0.54 97.45 ± 0.64 97.26 ± 0.96
5 97.76 ± 0.71 95.07 ± 1.55 96.38 ± 0.63 96.72 ± 1.11 96.10 ± 0.87 96.74 ± 0.64 96.56 ± 1.46 97.63 ± 0.47 97.49 ± 0.61 98.19 ± 0.33
6 97.19 ± 2.86 74.68 ± 5.34 83.14 ± 5.14 93.85 ± 2.61 73.81 ± 5.75 88.76 ± 2.57 87.45 ± 3.28 93.30 ± 2.21 88.74 ± 3.62 93.67 ± 2.33
7 83.06 ± 0.99 90.96 ± 1.45 91.60 ± 1.81 93.78 ± 1.73 91.16 ± 1.34 94.86 ± 0.80 91.19 ± 4.61 95.99 ± 1.41 93.05 ± 1.08 94.54 ± 1.03
8 67.91 ± 1.94 82.25 ± 3.29 86.07 ± 2.16 90.60 ± 2.20 88.58 ± 1.38 89.61 ± 1.99 81.54 ± 8.63 94.48 ± 1.71 91.24 ± 1.97 95.74 ± 1.35
9 78.28 ± 1.83 83.92 ± 2.64 89.48 ± 1.81 89.02 ± 4.05 88.71 ± 1.77 92.63 ± 0.82 83.87 ± 8.50 92.34 ± 1.55 90.64 ± 1.84 94.29 ± 1.32
10 72.09 ± 2.47 86.58 ± 2.87 90.36 ± 1.50 92.31 ± 3.74 90.39 ± 1.23 89.33 ± 2.54 76.11 ± 12.47 94.44 ± 1.44 92.39 ± 1.92 96.91 ± 0.81
11 76.74 ± 1.04 85.83 ± 2.80 90.29 ± 2.17 91.84 ± 3.23 91.15 ± 1.53 91.29 ± 2.27 78.69 ± 12.96 93.75 ± 1.06 93.28 ± 1.55 94.94 ± 0.72
12 71.20 ± 2.04 82.39 ± 4.06 89.76 ± 2.29 91.47 ± 3.03 87.13 ± 1.52 88.22 ± 3.34 84.79 ± 7.95 93.37 ± 1.77 90.72 ± 2.25 96.50 ± 1.00
13 54.00 ± 5.40 83.31 ± 3.68 90.21 ± 4.11 92.38 ± 1.39 74.81 ± 4.09 80.82 ± 2.66 57.02 ± 31.62 85.68 ± 4.58 88.52 ± 2.33 93.42 ± 1.61
14 95.64 ± 1.02 95.41 ± 1.85 96.94 ± 2.92 96.06 ± 2.52 95.13 ± 1.43 95.03 ± 1.53 90.17 ± 7.81 99.12 ± 0.43 97.13 ± 1.62 99.88 ± 0.19
15 98.25 ± 0.40 96.28 ± 1.59 98.13 ± 0.83 96.02 ± 2.05 94.69 ± 2.24 97.65 ± 1.18 94.10 ± 4.05 98.20 ± 0.70 98.40 ± 1.06 98.98 ± 0.58

OA(%) 84.91 ± 0.51 89.61 ± 1.82 92.40 ± 1.30 93.90 ± 1.70 91.28 ± 0.69 92.61 ± 1.01 87.36 ± 5.97 95.28 ± 0.72 93.94 ± 1.02 96.22 ± 0.35

K(%) 83.68 ± 0.55 88.77 ± 1.97 91.79 ± 1.40 93.41 ± 1.84 90.58 ± 0.74 92.02 ± 1.09 86.34 ± 6.47 94.91 ± 0.78 93.45 ± 1.10 95.92 ± 0.38

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 10. Visualization of the experimental results based on Houston2013 dataset. (a) Original
image, (b) Ground truth, (c) Mou, (d) He, (e) 3D-CNN, (f) HybridSN, (g) ViT, (h) CrossViT, (i) LeViT,
(j) RvT, (k) HiT, (l) SS-TMNet(Ours).

4.3.4. Student’s t-Test

We conducted a Student’s t-test between our presented method and the compared
methods with 10 times randomized initializations. We collected OA results produced by
10 randomized experiments on Pavia University, Indian Pines, and Houston2013 datasets
using SS-TMNet and other comparative methods. Student’s t-test method was employed
to compute the p-value between our proposed methods and existing methods. When the
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p-value is greater than 0.05, there is no significant difference between the two models.
When the p-value is less than 0.05, the results of the two models are significantly different.

To make it easier to observe data differences, our experimental data are represented
by scientific notation. As shown in Table 4, the p-value between the SS-TMNet and all
the compared methods is less than 0.05 on the three datasets, which shows that our SS-
TMNet method has significant advantages over other methods. For instance, on the Pavia
University dataset, the p-values between the SS-TMNet method and HybridSN and HiT
methods are 1.40 × 10−2 and 2.26 × 10−5, respectively, which are less than 0.05, showing
significant differences between methods.

Table 4. Student’s t-test results between SS-TMNet and the compared methods.

Datasets Methods

# Mou He 3D-CNN HybridSN ViT CrossViT LeViT RvT HiT

Pavia University 7.12 × 10−7 5.20 × 10−11 7.45 × 10−6 1.40 × 10−2 1.02 × 10−11 1.22 × 10−12 3.68 × 10−2 1.08 × 10−11 2.26 × 10−5

Indian Pines 1.77 × 10−13 1.94 × 10−6 4.05 × 10−8 5.01 × 10−3 2.80 × 10−18 4.59 × 10−8 4.48 × 10−2 4.76 × 10−10 1.78 × 10−2

Houston2013 1.78 × 10−21 1.16 × 10−6 5.61 × 10−6 2.57 × 10−3 1.86 × 10−13 7.50 × 10−9 1.59 × 10−3 2.50 × 10−3 5.08 × 10−5

4.4. Ablation Studies

We have performed ablation experiments on the main components of the SS-TMNet
model. The results and analysis of the ablation experiments for the proposed MSCP and
SSAM modules are described in the following two sections. The results in Tables 5 and 6
are the average of ten times experiments.

4.4.1. The Effectiveness of the MSCP Module

In order to verify the effectiveness of our proposed MSCP module, we used different
projection methods (such as Linear, Conv2D, SACP [53], and MSCP) to project the image
features without changing the subsequent module and network structure. Furthermore,
SACP is the feature projection module in the HiT method. As shown in Table 5, we chose
ViT as the baseline method. The experimental results show that our MSCP+SSAM showed
the best performance (91.74% in OA and 89.44% in Kappa). The Mean and Std columns
in the table represent the mean and standard deviation differences between our proposed
SS-TMNet (MSCP+SSAM) and the comparison method. We can see that our presented
method had the highest mean and lowest standard deviation, which shows that the MSCP
module is more effective than the other feature extraction modules.

Table 5. Ablation study of the proposed MSCP on the Pavia University dataset (Bold numbers
represent the best results).

Methods OA(%) Mean(−) Std(+) Kappa(%) Mean(−) Std(+)

ViT 88.92 ± 0.31 −2.28% +0.19% 85.81 ± 0.40 −3.63% +0.24%
Linear + SSAM 90.58 ± 0.24 −1.16% +0.12% 87.95 ± 0.30 −1.49% +0.14%

Conv2D + SSAM 91.53 ± 0.12 −0.21% +0.00% 89.18 ± 0.16 −0.26% +0.00%
SACP [53] + SSAM 91.59 ± 0.19 −0.15% +0.03% 89.25 ± 0.24 −0.19% +0.08%

MSCP + SSAM 91.74 ± 0.12 0% 0% 89.44 ± 0.16 0% 0%

4.4.2. The Effectiveness of the SSAM Module

In order to verify the effectiveness of the SSAM module, we took the ViT method as
the baseline method and set up four groups of comparison experiments. In the experiment,
the SSAM Module in our proposed method is replaced by the single linear layer connection
(Linear), the convolution permutator module (ConvPermute) of the HiT method, and
the ViP [58] method (ViP), respectively. The table shows that our MSCP+SSAM had the best
performance (91.74 ± 0.12 in OA and 89.44 ± 0.16 in Kappa). Compared with the replaced
SACP and ViP modules, our proposed method was 0.45% and 0.37% higher in the OA
metric, respectively, which shows the effectiveness of our SSAM module for improving
network performance.



Remote Sens. 2023, 15, 1206 17 of 20

Table 6. Ablation study of the proposed SSAM on the Pavia University dataset (Bold numbers
represent the best results).

Methods OA(%) Mean(−) Std(+) Kappa(%) Mean(−) Std(+)

ViT 88.92 ± 0.31 −2.82% +0.19% 85.81 ± 0.40 −3.63% +0.24%
MSCP + Linear 90.15 ± 0.30 −1.59% +0.18% 87.40 ± 0.38 −2.04% +0.22%

MSCP + ConvPermute [53] 91.29 ± 0.17 −0.45% +0.05% 88.86 ± 0.22 −0.58% +0.06%
MSCP + ViP [58] 91.37 ± 0.40 −0.37% +0.28% 88.97 ± 0.52 −0.47% +0.36%
MSCP + SSAM 91.74 ± 0.12 0% 0% 89.44 ± 0.16 0% 0%

4.5. Scability

Due to the scarcity of hyperspectral image data, it is meaningful to study the influence
of the number of training samples on the classification method. We changed the training
samples from 10% to 50% on the Houston 2013 dataset to study the scability. Each model
was run ten times, and the average value was taken as the final result. Table 7 reports the
average OA of the proposed SS-TMNet and compared models. We can see that as the train-
ing samples change from 10% to 50%, the performance gradually improves, and our model
always shows excellent results and high stability. It is worth noting that the experimental
results of LeViT, when the training sample are 40% and 50%, are slightly higher than the
model we proposed. However, LeViT performs poorly when the training samples are few,
indicating its instability.

Table 7. The results of OA by the SS-TMNet method and comparison methods with different
training samples on the Houston 2013 dataset (Bold numbers represent the best results for the
corresponding category).

Training Sample Methods

# Mou He 3D-CNN HybridSN ViT CrossViT LeViT RvT HiT SS-TMNet

10% 84.91 ± 0.51 89.6 1± 1.82 92.40 ± 1.30 93.90 ± 1.70 91.28 ± 0.69 92.61 ± 1.01 87.36 ± 5.97 95.28 ± 0.72 93.94 ± 1.02 96.22 ± 0.35
20% 87.77 ± 0.36 94.71 ± 1.05 95.84 ± 0.64 97.82 ± 0.28 95.59 ± 0.37 97.19 ± 0.15 97.70 ± 0.33 97.55 ± 0.22 96.96 ± 0.96 97.98 ± 0.19
30% 89.42 ± 0.40 96.38 ± 0.93 97.32 ± 0.28 97.92 ± 0.67 97.15 ± 0.25 98.19 ± 0.13 98.46 ± 0.17 98.27 ± 0.22 98.04 ± 0.26 98.49 ± 0.15
40% 90.53 ± 0.42 96.88 ± 0.90 97.88 ± 0.23 98.65 ± 0.41 97.78 ± 0.25 98.61 ± 0.16 98.85 ± 0.11 98.63 ± 0.11 98.43 ± 0.30 98.79 ± 0.11
50% 91.48 ± 0.35 97.59 ± 0.38 98.40 ± 0.15 98.76 ± 0.18 98.24 ± 0.26 98.84 ± 0.13 98.98 ± 0.07 98.82 ± 0.11 98.54 ± 0.29 98.88 ± 0.13

Moreover, to study the experimental results of our SS-TMNet method on several
datasets that vary with the number of training samples, we tested SS-TMNet on three
datasets. The experiment also adopted the average of 10 results as the final result. The ex-
perimental visualization results of the OA metric are shown in Figure 11. With the increase
of training samples, OA gradually increases and eventually tends to be stable, which
effectively proves the proposed method’s stability.

Figure 11. The OA results of the proposed SS-TMNet on three datasets with a varying number of
training samples.
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5. Conclusions

This work presents a novel HSI classification Transformer-based method (SS-TMNet)
to improve HSI classification, which can fully use the spatial–spectral information in HSI
data. SS-TMNet includes two key modules: the MSCP module and the SSAM module.
The MSCP module uses multi-scale 3D convolution to extract the fused spatial–spectral
features. The SSAM module extracts features through height dimension, width dimension,
and spectral dimension, which can more effectively obtain local and global feature informa-
tion. We compared our proposed method with the most advanced Transformer-based and
CNN-based methods on three benchmark HSI datasets. Experimental results show that
our SS-TMNet method performs the best overall accuracy on three datasets.

In future work, we plan to study more efficient HSI classification methods based on
Transformer by embedding convolution neural networks into Transformer more effectively.
For the scarcity problem of labeled HSI, we plan to study transfer learning and self-
supervised learning based on SS-TMNet to improve the performance of classification of
limited training samples.
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